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Introduction 

 

Most public lands are managed by federal, state and local agencies based on the 

public trust doctrine.  As such, recreational access is typically granted to all at no cost, and 

overuse and congestion often result.  This tragedy of the commons reflects a mismatch 

between the private cost of access (which is typically only one’s roundtrip out-of-pocket 

and time costs of traveling to a site) and the social cost of access which includes congestion 

externalities.  The textbook economic solution to this situation is a tax on entrance, 

whereby those who use the resource and impose congestion externalities on others 

internalize these costs.2  By reducing aggregate demand and, in turn, congestion at the 

taxed site, these gate fees can simultaneously correct a market failure and raise valuable 

revenue that can be used to address a variety of resource management needs.   

Dating back to at least Clawson and Knetch (1963), environmental economists have 

recognized both virtues of charging gate fees.  However, empirical studies of these fees (Ji 

et al., this issue; Lupi et al., this issue) have generally ignored how they may generate 

feedback effects on aggregate demand and congestion.  Moreover, most studies assume the 

gate fee applies to all sites in the study area and thus do not account for potential spillover 

effects to untaxed sites.  These limitations – driven in part by the complexity of modeling 

congestion in a behaviorally consistent manner – may influence estimated welfare losses, 

revenues raised, and the distributional impacts from gate fees.   

In this paper, we combine a simple conceptual framework and a more detailed 

empirical analysis to investigate how accounting for congestion feedback effects influences 

the economic evaluation of gate fees.  The conceptual framework highlights three distinct 

effects from gate fees: 1) a pure price effect, whereby higher fees reduce demand at taxed 

sites, ceteris paribus; 2) a taxed site congestion effect, where the lower demand at taxed 

sites reduces congestion, which, all else equal, increases demand at these sites; and 3) a 

non-taxed site congestion effect, where the fee also generates a substitution or “leakage” 

effect whereby individuals substitute to other beaches not subject to the fee and, in the 

process, raise congestion levels at these untaxed sites.  Using the largest and most 

 
2 For example, Clawson and Knetsch (1963) point out the potential of using prices to control crowding. 
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extensive recreational data set for shoreline recreation in the Gulf Coast region ever 

collected, we then empirically evaluate the magnitude of these competing effects as well as 

the revenue-raising and distributional implications of gate fees within a multi-site travel 

cost model of participation and site choice.  Our model combines econometrically-

estimated and calibrated parameter values in a way that permits us to evaluate gate fees 

across a range of assumptions about people’s willingness-to-pay to avoid congestion which 

highlights the important role of this parameter.  We also explore the distributional 

implications of gate fees, and similar to Ji et al. (this issue) and Lupi et al. (this issue), we 

find these fees to be regressive. Moreover, we do not find evidence that they 

disproportionally impact minorities but privilege local residents at the expense of visitors 

from further away. 

 The paper proceeds as follows.  We begin in the next section by developing a simple 

conceptual framework that highlights the different behavioral effects of congestion.  We 

then turn in the following section to a discussion of our recreation application and the key 

modeling assumptions that underly our investigation of gate fees.  We then present our 

main findings, and in the last section, conclude with a discussion of fruitful avenues for 

future research. 

 

Conceptual Framework 

 

In this section, we use a simple demand model to investigate how accounting for 

congestion affects the revenue raised and deadweight loss generated from gate fees.  The 

model adopts a representative consumer approach and therefore does not permit us to 

consider distributional impacts, although we will investigate these concerns in our Gulf 

Coast application.  Moreover, our model considers only the gross costs of gate fees and not 

the direct benefits to recreators from lower congestion levels at visited sites.  These gains 

are proportional to the number of recreational trips ultimately taken and may be 

substantial in practice.  Nevertheless, our model suggests that ignoring congestion 

feedback effects as in Ji et al. (this issue) and Lupi et al. (this issue) will lead to an 

overestimate of the fee-induced demand response if people are willing-to-pay to avoid 

congestion.  By implication, this implies that the revenue raised will be underestimated and 
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the deadweight loss will be overestimated if congestion effects are ignored.  We also 

consider leakage of beach goers to other recreation sites that are not subject to gate fees.  

In our view, this is an important effect to consider because no fee in practice will have 

complete geographic (or temporal) coverage.  From a benefit-cost perspective, all benefits 

and costs from gate fees should be accounted for, so understanding how fees in one region 

might affect use, congestion and welfare in others is important to quantify (Cesario, 1980).  

