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Abstract

Growing urban populations and shifting precipitation patterns under a changing
climate motivate the flexible use of markets to reallocate water in arid regions. To
understand the effects of these markets, we examine the United States’ largest ever
agriculture-to-urban water transfer, from Imperial County to San Diego County,
California. A general equilibrium water trade model is used to illustrate the trade-
off between job preservation and environmental protection trade policies. Using a
synthetic control and event study approaches, we find initial declines in agricultural
output and labor under fallowing, which protected environmental water. Policy
changes increasing the intensity of agricultural water use subsequently decreased
inflows to the Salton Sea, exposing areas of fine-silted lakebed, creating additional
dust. Dust-related air pollutants, PM10 and PM2.5, increase during the relevant
period while placebo non-dust pollutants, Ozone and NO2, do not.
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1 Introduction

The choices governments make about trade policy are often better explained by political
considerations than economic theory (Baldwin, 1989). The loss of domestic jobs in certain
industries creates a constituency for imposing tariffs and reducing the inflow of goods
(Rodrik, 1995). While academic work on these topics has often examined international
trade between countries, similar interactions between political economy and trade policy
can exist sub-nationally when local jurisdictions regulate trade. In the United States,
counties and public water management organizations enact policies to restrict the trade
of water to preserve the use of the resource in local agricultural economies (Hanak and
Dyckman, 2003; Hanak, 2003, p.viii; Edwards and Libecap, 2015).

In the western United States, water property rights and market mechanisms are used
to reallocate water. Due to historic allocations, as much as 80% of western US water is
currently used in agriculture, but demand for water for urban and environmental uses
is rapidly increasing. A similar reallocation challenge exists in many arid and semi-arid
regions throughout the world. Water trades between agricultural and urban areas provide
a potential solution, because trade benefits the buyer and seller who are directly involved,
with large potential gains (Grafton et al., 2012; Hagerty, 2019).

Despite this, local opposition to the liberalization of water markets has been strong,
focusing on the potential loss of jobs in the originating region (Mann and Wüstemann,
2008; Holcombe and Sobel, 2001). Permanent transfers of water may limit future eco-
nomic development in the area of origin and lead to out-migration, although negative
outcomes in exporting regions are more limited when sellers receive substantial benefits
and do not sell a large portion of their water (Rosegrant, 1997; Rosegrant and Ringler,
2000).

Negative environmental outcomes have also emerged as a criticism of trade in natural
resources (Chichilnisky, 1994; Brander and Taylor, 1998; Copeland and Taylor, 2009).
Key case studies in bison and fisheries have pointed to a direct, deleterious effect on
renewable resource stocks due to export when foreign markets open (Taylor, 2011; Eisen-
barth, 2018). However, there is a relatively small literature examining the connection
between trade and resource use (Copeland et al., 2021). Market transfers of water, es-
pecially those that move water from one basin to another, appear to generate negative
externalities in the originating region, including reductions in water quality, water avail-
ability, and in-stream flows (Howe et al., 1990).

In this study, we examine the largest ever agriculture-to-urban water transfer in the
United States. The transfer of water used in Imperial County, California for agricultural
irrigation generated large gains from trade when sold to San Diego County Water Au-
thority (SDCWA). However, the Imperial Irrigation District (IID), a publicly controlled
district which managed the water supply, initially resisted making the transfer, fearing
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declines in local agricultural activity. Under national and state government pressure,
in 2003 IID began a program that paid farmers to voluntarily fallow fields, reducing
agricultural production and making water available for transfer.

Initial fallowing programs contained provisions to ensure water would continue to flow
to the Salton Sea, a shallow saline lake maintained by water flows from IID. However,
IID opposed fallowing because it reduced agricultural output and jobs. Eventually, the
fallowing program and its associated ecosystem flow protections were phased out. By
2016, 50% of the water being transferred to San Diego was generated through conservation
programs which reduced Salton Sea flows, and lake levels have declined rapidly (Fogel
et al., 2020; IID, 2018). The exposed lakebed playa contains fine dust particles, which
led to increased dust pollution (Jones and Fleck, 2020).

We build on the trade literature to develop a general equilibrium water trade model
that demonstrates the relative effect of free trade in water under fallow-transfer and
unrestricted-transfer policy regimes. The model suggests trade policy can play an impor-
tant role in the incidence of trade on labor and environmental outcomes. Under fallowing,
environmental water flows are conserved but factor prices cannot adjust, resulting in mi-
gration out of the local economy. Under conservation, labor markets can adjust more
flexibly, but water in the system, and corresponding ecosystem benefits, decline.

We employ a synthetic control approach to compare Imperial County, the area of
origin, to other California counties that did not engage in large-scale water exports. We
find that under the fallow-trade policy agricultural acreage declined, with correspond-
ing decreases in agricultural labor.1 The water transfer initially had little impact on
the Salton Sea, but as the fallowing retention program was phased out in favor of con-
servation, dust-related air pollutants, PM10 and PM2.5, increased. This result has not
been documented previously. Placebo non-dust air pollutants, Ozone and NO2, do not
see corresponding increases. We subsequently compare the synthetic control approach to
standard difference-in-differences and event study methods, using all California counties
as a counterfactual, as well as using the subset of counties that receive nonzero weights
in the synthetic control analysis.

Our work demonstrates the necessity of jointly examining water trade outcomes and
policy in general equilibrium, with implications for the political economy of policy choice.
This insight is missing from much of the literature on water trade. Namely, the additional
loss of jobs under a fallowing policy, which protects water flows to ecosystems, is viewed
negatively by key local constituencies due to its inflexibility and labor market distortions.
The elimination of this policy led to corresponding decreases in environmental water flows,
imposing additional health costs on the water exporting region.

1Between 2003 and 2017, San Diego provided $30 million to IID for economic mitigation of the
agricultural labor and related effects. All results in the paper are inclusive of any effects of this transfer.
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The paper proceeds with details on the empirical setting in section 2. The general
equilibrium model of a regional economy is introduced in section 3. Section 4 presents
the empirical approach and section 5 the data used in the analysis. Results are reported
in section 6 and section 7 concludes. The appendix contains supplementary materials
related to data collection, empirical analysis, and robustness checks.

2 Background

The Colorado River is the largest water source in the southwestern United States. Its
waters are divided between seven states, two countries, and many tribal nations (Pulwarty
et al., 2005). California’s allocation of Colorado River water of 4.4 million acre-feet was
the result of a 1922 agreement that divided up 15 million acre-feet of Colorado River
water.2 In the early 2000s, California’s ongoing use was around 5.2 million acre-feet.

Imperial County is one of the top agricultural producing counties in the United States,
with agricultural production and processing estimated to contribute $4.5 billion and
24,429 jobs to the local economy (Ortiz and Dessert, 2017). The largest single user
of Colorado River water is the Imperial Irrigation District (IID), which has rights to di-
vert 2.6 million acre-feet through the All-American Canal, just north of the border with
Mexico. The geographic region of study is shown in figure 1.

Facing pressure to cut back on its excess diversions, primarily due to Arizona’s de-
velopment of its share of Colorado River water, the state of California and US federal
government pressured IID to transfer water to the San Diego County Water Authority
(SDCWA), allowing overall reductions in Colorado River diversions while maintaining wa-
ter supply to what had become the country’s seventh largest city. While initially opposed
to transferring water out of the local agricultural economy, IID reached an agreement in
2003, the Quantification Settlement Agreement (QSA), transferring up to 200,000 acre-
feet/year of water from Imperial County to San Diego County for 35-70 years; in 2020,
the agreement transferred 190,000 acre-feet of water with payments totaling $129 million.

The agreement is commonly described as the largest agriculture-to-urban water trans-
fer in the United States’ history. Soon after its ratification in October 2003, IID began
a fallowing program that paid farms to halt irrigation on certain fields, reducing agricul-
tural production and making water available for transfer. A consensus has emerged that
the result of the transfers was a decline in inflows to the Salton Sea:

“The Salton Sea is shrinking primarily because regional water policy—indirectly—
is providing it a significantly smaller share of water from the Colorado River
[...] To generate the water for transfer and sale, Imperial Irrigation District

2An acre-foot (AF) is 326,000 gallons and is enough to supply 1-2 California households with water
each year, meaning 4.4 million acre-feet could supply water for up to 22 million people.
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engaged in several activities to reduce the amount of water used for irriga-
tion, including the fallowing of agricultural lands in the Imperial Valley early
in the program, to be followed up later by improved irrigation efficiency. Both
water-saving approaches conveyed the known side effect of drastically reducing
inflows to the Salton Sea.” (Fogel et al., 2021, p.22)

Transfers began in 2003 and as noted above, the policy regime changed over time.
Initially, IID made water available to transfer by fallowing fields. Under this program,
the district ensured that return flows, water that prior to fallowing had left the field and
flowed into the Salton Sea, were maintained. This meant that all reductions in water
use came from the agricultural sector, reducing crop acreage but not Salton Sea inflows.
The total water conserved under the various programs implemented by IID, including
transferred water and Salton Sea mitigation water, is shown in figure 2.

In hydro-economic modeling, fallowing programs have been shown to result in more
inflow to the Salton Sea than direct lease programs that generate conservation (Levers
et al., 2019). However, fallowing removes agricultural land from production, and these
programs have been referred to derisively as “buy-and-dry.” Opposition to fallowing
programs was strong in IID prior to agreement, and the 2003 QSA included a planned
phase-out of fallowing starting in 2014. The agreement also ramped up transfers in 2013.

Like the Salton Sea, other terminal lakes have seen agricultural diversions reduce water
inflows, leading to dust pollution, including the Aral Sea, Lake Urmia, Owens Lake, and
the Great Salt Lake (Wurtsbaugh et al., 2017). Dust pollution has been documented as
affecting human health through the increase in particulate concentrations (Griffin and
Kellogg, 2004). Prior to an investment in dust mitigation of over $2 billion dollars by
the City of Los Angeles, the Owens Dry Lake was the largest source PM10 in the United
States (Kittle, 2000). Atmospheric PM2.5 due to dust storms has been shown to decrease
birth weight and increase infant mortality (Jones, 2020). In the Salton Sea, decreases in
lake elevation induced changes in PM2.5 during the period 1998-2014 and led to increases
in respiratory mortality (Jones and Fleck, 2020).

3 Water Trade Model

We develop a general equilibrium representation of a regional economy with three sectors:
an agricultural sector (A), a manufacturing sector (M), and a water-based ecosystem
service sector (S). We derive a general set of results showing the changes in the origi-
nating region as a result of regional water trade. Then, we examine two policy scenarios
corresponding to our empirical setting, fallow-trade and unrestricted-trade, to arrive at
predictions.
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Among the three sectors, the agricultural sector is the domain sector with the largest
share of labor. Assume regional water availability, W , follows the equation of motion:

dW

dt
= Ẇ = σ̄ − f(W )−WA −WM (1)

where σ̄ is water inflow; f(W ) is water outflow, which is a function of the amount of water;
and WA and WM are the amount of water used in the agricultural and manufacturing
sectors, respectively.