To begin, consider a representative consumer’s demand for a single site, ( , )x g p c= , 

where x is the number of trips, p is the travel cost, and c is congestion at the site, which, 

consistent with our Gulf Coast application, is operationally defined as trips per mile of 

coastline over a given time period (i.e., c = x/L where L is miles of coastline).  Recognizing 

that a gate fee or tax, F, influences aggregate congestion at the site by raising costs to all 

visitors, we can write demand as a function of entrance fees as follows: 

( , ( ))x g p F c F= + .    (1) 

Now consider a marginal change in F and its impact on demand.  By totally differentiating 

(1) and rearranging, we see that: 

1 /

g

dx p

gdF
L

c




=


−


    (2) 

where 
g

p




 captures the “partial equilibrium” demand response associated with the price 

change, and 
g

c




 captures the demand response from congestion.  Assuming the law of 

demand holds and that congestion is a bad, the denominator in (2) is greater than one, and 

the full demand response to an increase in entrance fees, 
dx

dF
, is muted relative to the 

partial equilibrium demand response.  As we show in Figure 1, this has important 

implications for the revenue raised and deadweight loss from gate fees. 

 

For simplicity, Figure 1 approximates demand with linear functions.  At a travel cost 

of p, demand is initially xbase. With the introduction of the gate fee or tax, the partial 
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equilibrium demand response (ignoring congestion feedbacks) reduces demand to xpartial. 

Since all visitors are subject to the fee and reduce their demands accordingly, congestion 

levels at the site fall, and thus some of the pure price effect of the gate fee is mitigated, 

resulting in a net response of xfull.  This implies that accounting for congestion feedback 

effects raises the estimated government revenue by F × (xfull  - xpartial) and decreases the 

deadweight loss by approximately  .5 × F × (xfull  - xpartial) compared to measures using the 

partial equilibrium demand response that ignores congestion feedbacks.   

If we extend the current analysis to a multi-site framework, a related issue arises 

when the entrance fee or tax applies to only a subset of sites.  This case is likely relevant 

when sites span multiple jurisdictions (e.g., across neighboring states or federal versus 

state-managed sites) and different jurisdictions adopt different policies.  A particular 

concern is leakage, whereby the jurisdiction not adopting the tax experiences a net increase 

in demand for its sites, an often unwelcomed spillover effect that exacerbates congestion 

concerns.  To shed some light on this, consider the demand for two sites where only the 

first site is subject to an entrance fee (i.e., F1).  In this case, the overall demand effect of an 

increase in F1 on the demand for trips to the second site is (see the appendix of a formal 

derivation): 

1 2 2 1
1 1

1 1 1 12

1 1 2 2 1
1 2 1 2

1 2 1 2

1

1 1

g g g g
L L

c p c pdx

dF g g g g
L L L L

c c c c

      
− +   
      =

        
− − −     
        

.   (3) 

In general, not much can be said about the sign of 2

1

dx

dF
 and, in turn, leakage, although 

intuition might suggest that the direct effect of the gate fee on demand for the untaxed site 

will likely dominate any indirect congestion effects implying that leakage will remain a 

policy concern.   

 The above discussion suggests that the effects of gate fees on recreational demand 

are threefold: 1) a pure price effect, whereby the fee reduces demand for the taxed good 

and (assuming the sites are substitutes) increases demand for the untaxed good, ceteris 

paribus; 2) a taxed site congestion effect, which increases demand at the taxed sites and 

decreases demand at the untaxed sites; and 3) a non-taxed site congestion effect, which  
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likely reduces demand at the sites not subject to the tax and increases demand at the taxed 

sites.  Moreover, we can separately identify the welfare implications of these three effects 

by decomposing the compensating variation (CV) for a change from 0 0

1 2 1 2( , , , )p p c c  to 

1 1

1 2 1 2( , , , )p F p c c+ , i.e.,  

0 0 1 1

1 2 1 2 1 2 1 2( , , , ) ( , , , )CV E p p c c E p F p c c= − + ,    (4) 

where ( )E  is the expenditure function evaluated at different price and congestion levels. In 

particular, CV can be rewritten as: 

0 0 0 0

1 2 1 2 1 2 1 2

0 0 1 0

1 2 1 2 1 2 1 2

1 0 1 1

1 2 1 2 1 2 1 2

( , , , ) ( , , , )

( , , , ) ( , , , )

( , , , ) ( , , , ),

CV E p p c c E p F p c c

E p F p c c E p F p c c

E p F p c c E p F p c c

= − +

+ + − +

+ + − +

   (5) 

where the first line monetizes the welfare implications of the pure price effect, the second 

line monetizes the taxed site congestion effect, and the last line monetizes the non-taxed 

site congestion effect.  Equation (5) will be helpful when interpreting the implications of 

accounting for congestion in our application, which we describe in the next section. 

 

Empirical Application 

 

Our empirical application uses data collected by researchers associated with the 

natural resource damage assessment for the 2010 Deepwater Horizon oil spill (English et 

al., 2018).  As part of that assessment, two general population phone surveys were used to 

collect recreation data for roughly 2,000 miles of coastline stretching from Texas to Georgia 

in 2012-13 – see Figure 2.  Over 41,000 adults (≥ 18) residing throughout the contiguous 

(lower 48) United Sates provided information on over 27,500 primary-purpose 

recreational trips which serve as the foundation of our analysis.  Table 1 provides summary 

statistics for the trips.  Importantly, about 17 percent of trips were for more than one day, 

and a nontrivial number of trips involved one-way driving distances of more than 1,000 

miles.  These two factors led to the construction of travel costs in a novel way that reflects 

the reality that individuals may choose to drive or fly to their preferred recreational 

destination.  As described in English et al. (2018), separate estimates of flying and driving 

from each resident’s home to every coastal destination from Texas to Georgia were 
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constructed.  It was assumed that everyone within a one-way driving distance of 500 miles 

of their destination drives, but beyond 500 miles, individuals may choose to fly or drive.  

Using the reported frequency of flying to recreation sites in the data, an “expected travel 

cost” was constructed for every origin-destination pair, where weights proportional to the 

frequency of flying from alternative distance bands and varying by household income and 

size were used to construct a weighted average of flying and driving travel costs. 

The current analysis modifies the recreation data used by English et al. in two key 

ways.  First, while English et al. aggregated the 2,000 miles of coastline from Texas to 

Georgia into 83 sites, we employ a more disaggregated site definition of 167 sites.  Second, 

we disaggregate the data temporally and estimate separate models by three-month 

quarters.  This disaggregation adds to the richness of our data and allows us to consider the 

behavioral and welfare implications of alternative gate fees at finer spatial and temporal 

scales. 

A second key difference between English et al. and the current analysis is that given 

our focus on gate fees, we must construct a measure of congestion for every site by quarter.  

Our approach to doing so recognizes that site congestion is more a function of user days 

than trips, a distinction that is especially salient when a nontrivial fraction of trips are 

multi-day as is the case with our data.3  This raises two key issues: 1) for many trips in our 

data set, we do not observe trip duration, i.e., the number of recreation days; and 2) the 

length of a trip is endogenously chosen by recreators (McConnell, 1992).  To avoid these 

difficulties, we make the simplifying assumption that trip duration is a function of one-way 

driving distance.  To be more precise, we group trips for which we observe the count of 

recreation days into one of six cells based on one-way driving distance (< 50 miles, 50-100 

miles, 100-250 miles, 250-500 miles, 500-1000 miles, and > 1000 miles).  For each cell, we 

then estimate the mean number of recreation days and use these cell means to construct 

the total number of user days from the trip data for each site in a quarter.  We note that 

these trip durations are monotonically increasing with distance and range from 1.02 days 

 
3 By specifying congestion as a function of user days instead of trips here, our empirical model differs from 
the theoretical framework put forward in the previous section that effectively assumed that all trips were for 
a single day.  This divergence was motivated by our desire to keep the theoretical model simple, and we 
strongly suspect that the model’s implications carry over to our more nuanced empirical setting. 
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for trips < 50 miles and 4.84 days for trips ≥ 1000 miles, which is consistent with the 

observation of McConnell (1975).  When forecasting how congestion changes with gate 

fees, we assume these one-way driving distance / recreation user day relationships are 

deterministic, which obviates the endogenity issue that we alluded to previously.   

Another advantage of using a more disaggregated model in the current application 

is that it allows us to specify congestion in a more refined way.  In particular, congestion 

clearly has spatial and temporal dimensions which we should account for.  As Bujosa et al. 