Each sector requires unskilled and/or skilled labor, U and L, respectively. We assume
that skilled labor can only be hired in the agricultural and manufacturing sectors, while
unskilled labor can be hired in both the agricultural and ecosystem service sectors (e.g.,
services related to the natural system). Labor is fully employed and assumed to be freely
mobile across sectors, implying L̄ = LA + LM and Ū = UA + US. The agricultural sector
produces output using skilled labor, unskilled labor, and water, while the manufacturing
sector uses skilled labor and water. The ecosystem service sector only uses unskilled labor
and water that remains in the system. Hence, the amount of water withdrawn from the
ecological system is W̄ = WA + WM .3 Production technologies are represented by the
following production functions:

QA = QA(UA, LA,WA) (2)

QM = QM(LM ,WM) (3)

QS = QS(US,W ) = USW (4)

where all neoclassical assumptions are maintained for production functions in (2) and
(3).4

We can add a second regional economy that works in a similar way, albeit with a
potentially different equation of motion and different ecosystem, agricultural and man-
ufacturing production functions. Since our focus is on the water selling region, we only
define the production function of this region in what follows.

Given a perfect competition assumption, the zero-profit condition implies:

αLA
γL + αWA

γW + αUA
γU = PA (5)

αUS
γU = PS (6)

αLM
γL + αWM

γW = PM (7)

3This model can be modified to include land and capital as specific factors. However, this modification
has no bearing on our analysis and does not add much to the theoretical foundation that this section
provides.

4The specific production function for ecosystem service sector is commonly used for resource sectors
(see Schaefer, 1957; Brander and Taylor, 1998).
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PA, PS, and PM denote the constant price of agricultural, service, and manufacturing
output, respectively. Constancy of these prices are due to these regional economies being
small relative to the global economy. γL and γU are the wage rates for skilled and unskilled
labor, respectively; γW is the water price; and αLi

, αUi
, and αWi

are the respective per-
unit amount of skilled labor, unskilled labor, and water in sector i. Moreover, the full
employment condition implies:

αUA
QA + αUS

QS = Ū (8)

αLA
QA + αLM

QM = L̄ (9)

αWA
QA + αWM

QM = W̄ (10)

Differentiating equation (5), where x̂ = dx
x
denotes the proportional change in variable

x, produces:

θLA
γ̂L + θUA

γ̂U + θWA
γ̂W = P̂A − (θLA

α̂LA
+ θUA

α̂UA
+ θWA

α̂WA
) (11)

where θji is the factor j’s cost share in sector i, e.g., θLi
=

γLαLi

Pi
, θUi

=
γUαUi

Pi
, θWi

=
γWαWi

Pi
.

P̂A is the (potential) exogenous proportional change in the price of agricultural output.
In equilibrium, θLA

α̂LA
+ θUA

α̂UA
+ θWA

α̂WA
= 0. Thus, we obtain:

θLA
γ̂L + θUA

γ̂U + θWA
γ̂W = P̂A (12)

Using the definition of αUS
, i.e., αUS

= US

QS
, and equations (4) and (6), we get:

γU = W · PS (13)

By totally differentiating equation(13), we have:

γ̂U = P̂S + Ŵ (14)

A similar derivation yields:

θLM
γ̂L + θWM

γ̂W = P̂M (15)

Re-writing equations (13)-(15) in matrix form: θUA
θWA

θLA

0 θWM
θLA

1 0 0

 ·
 γ̂U

γ̂W

γ̂L

 =

 0

0

Ŵ

 (16)

where we maintain PA = PS = PM = 0, due to our small regional economy assumption.
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Solving the system of equations in (16), we obtain:

γ̂U = Ŵ (17)

γ̂W = − θUA
θLM

θWA
θLM
− θLA

θWM

Ŵ (18)

γ̂L =
θUA

θWM

θWA
θLM
− θLA

θWM

Ŵ (19)

The sign of γ̂W and γ̂L is determined by the sign of θWA
θLM
− θLA

θWM
. Rewriting this

equation using the factor shares, we have:

θWA
θLM
− θLA

θWM
=

γWαWA

PA
· γLαLM

PM
− γLαLA

PA
· γWαWM

PM

=
γLγW

PA PM
(αWA

αLM
− αLA

αWM
)

=
γLγW

PA PM

(
WA

QA

LM
QM

− LA
QA

WM

QM

)
=

γLγWLMLA

PA PMQAQM

(
WA

LA
− WM

LM

)
Given that the agricultural sector is more water intensive than the manufacturing

sector (i.e., WA

LA
> WM

LM
), then θWA

θLM
− θLA

θWM
> 0. We next find changes in the wage

rates and water price for the water exporting region under two scenarios.

3.1 Fallow-Transfer

Under the fallow-transfer policy, water transfers must be removed directly from consump-
tive use in agriculture, so that overall water in the system remains unchanged, i.e., land
is fallowed and conserved water is exported, less some amount to maintain the amount
of water that remains in the system. This implies that Ŵ = 0. It follows from equa-
tions (17)-(19) that γ̂U = γ̂W = γ̂L = 0, i.e., factor prices do not change. Moreover,
it follows from equation (10) that under this policy, dWA = dW̄ , which amounts to the
transfer, implying that dWM = 0. Factor prices and proportions must remain unchanged,
as does water intensity (in terms of unskilled labor) in agriculture and manufacturing.
Hence, dLM = 0 and dLA = dWA, and from equation (9) it is apparent that skilled labor
must migrate out of the regional economy as water is exported. Similarly, to maintain
the water-to-unskilled labor ratio in the agricultural sector, dUA = dWA, unskilled labor
moves to ecosystem services sector and/or moves out of the regional economy. Therefore,
under the fallow-transfer policy, labor moves out of the system and the non-ecosystem
services part of the economy (mainly agriculture) shrinks.

8



3.2 Unrestricted-Transfer

Now suppose the water transfer takes place without being tied to a particular sector. We
have Ŵ < 0 under this scenario. Then, it follows from equations (17)-(19) that γ̂U < 0,
γ̂L < 0, γ̂W > 0. From these results, we make the following predictions:

(i) Water trading raises the return to water in the water exporting region;

(ii) Water trading reduces the returns to skilled and unskilled labor in the water ex-
porting region.

If the predictions hold and the amount of water that remains in the system decreases,
we expect an increase in water values—and therefore the marginal productivity of water—
and a decrease in both skilled and unskilled labor in the agricultural sector. Furthermore,
if water is transferred out of the system, the size of the resource providing the ecosystem
service will decline.

Under the fallow-transfer policy, water is maintained in the ecosystem (by design),
while the unrestricted-transfer policy leads to a decrease in system water (and thus ecosys-
tem services). While both policies lead to reductions in employment, the unrestricted
policy allows factor prices to change, leading to more water intensive production (i.e.,
a lower water-to-labor ratio) since wages fall for both types of labor. In this sense, the
untied policy is less distortionary because there is no need for the displacement of labor.

4 Empirical Framework

In this section, we describe our empirical strategy to quantify the impact of the QSA on
economic and ecological outcomes of Imperial County—the treatment unit. The plausible
identification of a treatment effect requires the specification of suitable control units that
represent a counterfactual scenario. In our case, all the remaining counties in California—
that are not affected by the QSA and that have not experienced water transfers of similar
magnitude due to any other policy or agreement—serve as potential controls. Further,
granted that the QSA was sighed on October 16, 2003, the post-treatment period encom-
passes a period starting from 2004.

4.1 A Synthetic Control

Standard comparative case study methods, such as difference-in-differences, assume that
all available control units are similar to the treatment unit (in terms of observable and
unobservable characteristics) in the pre-intervention period, and thus assign an equal
weight to all control units in the analysis. In practice, however, it is unlikely that any
given control unit can fully match the treatment unit in all or most of its attributes in
the pre-intervention period.
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The synthetic control method adopted in this study avoids the above limitations by
relying upon a data-driven procedure to obtain a suitable counterfactual unit (Abadie
and Gardeazabal, 2003; Abadie et al., 2010; Abadie, 2021). A synthetically composed
control unit (i.e., synthetic control) is a weighted average of available control units (i.e.,
donor units), with weights determined based on how closely the attributes of each control
unit approximate those of the treatment unit in the pre-intervention period. This allows
the synthetic control unit to match the treatment unit during the pre-treatment period
better than any single control unit.

The synthetic control method is a two-step procedure. In the first step, using pre-
intervention data on the characteristics of treatment and control units, the optimal sets
of weights are estimated. A synthetic control unit is then constructed using these weights
as the weighted average of outcomes of control units. A plausible synthetic control tracks
the pre-intervention time path of a treatment unit’s outcome as closely as possible. The
counterfactual outcomes are recovered in the second step by taking the weighted average
of outcomes of control units for the post-intervention period. The treatment effect is
then measured by taking the difference between the predicted (counterfactual) outcome
for the synthetic control and the actual outcome of the treatment unit during the post-
intervention period.

Similar to Abadie et al. (2010), let Yit be the outcome of interest for county i, for
i = 1, ..., N + 1, in period t, for t = 1, ..., T0 + 1, ..., T . Suppose the treatment county
corresponds to i = 1, while the remaining N counties constitute the donor pool. Also,
assume that the policy/intervention takes place in period T0+1, so that the pre-treatment
period covers 1, ..., T0 and the post-treatment period encompasses T0+1, ..., T . Let Y noQSA

it

be the outcome of interest for county i at time t if county i is not exposed to the treatment
(i.e., QSA) up to time t, for i = 1, ..., N + 1 and t = 1, ..., T0 + 1, ..., T . Let Y QSA

it be
the outcome for county i at time t if county i is exposed to the treatment in periods
T0 + 1, ..., T . The implicit assumption here is that the QSA has no effect on outcomes
before it is implemented, i.e., Y QSA

it = Y noQSA
it for i = 1, ..., N + 1 and t = 1, ..., T0. The

treatment effect for county i at time t is measured by δit = Y QSA
it − Y noQSA

it . Given only
the first county (i = 1) is exposed to the treatment by assumption, the main estimator
for the treatment effect boils down to:

δ1t = Y QSA
1t − Y noQSA

1t for t > T0 (20)

Notice that, while Y QSA
1t is observable for the post-intervention period (t > T0), the

counterfactual outcome Y noQSA
1t is not, which renders the above equation ill-posed. Our

methodology allows us to replace unobservable Y noQSA
1t with a synthetically composed

outcome.
The main requirement placed on a synthetic control unit is that it closely approximates
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all relevant attributes of the treatment unit in the pre-treatment period. The attributes
can include both the outcome variable of interest and other covariates. Let Zi be an
r × 1 vector of observed explanatory variables of the outcome variable of interest, for
i = 1, ..., N+1.5 Let Ỹ K

i =
∑T0

t=1 ktYit be a linear combination of pre-treatment outcomes
for county i, where K = (k1, ..., kT0)