(2015) point out, a 10-square mile site with 1,000 visitors is far less congested than 1-

square mile site with 1,000 visitors. To translate this estimate of the aggregate number of 

user days by site and quarter into a daily, per mile of coastline congestion measure, we 

divide it by 90 days and the site’s estimated coastline length, or L.4  Our data suggests that 

there are about 1,245 daily visitors per coastline mile for the average site in our 

application, although some sites in some quarters have well over 20,000 daily visitors per 

mile of coastline. 

Before moving on to a discussion of our modeling framework, it is worth briefly 

discussing the structure of the gate fees which we will consider in our policy simulations.  

Consistent with our specification of congestion, we assume gate fees are charges on a per-

user day basis, meaning a person on a long weekend trip who visits the beach on three 

consecutive days pays triple the amount a person on a single-day trip pays.  We assume the 

charge applies to visitors of any coastal area in Mississippi, Alabama and the Gulf Coast-

side of Florida (Perdido Key to Key West) excluding the coastline from Apalachicola to just 

north of Tampa where sandy beaches are largely absent.  Recognizing that many user fees 

provide discounts for locals, we assume residents of these three states pay a $5 daily fee for 

access, whereas those coming from other states pay a $10 daily user fee.  Since our data 

 
4 Determining the length of a coastline is a well-known measurement problem that has no exact answer 
(Manderbrot, 1967).  We use a simplified approach where we approximate a site’s coastline length with the 
straight-line distance between the two specific locations within a site that are mentioned by survey 
respondents and furthest apart from each other. McConnell, in an early application of contingent valuation of 
the effect of congestion at beaches on WTP, measures congestion as attendance per acre. More generally, 
Jakus and Shaw (1997) discuss alternative concepts and approaches to measuring congestion. Schuhmann 
and Schwabe (2004) examine several measures of congestion in a site choice RUM with non-linear congestion 
effects but without accounting for endogeneity in estimation and in welfare measurement. 
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only includes trips for adults 18 and older, we assume that children do not have to pay the 

fee. 

 

Modeling Framework 

 

Our recreational model builds on the revealed preference approach introduced by 

Timmins and Murdock (2007).  Within a site selection model, they model how congestion 

arises from a Nash bargaining framework in which individuals make choices given 

expectations about the decisions of others.  In equilibrium, expectations of congestion 

match realized congestion for every individual and site, and assuming congestion is a bad, a 

Nash equilibrium exists.  We extend the Timmins and Murdock model by allowing the total 

trips to all sites (i.e., participation) to be endogenous.  We do so within the repeated 

discrete choice framework (Morey et al., 1993), whereby the time horizon of choice (e.g., 

three-month quarter) is comprised of a series of choice occasions.  On each choice occasion, 

an individual makes a discrete choice of whether to take a recreation trip, and if so, a 

conditional choice of which site to visit.  Because these decisions are made across multiple 

choice occasions and aggregate demand is the sum of these separate choices, the total 

quantity of trips as well as their distribution across multiple sites is endogenous.  We 

assume that conditional on taking a trip, preferences can be represented by the following 

indirect utility function: 

    
*

,

jq

ijqt ijq ijqt

tc ij c jq jq ijqt

V v

tc c





   

= +

= + + +     (7)   

where 
ijtc is individual i’s travel cost to site j, 

jqc is the total count of user days per mile of 

beach at site j in quarter q, 
jq  is a fixed effect for site j  and quarter q that 

nonparametrically controls for unobserved and observed site characteristics in that 

quarter, and 
ijqt  captures idiosyncratic factors specific to the individual, site, quarter and 

choice occasion t.  Note that congestion and unobserved site characteristics in a quarter are 

perfectly correlated, and thus cannot be separately identified without additional structure.  
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Following convention in the recreation literature, the utility associated with not taking a 

trip is specified as a linear function of demographic variables (zi) specific to individual i and 

an idiosyncratic error: 

     
0 0 0

0 .

i qt i q i qt

i i qt

V v 

 

= +

= +z
     (8)   

Assuming the idiosyncratic errors are random draws from the GEV variant of the Type I 

extreme value distribution, the probability taking a trip to site j on choice occasion t in 

quarter q is: 
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And the probability of not taking a trip is: 

0

0
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.  (10) 

Estimation of model parameters * *

1( , , , , ,..., )tc c q Jq       proceeds by maximum likelihood 

and incorporates the population weights for each person in the sample. 

With these parameters in hand, we could, in principle, follow Timmins and Murdock 

and recover the marginal (dis-)utility of congestion through a second-stage regression that 

decomposes the alternative specific constants * *

1( ,..., )q Jq   into part-worths associated 

congestion and other observed site characteristics.  Because unobserved site 

characteristics are likely correlated with these observable characteristics, the regression 

suffers from a classic endogeneity problem.  To address this, Timmins and Murdock (2007) 

adopt an instrumental variables approach that employs nonlinear functions of the 

observed characteristics of neighboring sites as instruments (as do Melstrom and Welniak 

2020 and Phaneuf et al. 2009), whereas Bujosa et al. (2015) use a control function 

approach.  Here we do not estimate the congestion parameter through either approach, but 
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instead evaluate the sensitivity of gate fees to alternative calibrated parameter values that 

are consistent with different assumptions about what people would pay to avoid additional 

congestion on a beach trip.  Given the relatively small number of recreation studies using 

credible econometric methods and data to estimate the marginal value of congestion, our 

approach allows us to speak to the issue of how much demand, welfare and revenue change 

across a range of plausible parameter values. 

Our calibration of the congestion parameter works as follows.  On a given trip, the 

willingness-to-pay (WTP) to avoid a change in current congestion levels is: 

    c

tc

c
WTP






= − .     (11) 

If we have an econometric estimate of tc  and assume a change in congestion c , we can 

back out the congestion coefficient, c , for alternative WTP values.  We assume c  

corresponds to a doubling of congestion levels at the average site in our data set and 

consider alternative WTP values for avoiding this change that range from $0 to $25 in $5 

increments.  We then evaluate gate fees for each of the implied values for c .5  It is 

important to note that the linearity of (11) in c  rules out the possibility of convex 

congestion costs, i.e., a doubling of congestion at a congested site has a larger impact on 

demand and welfare than a doubling of congestion at an uncongested site.  In this way, it is 

likely that the implied demand and welfare effects of congestion reported in the next 

section may be conservative relative to a richer model that allows for such nonlinearities.  

With the estimation or calibration of our model parameters complete, we can turn 

our attention to identifying the congestion levels after the introduction of a fee.  There are 

two related questions here: 1) is there a unique Nash equilibrium with the fee? And 2) if so, 

how does one solve for it?  As discussed in Bayer and Timmins (2005), the assumption that 

 
5 To preserve the accuracy of model predictions, the calibrated effect of congestion on utility, 

0

cc , must be 

subtracted from the alternative specific constants 
* *

1( ,..., )q Jq   estimated in the first stage. 
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congestion is a bad guarantees that a unique Nash equilibrium exists.6  Solving for the new 

equilibrium with the gate fee can be achieved through a contraction mapping where the 

congestion estimates at each site are updated iteratively until they have converged to their 

true values, *c .  The algorithm we use works as follows.  We initially assume congestion 

levels are fixed at their pre-tax level, 0c , and then solve for the implied congestion levels 

with the gate fee, 1 0( )c c c= .  We repeat this step by solving for 1( )c c  and then update our 

congestion estimate in the following way: 

1 1 1( ) , 2j j j jc c d c c c j− − − = + −   ,    (12) 

where d is a dampening parameter, 0 1d  .  We repeat this step until 1j jabs c c k−−   

where k is a small positive value, which implies the contraction mapping has converged to 

*c .  

Once we have solved for the new equilibrium level of congestion, we can monetize 

the full change in economic value induced by the gate fee using the well-known “log-sum” 

formula as presented in English et al. (2018). 

 

Results 

Table 2 reports first-stage parameter estimates for the travel cost ( tc ) and 

dissimilarity ( ) coefficients across alternative models, with the other parameters not 

reported for brevity.  In the first column, all participation and site choice data are pooled 

across the four quarters, whereas the remaining four columns report separate models by 

quarter.  Focusing first on the travel cost coefficient, we find that it is consistently negative 

and significant.  The coefficient is generally larger during the summer months and smaller 

during the winter months, implying that trips during the winter months are modestly 

 
6 If congestion is a good, i.e., there are agglomeration effects at play, Bayer and Timmins (2005) show that a 
unique equilibrium may or may not exist, and assuming it exists, finding the equilibrium is often more 
difficult in practice. 
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higher value (Haab and McConnell, 2002).7  The dissimilarity coefficients, which by theory 

must fall between zero and one, are centered around .2 and highly significant.  