′ is the set of weights. One can consider M sets of K-
type weights, i.e., K1, ...,KM , to obtain M linear combinations of the outcome variable.6

Consider an N × 1 vector of weights W = (w2, ..., wN+1)
′, with wi ≥ 0 and w2 + ...+

wN+1 = 1, that are assigned to N control units to produce a weighted average of control
units—a synthetic control. Different control unit weights, W’s, produce potentially dif-
ferent synthetic controls. Given that a plausible synthetic control should closely mimic
the treatment unit (in terms of all relevant attributes) during the pre-intervention period,
the optimal weights W∗ = (w∗2, ..., w

∗
N+1)

′ must thus satisfy:

N+1∑
i=1

w∗iZi = Z1

N+1∑
i=1

w∗i Ỹ
K1
i = Ỹ K1

1

...
N+1∑
i=1

w∗i Ỹ
KM
i = Ỹ KM

1

Since there often exists no set of weights for which the above conditions hold exactly,
Abadie et al. (2010) suggest selecting the optimal weights by minimizing the overall
discrepancy in the attributes of the treatment and synthetically composed units, given
by:

||X1 −X0W|| =
√

(X1 −X0W)′V(X1 −X0W) (21)

where X1 = (Z′1, Ỹ
K1
i , ..., Ỹ KM

i )′ is a (r + M) × 1 vector of pre-treatment period at-
tributes of the treatment unit; X0 is a (r + M) × N matrix, with the jth column of
(Z′j, Ỹ

K1
j , ..., Ỹ KM

j )′, of pre-treatment period attributes of the control units; and V is a
(r+M)× (r+M) symmetric and positive semidefinite matrix that weighs the variables
in X1 and X0 based on their predictive power on the outcome. The optimal set of weights
for W and V are determined using a numerical search method by minimizing the mean
square prediction error (MSPE) given in equation (21).

5See appendix B for the list of covariates considered for each outcome variable.
6The M linear combinations of the outcome variable allow for controlling for unobservable common

confounders that vary over time (Abadie et al., 2010), which improves upon standard difference-in-
differences method that can control for unobservable confounders that are time-invariant.
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The synthetic control unit is constructed using the optimal weightsW∗ = (w∗2, ..., w
∗
N+1)

′.
The post-intervention values of the synthetically composed outcome can then replace the
(unobservable) counterfactual outcome Y noQSA

1t in equation (20), producing the estimator
for the treatment effect:

δ̂1t = Y QSA
1t −

N+1∑
i=2

w∗i Yit for t > T0 (22)

To draw inferences on statistical significance of the measured treatment effect, a series
of falsification tests need to be conducted (Abadie, 2021). Specifically, the treatment
status is systematically assigned to each control unit in the donor pool, which is equivalent
to treating control units with a placebo. The test carries out synthetic control analysis to
measure the “treatment” (placebo) effect.7 The estimated treatment effect for the exposed
county (δ̂1t, for t > T0) is considered statistically significant if it is unusually large in
magnitude relative to the “treatment” effects estimated for the unexposed counties in the
post-treatment period. In contrast, if several unexposed counties can reproduce the effect
that is comparable to that of the exposed unit, the treatment effect for the exposed unit
is then deemed to be not statistically significant.8

An alternative technique to evaluate the statistical significance of the measured treat-
ment effect is by the ratio of the post-intervention root mean square prediction error
(RMSPE) to the pre-intervention RMSPE. Given that the control units are not exposed
to treatment, the post-intervention RMSPE (i.e., the square root of average discrepancy
between actual and synthetic outcomes for the post-intervention period) for control units
should, in theory, be similar to the pre-intervention RMSPE (i.e., the square root of aver-
age discrepancy between actual and synthetic outcomes for the pre-intervention period),
thus producing a relatively small ratio. On the other hand, for the treatment unit, the
difference between actual and synthetic outcomes will be more pronounced during the
post-intervention period if a treatment effect is truly present, thus producing a larger
post-intervention RMSPE and, in turn, a larger overall ratio. As such, the estimated
treatment effect for the treatment county (δ̂1t, for t > T0) is considered statistically sig-
nificant if the treatment county has one of the few large post/pre RMSPE ratios. In
particular, a treatment unit with a significant treatment effect would appear at or near

7In order to ensure that the synthetic control method produces a plausible synthetic control for each
control unit in the donor pool, we consider control units for which the method produces, at least, as
good a fit as that for a treatment unit in the pre-treatment period. Specifically, in our inferences from
falsification tests, we consider control counties with pre-intervention RMSPEs that are less than or equal
to twice that of a treatment unit (Abadie et al., 2010). This helps us refine our inferences as placebo
units with poor pre-intervention fit could increase inference uncertainty in the post-intervention period.

8Nonzero values of the placebo effects can be attributed to broader factors (e.g., economic, regional,
environmental, etc.) that affect both the treatment and control units. Therefore, the falsification test
allows one to distinguish the true treatment effect from other, more common factors.
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the top when all post/pre RMSPE ratios were listed in descending order.9

4.2 Difference-in-Differences

For comparison purposes, we also conduct an event study analysis using a difference-in-
differences (DID) framework. We first estimate a standard panel DID specification given
by:

Yit = α (1[Imperial]i × 1[Post-Intervention]t) + Zitβ + µi + λt + εit (23)

where Yit is the outcome variable of interest for county i at time t; 1[Imperial]i is
an indicator that equals 1 if county i represents Imperial County and zero otherwise;
1[Post-Intervention]t is an indicator variable that equals 1 if year t is in the post-
intervention period (i.e., 2004-2018) and zero otherwise; Zit is a vector of explanatory
variables, which is similar to that under synthetic control; µi and λt are fixed county
and year effects, respectively; and εit is the idiosyncratic error term. The average treat-
ment effect (ATE) is captured by the parameter α. In cases where an outcome variable
of interest is continuous in nature (e.g., harvested acres, labor employment, etc.), equa-
tion (23) is estimated using a standard panel linear model with two-way fixed effects.
While, in cases where an outcome variable is count (e.g., PM10 days, PM2.5 days, etc.),
we estimate the above equation using a fixed-effects (FE) Poisson regression under the
panel generalized linear model framework.10

The DID estimation framework relies on several identifying assumptions. First, and
foremost, conditional on observable factors the trends of an outcome variable of interest
in Imperial County and the control counties would be similar in the absence of the QSA
(treatment). This is broadly known as the parallel (common) trends assumption. We test
the validity of this assumption rigorously by performing event study analysis (Yip, 2018;
Bartik et al., 2019), as discussed in the following section. We complement this analysis
by also performing DID estimation using solely control counties that receive a nonzero
weight in the synthetic control analysis.11 The main advantage of a synthetic-control-

9The disadvantage of RMSPE test is that it does not distinguish between positive and negative devia-
tions in the post-intervention period when ranking post/pre RMSPE ratios of the treatment and placebo
units. So, for instance, a treatment unit may present a large negative effect in the post-intervention
period (i.e., placebo units do not produce similar negative effect), but such effect may not necessarily be
found to be significant according to RMSPE test (i.e., post-pre RMSPE ratio of the treatment unit may
not appear at or near the top of the ranking) if there are placebo counties that produce large (cumulative)
positive effect in the post-intervention period. Hence, a caution should be exercised when interpreting
RMSPE test results.

10For robustness, we have also estimated count outcome variable models using (i) a standard panel
linear model with two-way fixed effects and (ii) a FE negative binomial regression under the panel
generalized linear model framework. The results, which are available upon request, were largely unaltered.

11The list of control counties that receive a nonzero weight from the synthetic control analysis for each
outcome variable is provided in appendix table D1. The corresponding DID analysis using only control
counties selected by the synthetic control analysis is provided in appendix C.
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informed DID is the selection of more suitable control counties (i.e., control counties that
closely mimic the treatment county in the pre-treatment period) for the DID analysis.
Its disadvantage, however, is a (substantial) reduction in the degrees of freedom, which
thus entails exercising caution in interpreting the results from this approach.

Second, the water transfer from Imperial County to SDCWA should not affect agri-
cultural and environmental outcomes in other Californian counties. If, for instance, the
QSA depressed agricultural employment in Imperial County and, simultaneously, boosted
agricultural employment (due to, for instance, migration flows) in control counties, then
the measured employment effect could, at best, serve as the upper bound of the true
effect. If such agricultural and/or environmental “leakage” effects do exist, they are likely
limited to neighboring counties, particularly, to Riverside and San Diego counties (see
figure 1). So, conducting empirical analysis without theses two control counties should
potentially alleviate this concern. As discussed in section 5, we exclude Riverside County
from our analysis due to a water transfer. Given that San Diego County does not receive
a nonzero weight in the synthetic control analysis (see appendix table D1), this concern
does not affect our synthetic control analysis. For our DID analysis, the synthetic-control-
informed DID discussed above serves as a robustness check. The results are qualitatively
similar (see appendix C).

Bertrand et al. (2004) raise concerns about serial correlation, specifically how failure to
account for it can lead to spurious inferences in the DID context, and suggest computing
standard errors that are robust to serial correlation. Serial correlation becomes potentially
an important issue with long time series. Accordingly, we report standard errors clustered
at the county level that are robust to both heteroskedasticity and serial correlation. For
FE Poisson regressions, we report cluster-robust standard errors as recommended by
Cameron and Trivedi (2009) to control for potential overdispersion.

4.3 Event Study

The advantage of event study analysis is twofold. First, it provides an internal validity
check on the parallel (common) trends assumption of DID estimation. If the trends of an
outcome variable of interest are parallel between Imperial County and the control counties
in the pre-intervention period, then such parallel trends would likely be maintained in
the post-intervention period, had the policy not been implemented. Event study analysis
offers an opportunity to visually evaluate whether differential pre-trends pose a challenge
to causal inference. Second, event study analysis allows for the study of the evolution
(possible lead/lag) of the treatment effect over time.

The event study is constructed by replacing 1[Imperial]i × 1[Post-Intervention]t in
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(23) with a full set of 1[Imperial]i×1[Y ear]t interaction terms, for t = 1, ..., T0 +1, ..., T :

Yit =
∑
t

αt (1[Imperial]i × 1[Y ear]t) + Zitβ + µi + λt + εit (24)

where 1[Y ear]t is an indicator that equals 1 in year t and zero otherwise. The parameters
of interest are αt, for t = 1, ..., T0 + 1, ..., T , which quantify the difference in an outcome
variable of interest between Imperial County and control counties in year t, relative to the
reference year (i.e., 2003). Depending on the nature of an outcome variable, equation (24)
is estimated using either a standard panel linear model with two-way fixed effects or a
FE Poisson regression under the panel generalized linear model framework. The 95%
confidence bounds for the estimates of αt are obtained using standard errors discussed in
section 4.2.

For each outcome variable, we produce two different event studies. In the first event
study, we include all the available control counties in the estimation. As noted earlier, this
assumes that all control units are similar to the treatment unit in the pre-intervention
period, which may not be necessarily true. In the second event study, we limit the
control counties to only those that receive nonzero weight in the synthetic control analysis.
Although this allows for the selection of more suitable control counties for the analysis,
it comes at a cost of reduced sample size.12

5 Data

We create a yearly county-level panel on crop production, labor, and ambient air quality.
The study variables are described in detail in appendix A. Crop production statistics come
from the annual report of USDA’s National Agricultural Statistics Service’s California
Field Office and are available for 1980-2018. We use annual harvested acreage as the
outcome variable in the analysis of the effects of the water transfer on agriculture. We
also obtain several agriculture-related control variables from this dataset, including cattle
value, alfalfa hay value, lettuce value, melon value, and other vegetable values. Lettuce
and melons are included as the most valuable specialty crops in Imperial County.

Labor employment and earnings variables are available for 1992-2018 from the Quar-
terly Workforce Indicators (QWI). The QWI is a product from the United States Census
Bureau based on the Longitudinal Employer-Household Dynamics (LEHD) survey that
provides quarterly employment statistics data at the county-NAICS (2- and 3-digit) code
level (Abowd and Vilhuber, 2011).13 We create measures of average employment and

12The event study analysis using only control counties selected by the synthetic control analysis is
provided in appendix C.

13This is the best estimate of employment available at this spatial and industry scale, but the extent
to which it is able to fully capture the important role of undocumented workers in California’s economy,
especially for agricultural labor, is not clear (see, for instance, Borjas, 2017).
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earnings for skilled (above high-school education) and unskilled (high school education
and below) employees. For agricultural labor data, we choose the Agriculture, Forestry,
Fishing and Hunting sector—NAICS two-digit code 11—to investigate the aggregate la-
bor effect of the QSA. For robustness, we also perform analysis using NAICS subsector
111 (Crop Production) labor data, given that this sector is potentially affected by the
QSA fallowing program.

Additional predictors to control for local economic development include farm propri-
etor’s income and employment, wages and salaries, and proprietor’s income and employ-
ment, and are obtained from Bureau of Economic Analysis (BEA). Agricultural labor
ratios—the ratio of male-to-female labor in the agricultural sector, the ratio of white-to-
Hispanic labor in the agricultural sector, and the ratio of low-to-high skill workers in the
agricultural sector—are obtained from the LEHD.

Measures of air quality are sourced from the United States Environmental Protection
Agency’s Air Quality System (AQS). We collect data on air quality index “bad days” for
key pollutants: PM10 for the period between 1980-2018; PM2.5 for 1998-2018; and Ozone
and NO2 for 1994-2018. The data period for each pollutant reflects the data availability.

Our donor (control unit) pool is composed of the remaining counties in California.
To avoid potential confounding effects, we exclude from our donor pool four California
counties (Yuba, Stanislaus, San Joaquin, and Riverside) as these counties engaged in
somewhat sizable water transfers over the course of the study period.14 Depending on
the specification as well as outcome variable examined, there is also a loss of a few control
counties due to missing observations, as detailed under table and figure notes. Further,
unlike a difference-in-differences method, a synthetic control approach requires data to
be balanced for the construction of a counterfactual outcome. This explains a possible
difference in control counties used by the two methods.

For the summary statistics of variables, as well as the list of controls, included in the
analysis of each outcome variable, see appendix B.

6 Results

We test the effect of the water transfer on Imperial County using a synthetic control
and DID-style event study. To infer statistical significance using the synthetic control
approach, we prefer the use of gap plots, which show the pre- and post-divergence of a
synthetic control relative to the observed values of the treatment unit. The measured
treatment effect is considered statistically significant if the gap plot for the treatment
county lies below the gap plots for the placebo units (for a negative treatment effect) or
above the gap plots for the placebo units (for the positive treatment effect) for at least

14For a comprehensive review of water transfers in California, see Hanak and Stryjewski (2012), par-
ticularly the study’s technical appendix.
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one post-intervention year.15 We place lower importance on RMSPE tests, as discussed
in section 4.1, but include RMSPE tests in the appendix (see table D2).

For the more traditional difference-in-differences analysis, we construct event study
charts to examine yearly differences. Statistical significance is determined if the con-
fidence interval for any year lies entirely above or below zero. However, with a single
treatment county and many potential control counties, the estimated effect will be sensi-
tive to the choice of counterfactual counties. For all outcome variables, we compare the
results of using all available California counties with results using just the counties which
received a nonzero weight in the synthetic control analysis.

A summary of the results of all the synthetic control analyses is provided in table 1,
which shows the mean, minimum, and maximum gap between synthetic and observed
outcomes for the post-intervention years.16 Employment and crop production measures
appear to behave as anticipated, with decreases in acres harvested and employment.
PM10 and PM2.5 days, key measures of dust pollution, both increase. For each of the nine
measures included in the table, we perform a synthetic control analysis, two difference-
in-differences analyses, and two event study analyzes. In this section, we highlight key
findings, leaving the results of the remaining analyses to the appendix (see appendix C).

We begin by examining the effect of the water transfer on harvested acres and agri-
cultural employment. Figure 3 shows the results of the synthetic control analyses of har-
vested acres (left panel), high-skill employment in the agricultural sector (middle panel),
and low-skill employment in the agricultural sector (right panel). All three figures reveal
a large, negative gap emerging post-QSA for the observed values for Imperial County,
relative to the synthetic control. The gap plots show several years where the treatment
effect is larger than any placebo, suggesting the results are statistically significant. More-
over, the findings are largely consistent for employment in the crop production sector
(see appendix figures C5 and C7). At the end of the treated period (i.e., 2015-2018), the
low-skill crop labor gap decreases, and Imperial County is no longer below the placebo
gap plots. This outcome is consistent with the transition from a fallow-transfer to an
unrestricted-transfer policy at that time.

Although the placebo tests offer some measure of statistical significance, they do not
provide traditional statistical tests or confidence intervals for the estimated coefficients.
To bound our point estimates, we turn to the difference-in-differences results, provided for
harvested acres, high-, and low-skill employment in table 2. These results suggest large
point estimates and large confidence intervals. The estimate for Harvested Acres shows
an average post-treatment reduction of around 76,000 acres of harvested cropland, which
is in the ballpark the number of acres fallowed in several years. A 95% confidence interval

15That is, the measured treatment effect (gap) for the treatment unit does not need to lie above/below
the gap plots for the placebo units in the entire post-intervention period for statistical significance.

16For additional details of our synthetic control analyses (e.g., county weights and RMSPE tests), see
appendix D.
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around the point estimate further improves the coverage of the estimated treatment effect,
suggesting that the synthetic counterfactual and difference-in-differences approaches pick
up the treatment effect reasonably well. The DID analysis for Harvested Acres using only
control counties that receive nonzero weight from the synthetic control analysis produces
qualitatively similar results (see appendix table C1).17

The remaining columns of table 2 provide the result of the difference-in-differences
regression of the effect of the transfer program on labor. The regressions including all
comparison counties are statistically significant and suggest job losses on the order of
1,367 and 2,323 in the high-skill and low-skill, respectively, categories of the agricultural
sector; and 320 and 438 in the high-skill and low-skill, respectively, categories in the crop
production sector. However, the magnitude of the point estimates declines when only
those counties selected by the synthetic control approach are utilized, and the results are
no longer statistically significant (see appendix tables C3-C6). This is partly attributable
to a significant reduction in the sample size. Therefore, we conclude that we have some,
but not overwhelming, evidence of job losses because of the water transfers, which can
be partially explained by the change in policy designed to reduce labor losses.

The event study plots in figure 4 add further clarity to our base DID results by pre-
senting the dynamics of the treatment effects (see appendix figures C6 and C8 for the
crop production sector). First, given that the estimates largely hover around the zero
line in the pre-treatment period (particularly for Harvested Acres, Ag High-Skill Employ-
ment, Crop High-Skill Employment, and Crop Low-Skill Employment), this suggests that
these variables share similar trends between Imperial County and the control counties in
the pre-treatment period, which provides evidence for the parallel (common) trends as-
sumption of the DID framework.18 Second, the evolution of the treatment effect for each
outcome variable in the post-treatment period closely resembles that of our synthetic
control output: we observe a distinct downward trend in agricultural production and
labor immediately after the transfer.

To understand the change in air pollution in Imperial County, we repeat our empirical
analysis on dust-related (PM10 and PM2.5) and non-dust (Ozone and NO2) air pollu-
tants. As demonstrated in figure 2, the large decreases in flows to the Salton Sea did
not occur until the implementation of non-fallow conservation programs, around 2014.
Figure 5 shows that dust-related air pollutants, PM2.5 and PM10, increase dramatically
in this year, relative to the synthetic Imperial County, and stay high through 2018. The
PM10 gap plot shows that Imperial County has a larger divergence in 2014, and every

17The crop reductions come primarily from reductions in hay/alfalfa acreage post-2004 (see appendix
figure C2), which we would expect as these are the low-value crops. The DID analysis on hay/alfalfa
acreage uncovers a statistically significant negative effect of the transfer (see appendix figure C2).

18Event study analyses using only control counties selected by the synthetic control analysis produce
qualitatively similar (at times, improved) results, though we remain cognizant of a reduced sample size
in this body of analysis. See appendix figures C1, C3, C4, C6, and C8.
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subsequent year, relative to all other placebo counties. The PM2.5 gap plot indicates
that from 2014 onwards Imperial County is among the counties with the largest positive
divergence, although it is never the largest.

Turning to the difference-in-differences analysis, summarized in table 3, there appear
to be large and statistically significant increases in dust-related air pollution. To test
the robustness of these results, we compare the dust-related pollutants to air pollutants
attributable to other factors. Because our causal story is that the water transfer exposed
additional lakebed playa, resulting in air pollution, pollutants like ozone and NO2, which
are generally caused by the combustion of fossil fuels, should not increase with PM2.5
and PM10. The results in table 3 suggest that, indeed, these placebo pollutants do
not appear to increase. In fact, ozone and NO2 days slightly decline, perhaps owing to
reduced agricultural activity in the region.19

Figure 6 shows the event study plots for the dust-related air-quality measures (top
panel) and the placebo air pollutants (bottom panel). It is apparent that the pre-
treatment period estimates are mostly statistically insignificant (more so for PM2.5,
Ozone, and NO2), which means the treatment unit was no different than control units
prior to the transfer.20 Similar to the synthetic control results, the PM10 and PM2.5
figures show a sharp uptick in pollution days starting in 2014, while the placebo pollu-
tants actually decrease near the end of the sample, consistent with our DID estimates.
As illustrated in figure 7, the synthetic control analysis for ozone corroborate our findings
from DID and event study analysis. But it fails to find a plausible convex combination
of the donors for NO2, as is evident from panel A of the figure, where a synthetic control
fails to closely track the treatment unit in the pre-treatment period. Hence, we rely on
DID and event study analysis for inferences about NO2.