 Table 3 reports key findings from our simulations.  These results are aggregated 

across the four quarters and represent annual predictions for calendar year 2012.  We 

focus first on column 1 where we assume the per trip WTP to avoid a doubling of 

congestion is zero, which is the implicit assumption in Ji et al. (this issue), Lupi et al. (this 

issue), and the vast majority of published recreation studies investigating access fees.  Our 

model predicts that the gate fee will raise $424 million in revenue from 44 million trips, 

which corresponds to an average gate fee of roughly $9.65 per trip.  Relative to the pre-tax 

baseline, the fee generates a 22.4% reduction in trips at Gulf Coast sandy beaches in 

Mississippi, Alabama and Florida subject to the fee and a 6.9% increase in trips to other 

coastal areas in the six-state region.  The behavioral response in terms of user days is larger 

– a 33.6% reduction in user days at taxed Gulf Coast beaches and a 10.8% increase at other 

coastal sites – suggesting that multi-day trips – which are subject to higher average fees per 

trip – are more affected by the gate fee than single-day trips. 

 Column 1 of Table 3 also reports the compensating variation (CV) associated with 

the gate fee, which equals $556 million.  The decomposition of CV shows that this loss is 

entirely due to the increase in the price of recreation trips induced by the fee because, by 

assumption, congestion does not affect the marginal value of a trip.   Finally, we report two 

measures of the efficiency costs of the gate fee.  The first is net surplus, or the sum of 

revenue raised and compensating variation, which equals -$132 million, or roughly 31% of 

the total revenue raised.  The second measure is the traditional Harberger triangle measure 

of deadweight loss, ½△TripsG×Avg Fee, where △TripsG equals the change in trips to Gulf 

Coast sandy beaches.  This commonly used approximation of deadweight loss equals -$61 

million as reported in column 1.  Given that recreators are assumed to not value changes in 

congestion in this case, there is no welfare gain from declines in congestions, and thus the 

two measures are in theory comparable.  In practice, however, they diverge by a factor of 

two.  Our sense is that this difference is driven by the Harberger triangle’s reliance on 

 
7 While there are fewer trips in quarters 1 and 4, these trips tend to come from greater distances and hence 
have higher travel costs, especially in the first quarter. 
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average price and average change in trips which masks the substantial heterogeneity that 

arises in our data and is accounted for in the CV calculations.8  Although quantitively 

different, both measures nonetheless suggest that there is substantial excess burden 

generated by the gate fee. 

 We now turn to the second column where we assume the per trip WTP to avoid a 

doubling of congestion levels on a trip is $5.  Comparing these results to those in the first 

column, we find several differences.  First, the gate fee raises an additional $30 million 

(7.1%) in revenue under the assumption of a $5 WTP to avoid a doubling of congestion 

relative to a $0 WTP.  This increase is driven more so by a smaller decline in trips to the 

taxed beaches (-18.4% versus -22.4%) than a higher average fee per trip (which rises by 

only $0.17, or 1.8%).   Second, leakage, or the increase in trips to non-taxed sites, is smaller 

in column 2 relative to column 1 (4.6% versus 6.9%).  Third, a similar pattern of behavioral 

differences arises if one focuses instead on user days instead of trips.  Fourth, the welfare 

losses to consumers (i.e., CV) are greater by $10 million (or 1.7%) when recreators have a 

$5 WTP to avoid a doubling of congestion.  The decomposition suggests that while there are 

significant additional benefits ($99 million) from the reduction in congestion levels at the 

taxed sites, there are even more ($108 million) additional costs associated with the higher 

congestion levels at the untaxed sites.  Finally, the efficiency measures suggest that the net 

benefits (revenue raised plus CV) of the gate fee are higher (or less negative) when 

congestion is a disamenity to recreators.  The Harberger triangle measure of deadweight 

loss, which does not account for the welfare gains from reduced congestion, remains 

substantially below the sum of revenue raised and compensating variation. 

 We now consider the final four columns of Table 3 where the WTP to avoid a 

doubling of congestion is gradually increased in $5 increments from $10 to $25.  