7 Conclusion

This paper explores the causal effect of the largest agriculture-to-urban water transfer in
US history. A general-equilibrium representation of a regional economy with an ecosystem
service sector is constructed to demonstrate how outcomes in the exporting region depend
on the type of trade policy implemented. Initially, Imperial County adopted a fallowing
policy, which set water flowing into the natural system at approximately the same level
as before the transfers. The model demonstrates that this type of policy can lead to
job losses in the water exporting region. Later, Imperial County allowed transfers of
water through the intensification of consumptive use, which the model suggests will lead

19The DID analyses using only control counties selected by the synthetic control analysis produce
qualitatively similar results for the study’s air pollutants, though the effect of the sample size is manifested
in the significance of the estimates. See appendix tables C7-C10.

20Analogous results are obtained using only control counties selected by the synthetic control analysis.
See appendix figures C9-C12.
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to degradation of the ecosystems services sector, but may be a popular policy decision
because it allows more flexibility for labor market adjustments.

To test the intuition of the model we use synthetic control, difference-in-differences,
and event study analysis. Our results suggest an immediate loss of harvested acres and
agricultural-sector employment as the fallowing program is implemented. Around 2014,
when fallowing and offset program ends, we see a significant increase in dust-related air
pollution in Imperial County.

The political economy of trade plays a key role in policy choice. In Imperial County,
the switch out of a fallowing-based transfer program appears to have been made due
to political pressure. Preserving the ecosystem services sector via a fallowing program
with offset water flows to the Salton Sea provides broad public good benefits in terms
of limiting dust-related air pollution. However, when this policy ends, a narrow set of
benefits accrues to concentrated economic interests, especially farm-related businesses
and agricultural labor. Thus, both the magnitude and distribution of these benefits are
important factors to understanding the endogenous choice of water trade policy and its
outcomes. When these types of distributional effects are present in the choice of policy, it
is important to examine the environmental justice implications. While causal analysis of
the health effects of dust-based air pollution is beyond the current scope of work, we did
examine the age-adjusted asthma rates in Imperial County relative to others in California
(see appendix E). While we were not able to obtain pre-QSA data, the results do suggest
high rates of asthma in Imperial County.

While we attribute some reductions in employment and environmental damage to
the water transfer, this paper is by no means a full benefit-cost analysis. The primary
benefits of the transfer come from payments for water, and from the surplus of water
users in high-value urban areas. The gains from trade of these types of transfers are
likely to be quite large, given the limited marginal value of water in irrigated agricultural
production relative to urban consumption (Grafton et al., 2012). The key point, though,
is that environmental and labor-market costs fall on parties who may not receive these
gains. Thus, there may be political opposition to these types of transfers and without
proper planning, such transfers raise environmental justice concerns.

Political opposition stalled the transfer finally undertaken in the QSA for nearly 20
years before it was finally ratified (Edwards and Libecap, 2015), and the opposition
has continued to this day. Growing concerns about high rates of asthma around the
Salton Sea, recently raised by journalists, suggest dust pollution from the desiccated
lakebed will need to be addressed going forward via investment in mitigation or additional
dedicated water flows to the sea. Our work demonstrates the increase in dust pollution
is attributable in part to the choice of transfer policy, linked to the political economy of
trade.
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Table 1: Estimated Annual Treatment Effects from Synthetic Control Analysis.

Mean Min Max
Harvested Acres (in thousands) -57.84 -251.53 -10.41
Ag High-Skill Labor Employment -493.46 -605.79 -250.15
Ag Low-Skill Labor Employment -1,372.08 -1,806.62 -836.88
Crop High-Skill Labor Employment -279.26 -381.39 -196.77
Crop Low-Skill Labor Employment -628.40 -954.27 -347.97
PM10 Days 27.45 -27.90 109.61
PM2.5 Days 12.61 -25.08 101.37
Ozone Days -17.25 -116.83 58.99
NO2 Days 24.86 -9.96 57.59

Notes: Mean/min/max annual treatment effect is obtained by taking
the average/minimum/maximum of differences between the treatment
outcome and its synthetic counterpart (i.e., measured treatment effect)
for the post-intervention period (2004-2018). Employment measures
are for the ag sector (NAICS=11) and the crop sector (NAICS=111).
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Table 2: Difference-in-Differences Estimates for Agricultural Output and Labor.

Harvested Acres High-Skill Labor Employment Low-Skill Labor Employment
Ag Crop Ag Crop

Treatment Effect -75.5588*** -1,367.0360*** -320.0928*** -2,323.6270*** -438.2687***
(23.8476) (391.3947) (119.5283) (361.6651) (139.5125)

Observations 1,555 1,050 1,008 1,049 1,029
R2 0.0324 0.5986 0.4357 0.4487 0.4268
F Statistic 4.8697*** 102.3863*** 50.7392*** 55.8084*** 49.9867***

Notes: See appendix C for complete estimation results, including the list of control variables included in
the analysis of each outcome variable. All models control for county and year fixed effects. Models use all
available control counties, where omitted counties include those with missing observations and/or significant
water transfer (due to other policy/agreements) during the study period. Harvested Acres is measured in
thousands. Employment measures are for the ag sector (NAICS=11) and the crop sector (NAICS=111).
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table 3: Difference-in-Differences Estimates for Air Quality Measures (FE
Poisson Regression).

Dust-Related Air Quality Measures Air Quality Placebo Measures
PM10 Days PM2.5 Days Ozone Days NO2 Days

Treatment Effect 0.6971*** 1.0241*** -0.1497*** -0.1027***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 1,876 1,069 1,276 1,276
Log-likelihood -10,807.38 -16,410.72 -12,753.68 -8,639.59

Notes: See appendix C for complete estimation results, including the list of control variables
included in the analysis of each outcome variable. All models control for county and year fixed
effects. Models use all available control counties, where omitted counties include those with
missing observations and/or significant water transfer (due to other policy/agreements) during
the study period. Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure 1: Map of Study Region.
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Source: Author created map made using data from the State of California and the US Cen-
sus Bureau.
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Figure 2: Imperial Irrigation District Water Conservation.

Notes: Estimates of the amount of water IID conserved by type. Conserved water may be credited for
transfer to SDCWA or for Salton Sea mitigation. Figure is based on author simplification of figure “IID
QSA annual conserved water summary” (IID, 2018, p.69). Coachella numbers are estimated amounts.
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Figure 3: Imperial County Agricultural Production and Labor.

Panel A: Synthetic Control Output.
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Panel B: Falsification Tests.
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Notes: Graphical summary of synthetic control output for Harvested Acres (left), Ag High-Skill Employment (middle), and Ag Low-Skill Employment
(right). Panel A shows the time path realized by Imperial County and the synthetic Imperial County. Panel B shows the falsification test results of the
estimated treatment effect for Imperial County along with placebo effects for control units. Donor pool for Harvested Acres and Labor Employment consists
of 29 and 30, respectively, control counties. To refine inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that
are less than or equal to twice that of a treatment unit (Abadie et al., 2010). Employment measures are for the ag sector (NAICS=11). The vertical line
represents the QSA effective year.
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Figure 4: Imperial County Agricultural Production and Labor Event Studies.
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Notes: Event study analysis for Harvested Acres (top), Ag High-Skill Employment (middle), and Ag
Low-Skill Employment (bottom). See appendix B for the list of control variables included in the analysis
of each outcome variable. All models control for county and year fixed effects. Models use all available
control counties, where omitted counties include those with missing observations and/or significant water
transfer (due to other policy/agreements) during the study period. The confidence bounds are obtained
using robust standard errors. Employment measures are for the ag sector (NAICS=11). The vertical
line represents the QSA effective year.
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Figure 5: Imperial County Dust-Related Air Quality.

Panel A: Synthetic Control Output.
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Year

G
a
p
 i
n
 P

M
1
0
 D

a
y
s

1980 1985 1990 1995 2000 2005 2010 2015

−
2
0
0

−
1
0
0

0
1
0
0

2
0
0

Imperial County
Control counties

Year

G
a
p
 i
n
 P

M
2
.5

 D
a
y
s

2000 2005 2010 2015

−
4
0
0

−
2
0
0

0
2
0
0

4
0
0

Imperial County
Control counties

Notes: Graphical summary of synthetic control output for PM10 Days (left) and PM2.5 Days (right).
Panel A shows the time path realized by Imperial County and the synthetic Imperial County. Panel
B shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for PM10 Days and PM2.5 Days consists of 35 and 49,
respectively, control counties. To refine inferences from falsification tests, we consider control counties
with pre-intervention RMSPEs that are less than or equal to twice that of a treatment unit (Abadie
et al., 2010). The vertical line represents the QSA effective year.

31



Figure 6: Imperial County Air Quality Event Studies (FE Poisson Regression).

Panel A: Dust-Related Air Quality Measures.
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Panel B: Air-Quality Placebo Measures.
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Notes: Event study analysis for PM10, PM2.5, Ozone, and NO2 Days. See appendix B for the list of
control variables included in the analysis of each outcome variable. All models control for county and
year fixed effects. Models use all available control counties, where omitted counties include those with
missing observations and/or significant water transfer (due to other policy/agreements) during the study
period. The vertical line represents the QSA effective year.
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Figure 7: Imperial County Air-Quality Placebo Measures.

Panel A: Synthetic Control Output.
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Notes: Graphical summary of synthetic control output for Ozone Days (left) and NO2 Days (right).
Panel A shows the time path realized by Imperial County and the synthetic Imperial County. Panel
B shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for both variables consists of 48 control counties. To refine
inferences from falsification tests, we consider control counties with pre-intervention RMSPEs that are
less than or equal to twice that of a treatment unit (Abadie et al., 2010). The vertical line represents
the QSA effective year.
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Appendix:

Left in the Dust? Environmental and Labor Effects of
Rural-Urban Water Sales

Muyang Ge, Sherzod B. Akhundjanov, Eric C. Edwards, and Reza Oladi
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A Data Description

Table A1: Variable Descriptions and Sources.

Outcome Variables Source Period Notes
Harvested acreage USDA 1980-2018 Data from annual crop report compiled by the

California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level. https:
//www.nass.usda.gov/Statistics_by_State/
California/Publications/AgComm/index.php

Skilled labor
employment

Census
Bureau

1992-2018 Quarterly employment is the estimate of the num-
ber of jobs that are held on both the first and last
day of the quarter with the same employer. Our
measure is the mean of the four quarters in a year.

Unskilled labor
employment

Census
Bureau

1992-2018 Quarterly employment is the estimate of the num-
ber of jobs that are held on both the first and last
day of the quarter with the same employer. Our
measure is the mean of the four quarters in a year.

Bad air pollution days EPA Varies
(see text)

Bad Days is based on author’s calculation.
Bad days = (Unhealthy for Sensitive Groups
Days + Unhealthy Days + Very Unhealthy
Days + Hazardous Days)/AQI sampling days.
Calculated separately for PM2.5, PM10,
Ozone, and NO2. https://www.epa.gov/
criteria-air-pollutants/naaqs-table

Predictors Source Periods Notes

Farm proprietors’
income

BEA 1980-2018 Income (in $ millions) received by sole proprietor-
ships and partnerships that operate farms (ex-
cludes income received by corporate farms).

Farm proprietors’
employment

BEA 1980-2018 Employment of sole proprietors and non-
corporate partners in the farm industry in thou-
sands of jobs.

Wage and salary
employment

BEA 1980-2018 Average annual number of full-time and part-time
jobs (thousands of jobs).

Wage and salary BEA 1980-2018 Aggregation of county wages and salaries (in bil-
lions of dollars).

Proprietors’
employment

BEA 1980-2018 Proprietors’ income is the current-production in-
come (including income in kind) of sole propri-
etorships, partnerships, and tax-exempt cooper-
atives. Includes farm proprietors’ and nonfarm
proprietors’ employment (in number of jobs).

Proprietors’ income BEA 1980-2018 The proprietor’s income is in billions of
dollars. https://apps.bea.gov/regional/
histdata/releases/1117lapi/index.cfm
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Table A1: (Continued).

White ag labor ratio Census
Bureau

1992-2018 Author calculation using LEHD number of stable
jobs in agricultural sector, white employees over
total employment.

Male ag labor ratio Census
Bureau

1992-2018 Male employees over total employment.

Hispanic ag labor ratio Census
Bureau

1992-2018 Hispanic employees over total employment.

High school or higher
ag labor ratio

Census
Bureau

1992-2018 Employees with high school degree or higher over
total employment.

Annual cattle values USDA 1980-2018 Data from annual crop report compiled by the
California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level.

Annual alfalfa hay
values

USDA 1980-2018 Data from annual crop report compiled by the
California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level.

Annual lettuce values USDA 1980-2018 Data from annual crop report compiled by the
California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level.

Annual melons values USDA 1980-2018 Data from annual crop report compiled by the
California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level.

Annual other vegetable
values

USDA 1980-2018 Data from annual crop report compiled by the
California County Agricultural Commissioners
(CCAC) providing detailed annual agricultural
production data at the county level.
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B Summary Statistics of Variables Used in Each Outcome Vari-
able Analysis

Table B1: Summary Statistics for Variables Used in the Analysis of Harvested Acres.

Variable Sample Mean Std. Dev.
Harvested Acres 1,555 188.68 265.08
Farm Proprietors’ Income 1,555 119.20 223.43
Farm Proprietors’ Employment 1,555 1.44 1.52
Wage and Salary Employment 1,555 222.99 498.23
Wage and Salary 1,555 8,542.49 19,204.46
Proprietors’ Employment 1,555 52.67 100.84
Proprietors’ Income 1,555 1,523.13 2,773.80
Annual Cattle Values 1,555 44,888.45 93,886.92
Annual Alfalfa Hay Values 1,555 22,449.45 45,380.42
Annual Vegetable Values 1,555 119,730.20 342,839.10

Notes: (Unbalanced) data includes observations for 51 counties (the treatment
county and 50 control counties) for 1980-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables are in thousands.

Table B2: Summary Statistics for Variables Used in the Analysis of Ag High-Skill Labor
Employment.

Variable Sample Mean Std. Dev.
Ag High Skill Labor Employment 1,050 1,398.96 2,135.29
Farm Proprietors’ Income 1,050 145.17 258.64
Farm Proprietors’ Employment 1,050 1.37 1.43
Wage and Salary Employment 1,050 217 406.52
Wage and Salary 1,050 10,205.03 20,609.87
Proprietors’ Employment 1,050 56.89 98.14
Proprietors’ Income 1,050 1,904.59 3,027.42
White Ag Labor Ratio 1,050 0.85 0.04
Male Ag Labor Ratio 1,050 0.70 0.07
Hispanic Ag Labor Ratio 1,050 0.49 0.15
High School or Higher Ag Labor Ratio 1,050 0.53 0.09
Annual Cattle Values 1,050 54,654.46 109,409.30
Annual Alfalfa Hay Values 1,050 26,059.64 51,161.19
Annual Vegetable Values 1,050 149,702.70 403,854.40

Notes: (Unbalanced) data includes observations for 49 counties (the treatment
county and 48 control counties) for 1992-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except Ag High Skill
Labor Employment, White Ag Labor Ratio, Male Ag Labor Ratio, Hispanic Ag
Labor Ratio, and High School or Higher Ag Labor Ratio, are in thousands.
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Table B3: Summary Statistics for Variables Used in the Analysis of Ag Low-Skill Labor
Employment.

Variable Sample Mean Std. Dev.
Ag Low Skill Labor Employment 1,049 2,856.66 4,443.42
Farm Proprietors’ Income 1,049 145.3 258.72
Farm Proprietors’ Employment 1,049 1.37 1.43
Wage and Salary Employment 1,049 217.2 406.66
Wage and Salary 1,049 10,214.64 20,617.34
Proprietors’ Employment 1,049 56.94 98.17
Proprietors’ Income 1,049 1,906.36 3,028.32
White Ag Labor Ratio 1,049 0.85 0.04
Male Ag Labor Ratio 1,049 0.70 0.07
Hispanic Ag Labor Ratio 1,049 0.49 0.15
High School or Higher Ag Labor Ratio 1,049 0.53 0.09
Annual Cattle Values 1,049 54,703.48 109,450.00
Annual Alfalfa Hay Values 1,049 26,084.40 51,179.29
Annual Vegetable Values 1,049 149,845.40 404,020.50

Notes: (Unbalanced) data includes observations for 49 counties (the treatment
county and 48 control counties) for 1992-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except Ag Low Skill
Labor Employment, White Ag Labor Ratio, Male Ag Labor Ratio, Hispanic Ag
Labor Ratio, and High School or Higher Ag Labor Ratio, are in thousands.

Table B4: Summary Statistics for Variables Used in the Analysis of Crop High-Skill
Labor Employment.

Variable Sample Mean Std. Dev.
Crop High Skill Labor Employment 1,008 687.40 889.37
Farm Proprietors’ Income 1,008 151.08 262.31
Farm Proprietors’ Employment 1,008 1.42 1.44
Wage and Salary Employment 1,008 225.66 412.64
Wage and Salary 1,008 10,616.88 20,934.10
Proprietors’ Employment 1,008 59.08 99.56
Proprietors’ Income 1,008 1,978.46 3,067.70
White Ag Labor Ratio 1,008 0.84 0.04
Male Ag Labor Ratio 1,008 0.70 0.07
Hispanic Ag Labor Ratio 1,008 0.50 0.14
High School or Higher Ag Labor Ratio 1,008 0.53 0.09
Annual Cattle Values 1,008 56,513.84 111,275.20
Annual Alfalfa Hay Values 1,008 27,007.97 51,994.56
Annual Vegetable Values 1,008 155,902.30 411,021.80

Notes: (Unbalanced) data includes observations for 48 counties (the treatment
county and 47 control counties) for 1992-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except Crop High
Skill Labor Employment, White Ag Labor Ratio, Male Ag Labor Ratio, Hispanic
Ag Labor Ratio, and High School or Higher Ag Labor Ratio, are in thousands.
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Table B5: Summary Statistics for Variables Used in the Analysis of Crop Low-Skill
Labor Employment.

Variable Sample Mean Std. Dev.
Crop Low Skill Labor Employment 1,029 1,468.99 2,045.55
Farm Proprietors’ Income 1,029 148.07 260.46
Farm Proprietors’ Employment 1,029 1.40 1.43
Wage and Salary Employment 1,029 221.25 409.55
Wage and Salary 1,029 10,406.86 20,770.27
Proprietors’ Employment 1,029 57.98 98.84
Proprietors’ Income 1,029 1,940.81 3,047.41
White Ag Labor Ratio 1,029 0.85 0.04
Male Ag Labor Ratio 1,029 0.70 0.07
Hispanic Ag Labor Ratio 1,029 0.50 0.15
High School or Higher Ag Labor Ratio 1,029 0.53 0.09
Annual Cattle Values 1,029 55,585.80 110,323.20
Annual Alfalfa Hay Values 1,029 26,516.94 51,577.75
Annual Vegetable Values 1,029 152,728.60 407,396.30

Notes: (Unbalanced) data includes observations for 49 counties (the treatment
county and 48 control counties) for 1992-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except Crop Low
Skill Labor Employment, White Ag Labor Ratio, Male Ag Labor Ratio, Hispanic
Ag Labor Ratio, and High School or Higher Ag Labor Ratio, are in thousands.

Table B6: Summary Statistics for Variables Used in the Analysis of PM10 Days.

Variable Sample Mean Std. Dev.
PM10 Days 1,876 12.81 33.65
Days with AQI 1,876 334.62 80.13
Median AQI 1,876 48.54 21.53
Farm Proprietors’ Income 1,876 107.37 210.63
Farm Proprietors’ Employment 1,876 1.32 1.43
Wage and Salary Employment 1,876 283.48 657.8
Wage and Salary 1,876 11,782.76 30,366.88
Proprietors’ Employment 1,876 71.55 172.14
Proprietors’ Income 1,876 2,297.81 6,217.10

Notes: (Unbalanced) data includes observations for 54 counties (the treatment
county and 53 control counties) for 1980-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except PM10 Days,
Days with AQI, and Median AQI, are in thousands.
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Table B7: Summary Statistics for Variables Used in the Analysis of PM2.5 Days.

Variable Sample Mean Std. Dev.
PM2.5 Days 1,069 83.46 74.02
Days with AQI 1,069 343.73 69.67
Median AQI 1,069 47.60 18.27
Farm Proprietors’ Income 1,069 135.89 258.48
Farm Proprietors’ Employment 1,069 1.14 1.20
Wage and Salary Employment 1,069 294.78 670.70
Wage and Salary 1,069 15,596.14 36,842.41
Proprietors’ Employment 1,069 83.92 201.75
Proprietors’ Income 1,069 3,208.93 7,788.22

Notes: (Unbalanced) data includes observations for 54 counties (the treatment
county and 53 control counties) for 1998-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except PM2.5 Days,
Days with AQI, and Median AQI, are in thousands.

Table B8: Summary Statistics for Variables Used in the Analysis of Ozone Days.

Variable Sample Mean Std. Dev.
Ozone Days 1,276 227.11 101.21
Days with AQI 1,276 341.68 73.15
Median AQI 1,276 47.30 18.31
Farm Proprietors’ Income 1,276 124.86 242.79
Farm Proprietors’ Employment 1,276 1.19 1.28
Wage and Salary Employment 1,276 287.71 660.73
Wage and Salary 1,276 14,361.13 34,802.35
Proprietors’ Employment 1,276 80.22 193.24
Proprietors’ Income 1,276 2,935.39 7,303.44

Notes: (Unbalanced) data includes observations for 54 counties (the treatment
county and 53 control counties) for 1994-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except Ozone Days,
Days with AQI, and Median AQI, are in thousands.

Table B9: Summary Statistics for Variables Used in the Analysis of NO2 Days.