Comparing these results to those reported in the first two columns reveals several 

interesting trends.  First, revenue raised increases with WTP for avoided congestion, albeit 

 
8 To drive home the importance of heterogeneity in the current context, an example is illustrative.  Imagine 
there are two beach goers – one who faces a $1 gate fee and reduces her demand by one trip and a second 
who faces a $7 gate fee and reduces her demand by seven trips.  The deadweight loss for each person is $1 
and $24.50, respectively, or $12.75 on average.  By contrast, the representative individual faces a $4 gate fee 
and reduces demand by four trips, implying a deadweight loss of $8. 
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at a declining rate.  In particular, revenue raised increases by $16 million when moving 

from column 2 to 3 (WTP changing from $5 to $10) but only by $9 million when moving 

from column 5 to 6 (WTP changing from $20 to $25).  This trend appears to be due more so 

to the gradual increase in the predicted number of trips to taxed beaches (which increases 

from 46 to 50 million between columns 2 and 6) than to the more modest increase in the 

average fee per trip (which increases from $9.83 to $10.07).  Second, we also find that 

leakage to non-Gulf Coast beaches declines as the value for avoided congestion increases, 

and these patterns are similar if we focus on user days as our relevant metric.   

 Third, the welfare costs of the gate fee as measured by CV decline as recreator’s 

value for avoiding congestion increases. The decline seems to decelerate with higher values 

for avoided congestion.  The decomposition results suggest that the welfare gains from less 

congestion at the taxed sites trends upward while the welfare losses from more congestion 

at the non-taxed sites trends downward.  However, the gains from the reduced congestion 

at taxed sites grows faster than the losses at taxed sites.  The net result is that overall 

welfare losses to recreators declines to such a degree that, combined with the gradual 

increases in revenue raised, social welfare (Revenue Raised + CV) is positive when 

recreators value congestion reductions most highly ($8 and $39 million in columns 5 and 6, 

respectively).  This implies that when recreators value avoided congestion highly, gate fees 

can be potential Pareto improving, even when the revenues are only returned lump sum.  

Finally, it is worth pointing out that value of the Harberger triangle approximation as a 

proxy for welfare change degrades with higher values for avoided congestion to the point 

that it can be misleading both in sign and magnitude (again, see columns 5 and 6).  This 

result is due to the increasing welfare gains to recreators from reduced congestion that the 

Harberger triangle approximation does not account for. 

 Table 3 also shows results for implied price elasticities associated with the fee 

regime. Elasticities for the complex pattern of price changes are approximated by taking 

the percentage change in total Gulf Coast beach trips and dividing by the percentage change 

in average price.  A similar calculation is performed for the total trips to all beaches (final 

row). With no congestion effects (column 1), the Gulf Coast beach trips are elastic with an 

elasticity of about 1.8, which is similar to the elasticities reported in Lupi et al. (this issue).  
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When looking at total trips, the results are inelastic because the change in total trips is 

lessened by the substitution away from Gulf to non-Gulf Coast beaches where prices do not 

change. As the simulations include increasing amounts of congestion effects, the Gulf Coast 

beach trips become less elastic, and at a WTP for avoiding a doubling of congestion of $25 

(column 6) Gulf Coast beach trips are inelastic due to the net effects of the price and 

congestion changes. 

In terms of the distribution of benefits and costs, the underlying demand model 

reported in Table 2 controls for several observable demographic characteristics that 

influence trip-taking, allowing us to examine the effects of the fee regime by race, 

geographic origin of trips and income.  These results are presented in Tables 4 and 5.   

Beginning with Table 4, non-whites, who make up 25% of the sample, take only 17% of 

total trips with the gate fee but reduce their demand by relatively more compared to 

whites (17-28% versus 11-21% depending on scenario considered).  Non-whites, however, 

bear a modestly smaller percentage of total welfare losses (compensating variation) from 

the fee relative to their population share (21-24%) and pay a lower percentage of gate fees 

(20-21%).  Taken as a whole, these results do not suggest that gate fees are 

disproportionately born by minorities. 