Variable Sample Mean Std. Dev.
NO2 Days 1,276 26.42 45.47
Days with AQI 1,276 341.68 73.15
Median AQI 1,276 47.30 18.31
Farm Proprietors’ Income 1,276 124.86 242.79
Farm Proprietors’ Employment 1,276 1.19 1.28
Wage and Salary Employment 1,276 287.71 660.73
Wage and Salary 1,276 14,361.13 34,802.35
Proprietors’ Employment 1,276 80.22 193.24
Proprietors’ Income 1,276 2,935.39 7,303.44

Notes: (Unbalanced) data includes observations for 54 counties (the treatment
county and 53 control counties) for 1994-2018. Omitted counties include those
with missing observations and/or significant water transfer (due to other pol-
icy/agreements) during the study period. All the variables, except NO2 Days,
Days with AQI, and Median AQI, are in thousands.
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C Additional Empirical Results

Table C1: Difference-in-Differences Analysis for Harvested Acres.

(1) (2)
1(Imperial)×1(Post-intervention) -75.5588*** -101.5805***

(23.8476) (33.9260)

Farm Proprietors’ Income -0.0129 -0.0353
(0.0349) (0.0760)

Farm Proprietors’ Employment 12.2460 -40.9849***
(20.6599) (12.9161)

Wage and Salary Employment -0.0418 2.2353**
(0.0416) (1.0953)

Wage and Salary 0.0001 -0.0401*
(0.0002) (0.0206)

Proprietors’ Employment 0.0113 0.1774
(0.0777) (2.6029)

Proprietors’ Income -0.00005 0.0135
(0.0014) (0.0525)

Annual Cattle Values 0.0001 0.0002
(0.0002) (0.0001)

Annual Alfalfa Hay Values 0.0001 0.00001
(0.0002) (0.0002)

Annual Vegetable Values 0.00003* 0.0001***
(0.00002) (0.00002)

Observations 1,555 234
R2 0.0324 0.1947
F Statistic 4.8697*** 4.3512***

Notes: Model 1 uses all available (50) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both models
control for county and year fixed effects. Harvested Acres is measured in thousands.
Robust standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Figure C1: Event Study Analysis for Harvested Acres.
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Notes: Event study analysis for Harvested Acres using only control counties that receive nonzero weight
in the synthetic control analysis (see table D1). See appendix B for the list of control variables included
in the analysis. The model controls for county and year fixed effects. The confidence bounds are obtained
using robust standard errors. The vertical line represents the QSA effective year.
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Figure C2: Harvested Acres by Crop Type in Imperial County.
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Notes: Data from annual crop report compiled by the California County Agricultural Commissioners
(CCAC). The vertical line represents the QSA effective year.
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Table C2: Difference-in-Differences Analysis for Hay Alfalfa Acres.

(1) (2)
1(Imperial)×1(Post-intervention) −14.7916∗ −48.1613∗∗∗

(7.8049) (3.6182)

Farm Proprietors’ Income −0.0226∗∗∗ −0.0597∗∗∗
(0.0081) (0.0016)

Farm Proprietors’ Employment −1.1685 10.1109∗∗∗
(3.4083) (2.3190)

Wage and Salary Employment −0.0189 −0.7917∗∗∗
(0.0137) (0.0162)

Wage and Salary 0.0001 0.0228∗∗∗
(0.0001) (0.00003)

Proprietors’ Employment −0.0090 −5.0185∗∗∗
(0.0288) (0.1206)

Proprietors’ Income −0.0001 0.0024∗∗∗
(0.0005) (0.0002)

Annual Alfalfa Hay Values 0.0004∗∗∗ 0.0004∗∗∗
(0.0001) (0.00001)

Observations 1,834 78
R2 0.2117 0.7932
F Statistic 58.2751∗∗∗ 14.3866∗∗∗

Notes: Model 1 uses all available (52) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis. Both models control for
county and year fixed effects. Hay Alfalfa Acres is measured in thousands. Robust
standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01.
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Table C3: Difference-in-Differences Analysis for Ag High-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -1,367.0360*** 86.9032

(391.3947) (93.7862)

Farm Proprietors’ Income 1.7902** 1.1420***
(0.8163) (0.0637)

Farm Proprietors’ Employment 149.8136 -692.1584***
(384.4494) (183.9810)

Wage and Salary Employment 3.4769 14.4508
(2.2658) (10.0252)

Wage and Salary -0.0107** -0.0291
(0.0052) (0.1491)

Proprietors’ Employment -5.3897* 49.7737*
(3.0171) (26.4864)

Proprietors’ Income 0.0076 -0.8106***
(0.0389) (0.1285)

White Ag Labor Ratio -2,303.4760** -9,837.8240**
(1,013.6630) (4,380.8940)

Male Ag Labor Ratio -656.3264 -3,452.4110***
(930.0653) (939.5769)

Hispanic Ag Labor Ratio -979.6626 7,358.6510***
(873.4222) (2,314.2420)

High School or Higher Ag Labor Ratio 2,023.6130 9,280.2650**
(1,396.6070) (4,204.5420)

Annual Cattle Values 0.0028* -0.0011***
(0.0017) (0.0003)

Annual Alfalfa Hay Values -0.0018 0.0001
(0.0019) (0.0007)

Annual Vegetable Values 0.0023*** 0.0003*
(0.0008) (0.0002)

Observations 1,050 108
R2 0.5986 0.9076
F Statistic 102.3863*** 44.9236***

Notes: Model 1 uses all available (48) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C3: Event Study Analysis for Ag High-Skill Labor Employment.
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Notes: Event study analysis for Ag High-Skill Labor Employment using only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). See appendix B for the list of
control variables included in the analysis. The model controls for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. Employment measure is for the ag sector
(NAICS=11). The vertical line represents the QSA effective year.
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Table C4: Difference-in-Differences Analysis for Ag Low-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -2,323.6270*** -769.1221***

(361.6651) (185.9512)

Farm Proprietors’ Income 2.2219** 1.6630***
(0.9720) (0.5251)

Farm Proprietors’ Employment 876.8601 238.4546
(551.9801) (152.5152)

Wage and Salary Employment 4.1706 47.7105***
(2.7683) (12.5571)

Wage and Salary -0.0149** -1.1076***
(0.0062) (0.1641)

Proprietors’ Employment -7.0656* 282.3479***
(3.6523) (19.2937)

Proprietors’ Income 0.0055 -0.5685
(0.0485) (0.4475)

White Ag Labor Ratio -1,597.3660 -33,550.5000***
(1,127.8540) (3,360.5480)

Male Ag Labor Ratio -1,470.3720 -10,910.6400*
(974.4953) (5,763.6920)

Hispanic Ag Labor Ratio -29.5041 22,865.2700***
(981.3061) (3,628.1840)

High School or Higher Ag Labor Ratio 2,262.3560 15,344.5700***
(1,825.9140) (5,393.1060)

Annual Cattle Values 0.0023 -0.0015
(0.0020) (0.0011)

Annual Alfalfa Hay Values -0.0012 0.0008
(0.0028) (0.0005)

Annual Vegetable Values 0.0021* -0.0010**
(0.0011) (0.0004)

Observations 1,049 108
R2 0.4487 0.8421
F Statistic 55.8084*** 24.3877***

Notes: Model 1 uses all available (48) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.

47



Figure C4: Event Study Analysis for Ag Low-Skill Labor Employment.
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Notes: Event study analysis for Ag Low-Skill Labor Employment using only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). See appendix B for the list of
control variables included in the analysis. The model controls for county and year fixed effects. The
confidence bounds are obtained using robust standard errors. Employment measure is for the ag sector
(NAICS=11). The vertical line represents the QSA effective year.
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Table C5: Difference-in-Differences Analysis for Crop High-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -320.0928*** -67.9849

(119.5283) (56.4572)

Farm Proprietors’ Income 0.6911* 0.2257
(0.3871) (0.2664)

Farm Proprietors’ Employment 134.4385 101.3437**
(131.6754) (42.6406)

Wage and Salary Employment 1.9767** -20.6808***
(0.9502) (2.7785)

Wage and Salary -0.0058** 0.4844***
(0.0025) (0.1227)

Proprietors’ Employment -0.7314 50.1366***
(1.2684) (14.1521)

Proprietors’ Income -0.0055 -0.1041
(0.0193) (0.2022)

White Ag Labor Ratio -1,658.2800*** 1,776.1150
(576.6743) (1,392.5900)

Male Ag Labor Ratio -488.4528 -3,008.2560***
(522.5314) (1,015.9870)

Hispanic Ag Labor Ratio -216.5619 2,850.9250**
(502.1189) (1,300.1720)

High School or Higher Ag Labor Ratio 895.6604 2,471.6420
(990.6768) (2,160.7160)

Annual Cattle Values -0.0007 -0.0008*
(0.0008) (0.0004)

Annual Alfalfa Hay Values -0.0002 -0.0002
(0.0008) (0.0003)

Annual Vegetable Values 0.0009*** 0.0005***
(0.0003) (0.0001)

Observations 1,008 135
R2 0.4357 0.9344
F Statistic 50.7392*** 91.5996***

Notes: Model 1 uses all available (47) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C5: Synthetic Control Analysis for Crop High-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Crop High-Skill Employment. Top panel
shows the time path realized by Imperial County and the synthetic Imperial County. Bottom panel
shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Crop High-Skill Employment consists of 29 control
counties. To refine inferences from falsification tests, we consider control counties with pre-intervention
RMSPEs that are less than or equal to twice that of a treatment unit (Abadie et al., 2010). Employment
measure is for the crop sector (NAICS=111). The vertical line represents the QSA effective year.
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Figure C6: Event Study Analysis for Crop High-Skill Labor Employment.
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Notes: Event study analysis for Crop High-Skill Labor Employment. Top panel shows the estimated
treatment effect for Imperial County using all available control counties, where omitted counties include
those with missing observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. Bottom panel shows the estimated treatment effect for Imperial County using
only control counties that receive nonzero weight in the synthetic control analysis (see table D1). See
appendix B for the list of control variables included in the analysis. Both models control for county
and year fixed effects. The confidence bounds are obtained using robust standard errors. Employment
measure is for the crop sector (NAICS=111). The vertical line represents the QSA effective year.
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Table C6: Difference-in-Differences Analysis for Crop Low-Skill Labor Employment.

(1) (2)
1(Imperial)×1(Post-intervention) -438.2687*** -283.5757

(139.5125) (284.9373)

Farm Proprietors’ Income 0.7666 -1.2171**
(0.5543) (0.4775)

Farm Proprietors’ Employment 663.2295*** 316.9246*
(215.0754) (176.6794)

Wage and Salary Employment 2.7993*** 7.8799
(0.9868) (13.7148)

Wage and Salary -0.0107*** -0.0112
(0.0023) (0.1929)

Proprietors’ Employment -0.4435 -138.8576***
(1.3554) (50.3148)

Proprietors’ Income -0.0225 0.5034
(0.0267) (0.3829)

White Ag Labor Ratio -1,125.7700* -2,812.7910
(619.8188) (6,668.7190)

Male Ag Labor Ratio -430.6889 -11,240.4400***
(583.9036) (4,266.9500)

Hispanic Ag Labor Ratio 426.8016 9,121.5260*
(686.8160) (4,689.3630)

High School or Higher Ag Labor Ratio 379.5046 6,653.9970
(1,124.4850) (7,907.4080)

Annual Cattle Values -0.0020** -0.0013
(0.0009) (0.0008)

Annual Alfalfa Hay Values 0.0006 0.0036***
(0.0020) (0.0014)

Annual Vegetable Values 0.0006* 0.0020***
(0.0004) (0.0004)

Observations 1,029 135
R2 0.4268 0.7533
F Statistic 49.9867*** 19.6349***

Notes: Model 1 uses all available (48) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C7: Synthetic Control Analysis for Crop High-Skill Labor Employment.
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Notes: Graphical summary of synthetic control output for Crop Low-Skill Employment. Top panel
shows the time path realized by Imperial County and the synthetic Imperial County. Bottom panel
shows the falsification test results of the estimated treatment effect for Imperial County along with
placebo effects for control units. Donor pool for Crop High-Skill Employment consists of 29 control
counties. To refine inferences from falsification tests, we consider control counties with pre-intervention
RMSPEs that are less than or equal to twice that of a treatment unit (Abadie et al., 2010). Employment
measure is for the crop sector (NAICS=111). The vertical line represents the QSA effective year.
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Figure C8: Event Study Analysis for Crop Low-Skill Labor Employment.
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Notes: Event study analysis for Crop Low-Skill Labor Employment. Top panel shows the estimated
treatment effect for Imperial County using all available control counties, where omitted counties include
those with missing observations and/or significant water transfer (due to other policy/agreements) dur-
ing the study period. Bottom panel shows the estimated treatment effect for Imperial County using
only control counties that receive nonzero weight in the synthetic control analysis (see table D1). See
appendix B for the list of control variables included in the analysis. Both models control for county
and year fixed effects. The confidence bounds are obtained using robust standard errors. Employment
measure is for the crop sector (NAICS=111). The vertical line represents the QSA effective year.
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Table C7: Difference-in-Differences Analysis for PM10 Days (Fixed Effects Poisson
Regression).

(1) (2)
1(Imperial)×1(Post-intervention) 0.6971*** 0.9463

(0.0000) (2.3664)

Days with AQI 0.0003 0.0012
(0.0013) (0.0060)

Median AQI -0.0437*** -0.0502*
(0.0135) (0.0243)

Farm Proprietors’ Income 0.0014*** 0.0021
(0.0004) (0.0073)

Farm Proprietors’ Employment 0.7180*** 0.6606
(0.0000) (0.9997)

Wage and Salary Employment 0.0011 0.0174
(0.0018) (0.5060)

Wage and Salary 0.0000 0.0004
(0.0000) (0.0057)

Proprietors’ Employment 0.0121** -0.0515
(0.0053) (0.2799)

Proprietors’ Income -0.0002** -0.0021
(0.0001) (0.0037)

Observations 1,876 264
Log-likelihood -10,807.38 -3,095.025

Notes: Model 1 uses all available (53) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C9: Event Study Analysis for PM10 Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for PM10 Days using only control counties that receive nonzero weight in
the synthetic control analysis (see table D1). See appendix B for the list of control variables included in
the analysis. The model controls for county and year fixed effects. The vertical line represents the QSA
effective year.

56



Table C8: Difference-in-Differences Analysis for PM2.5 Days (Fixed Effects Poisson
Regression).

(1) (2)
1(Imperial)×1(Post-intervention) 1.0241*** 0.9757***

(0.0000) (0.0002)

Days with AQI 0.0017*** -0.0764***
(0.0006) (0.0006)

Median AQI 0.0438*** 0.0183*
(0.0065) (0.0101)

Farm Proprietors’ Income 0.0004* -0.0003
(0.0003) (0.0012)

Farm Proprietors’ Employment -0.9694*** -0.0570***
(0.0000) (0.0020)

Wage and Salary Employment -0.0020*** -0.0199
(0.0006) (0.0290)

Wage and Salary 0.0000*** 0.0003
(0.0000) (0.0005)

Proprietors’ Employment 0.0009 -0.0067
(0.0008) (0.0481)

Proprietors’ Income 0.0000 0.0004
(0.0000) (0.0005)

Observations 1,069 105
Log-likelihood -16,410.72 -900.2285

Notes: Model 1 uses all available (53) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.

57



Figure C10: Event Study Analysis for PM2.5 Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for PM2.5 Days using only control counties that receive nonzero weight in
the synthetic control analysis (see table D1). See appendix B for the list of control variables included in
the analysis. The model controls for county and year fixed effects. The vertical line represents the QSA
effective year.
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Table C9: Difference-in-Differences Analysis for Ozone Days (Fixed Effects Poisson
Regression).

(1) (2)
1(Imperial)×1(Post-intervention) -0.1497*** 0.1023***

(0.0000) (0.0047)

Days with AQI 0.0083*** 0.0150
(0.0019) (0.0602)

Median AQI -0.0020 0.0183*
(0.0034) (0.0103)

Farm Proprietors’ Income -0.0002** 0.0003
(0.0001) (0.0023)

Farm Proprietors’ Employment 0.0717*** 0.3530***
(0.0000) (0.0006)

Wage and Salary Employment 0.0002 -0.0068
(0.0002) (0.1151)

Wage and Salary 0.0000 0.0000
(0.0000) (0.0016)

Proprietors’ Employment -0.0004 0.0383
(0.0004) (0.2193)

Proprietors’ Income 0.0000* -0.0002
(0.0000) (0.0010)

Observations 1,276 150
Log-likelihood -12,753.68 -3,048.978

Notes: Model 1 uses all available (53) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C11: Event Study Analysis for Ozone Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for Ozone Days using only control counties that receive nonzero weight in
the synthetic control analysis (see table D1). See appendix B for the list of control variables included in
the analysis. The model controls for county and year fixed effects. The vertical line represents the QSA
effective year.
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Table C10: Difference-in-Differences Analysis for NO2 Days (Fixed Effects Poisson
Regression).

(1) (2)
1(Imperial)×1(Post-intervention) -0.1027*** -0.1221

(0.0000) (0.1345)

Days with AQI 0.0057*** -0.0782
(0.0021) (8.6883)

Median AQI -0.0548*** -0.0580
(0.0117) (0.1632)

Farm Proprietors’ Income -0.0024*** -0.0011
(0.0006) (0.0032)

Farm Proprietors’ Employment 0.9390*** 1.6944***
(0.0001) (0.0648)

Wage and Salary Employment 0.0007 0.0116
(0.0013) (0.1369)

Wage and Salary 0.0000*** 0.0000
(0.0000) (0.0034)

Proprietors’ Employment -0.0001 -0.0417
(0.0043) (0.4127)

Proprietors’ Income 0.0000 -0.0002
(0.0000) (0.0016)

Observations 1,276 100
Log-likelihood -8,639.586 -612.4266

Notes: Model 1 uses all available (53) control counties, where omitted counties in-
clude those with missing observations and/or significant water transfer (due to other
policy/agreements) during the study period. Model 2 uses only control counties that
receive nonzero weight in the synthetic control analysis (see table D1). Both mod-
els control for county and year fixed effects. Robust standard errors in parenthesis.
*p<0.1; **p<0.05; ***p<0.01.
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Figure C12: Event Study Analysis for NO2 Days (Fixed Effects Poisson Regression).
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Notes: Event study analysis for NO2 Days using only control counties that receive nonzero weight in
the synthetic control analysis (see table D1). See appendix B for the list of control variables included in
the analysis. The model controls for county and year fixed effects. The vertical line represents the QSA
effective year.
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D Additional Estimation Output for Synthetic Control Analysis

Table D1: Donor County Weights for Each Outcome Variable Analysis.

Donor Weight Donor Weight
Harvested Acres PM10 Days
Kern 0.346 Mendocino 0.314
Siskiyou 0.224 Glenn 0.259
Tulare 0.197 Butte 0.234
Monterey 0.142 Colusa 0.116
Kings 0.091 Mono 0.040

Kern 0.028
Ag High Skill Labor Employment Kings 0.007
Kings 0.516
Merced 0.270 PM2.5 Days
Colusa 0.215 Inyo 0.662

Fresno 0.220
Ag Low Skill Labor Employment Monterey 0.057
Kings 0.530 San Bernardino 0.057
Merced 0.324
Fresno 0.146 Ozone Days

Inyo 0.542
Crop High Skill Labor Employment Kern 0.156
Lassen 0.542 Monterey 0.116
Merced 0.222 Del Norte 0.114
Kings 0.124 Mono 0.072
Monterey 0.112

NO2 Days
Crop Low Skill Labor Employment Inyo 0.640
Colusa 0.705 San Bernardino 0.301
Monterey 0.191 Marin 0.058
Merced 0.078
Tulare 0.026

Notes: County weights are obtained by performing synthetic control analysis sep-
arately for each outcome variable of interest. Reported counties are those that
receive nonzero weights in the analysis.
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Table D2: RMSPE tests.

Outcome Variable Post/Pre Max / Min Treatment Unit Rank /
RMSPE Ratio # of All Valid Units

Harvested Acres 3.79 4.01 / 0.48 3 / 22
Ag High Skill Labor Employment 4.57 19.46 / 1.02 7 /23
Ag Low Skill Labor Employment 2.73 10.95 / 0.42 10 / 28
Crop High Skill Labor Employment 2.92 40.80 / 1.23 24 / 27
Crop Low Skill Labor Employment 1.56 11.28 / 0.52 18 / 26
PM10 Days 5.06 10.91 / 0.64 8 / 33
PM2.5 Days 6.49 1,786.54 / 2.69 25 / 32
Ozone Days 2.37 13.44 / 0.61 26 / 39
NO2 Days 1.58 64,478,918.91 / 0.17 13 / 46

Notes: Post/Pre RMSPE ratio indicates the ratio of the post-intervention RMSPE to the pre-
intervention RMSPE for the treatment unit. Max/Min indicates the maximum/minimum ratio of the
post-intervention RMSPE to the pre-intervention RMSPE from among treatment and control units.
Treatment unit rank is the rank of the ratio of the post-intervention RMSPE to the pre-intervention
RMSPE for the treatment unit when all the ratios (both for treatment and control units) are ordered
in descending order. To refine inferences from falsification tests, we consider control counties with pre-
intervention RMSPEs that are less than or equal to twice that of a treatment unit (Abadie et al., 2010).
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E Asthma Trends

Figure E1: Age-adjusted asthma rates (per 10,000) in Imperial County and control
counties between 2005-2018.
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Notes: Top panel shows age-adjusted asthma rates for all races/ethnicities. Bottom panel shows age-
adjusted asthma rates for Hispanic/Latino population.
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