Additionally, Table 4 breaks down the distributional impacts of the proposed gate 

fee by locals (i.e., residents of Mississippi, Alabama and Florida) and non-locals.  Locals 

account for 9% of the sample but take 88-90% of total trips after the gate fee is 

implemented.  Their reduction in trips is much lower relative to non-locals, ranging from 3 

to 14% compared to 48 to 59% for non-locals.  Locals bear about half of the welfare losses 

from the fee and pay almost two-thirds of all gate fees.  However, given that they take the 

vast majority of trips, it appears that the structure of the gate fee considered – which is 

proportional to user days and discriminates against non-locals – is effective at shifting the 

burden of the tax to non-locals. 

Finally in Table 5, we consider the distributional impacts across income quintiles.  In 

our empirical model, trip-taking is positively influenced by income, with higher income 
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groups having the largest probability of visiting a beach.9  This implies that the poorest 

income quintile takes only 14% of total trips under the gate fee. However, the poorest 

quintile reduces their demand by the highest percentage (25-37%) and bears a 

disproportionate amount of the total welfare losses.  The 2nd lowest income quintile 

actually bears a higher percentage of total compensating variation (27%) and total fees 

(27%) although they take a higher percentage of trips (24%).  On the other hand, the 

highest income quintile takes 22-23% of total trips but bears only 13-14% of the welfare 

losses and 14-15% of the fee payments.  To gain further insight into the distributional 

impacts of the gate fees by income, we can aggregate the bottom two and top two quintiles.  

Doing so reveals that the lowest 40% of incomes take a modestly lower percentage of total 

trips (38%), experience a steep decline in trips after the fee’s introduction (13-24%), bear 

51-53% of the welfare losses, and pay 48-49% of the total gate fees.  This contrasts with 

the upper 40% who take a slightly higher percentage of trips (41-42%), experience a 

smaller decline in trips after the fee is implemented (5-13%), and bear only 28-30% of the 

compensating variation losses and 30-32% of the gate fees. Consistent with Ji et al. (this 

issue) and Lupi et al. (this issue), these results suggest that gate fees are generally 

regressive even when congestion feedback effects are accounted for. 

 

Conclusion 

This special issue has focused on the need for a significant and reliable revenue 

stream to pay for maintenance and repair projects on public lands throughout the United 

States.  Our paper contributes to this theme by focusing on an appealing revenue-raising 

instrument – an access or gate fee – that not only generates funds for maintenance and 

repair but also mitigates a persistent problem with public resources that are often 

managed as open-access resources – congestion.  By introducing a gate fee, one can address 

both concerns simultaneously.  Economists have long recognized this virtue, but our 

collective understanding of the behavioral, welfare, revenue-raising, and distributional 

implications of these taxes remains relatively primitive.  In the current paper, we advance 

 
9 This finding is generally consistent with English et al. (2018). 
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our understanding of gate fees by developing a simple conceptual framework that predicts 

the likely behavioral and welfare impacts of gate fees, building a detailed recreation 

demand model of participation and site choice for shoreline recreation from Texas to 

Georgia, and then evaluating a gate fee for sandy beaches in Mississippi, Alabama and 

Florida that is proportional to the number of user days.  We identify three distinct 

behavioral channels that arise from a gate fee – a pure price effect, a taxed site congestion 

effect, and a non-taxed site congestion effect – that combine to determine the overall social 

costs of such a fee.  In our empirical analysis of Gulf Coast sandy beaches, we find that 

substantial revenue can be raised by such a fee, and that accounting for how a fee is likely 

to change congestion levels can reduce the social costs of the fee substantially.  In fact, if 

people have a relatively large willingness-to-pay to avoid congestion, these fees can be 

potential Pareto improving.  Moreover, our distributional analysis suggests that gate fees 

are generally regressive, do not disproportionally impact minorities, and benefit locals at  

the expense of visitors from further away. 

There remains much to do to further economist’s understanding of gate fees, and 

here we identify two areas that seem promising to us.  First, our limited understanding of 

the marginal value of reducing congestion at beaches and other resources suggests the 

need for more research.  This will require additional data collection efforts and clever 

identification strategies, and the work by Timmins and Murdock (2007) and Bujosa et al. 

(2015) certainly represents a good start.  We also believe that stated preference 

approaches like Boxall et al. (2003) can add significant insight, especially in terms of how 

the value of congestion varies across individuals, sites, and recreational activities.  Second, 

our study investigates one possible gate fee but does not search across alternative gate fees 

to determine which fee structure is optimal from a net-benefits perspective.  And once one 

sets as a target identifying an optimal gate fee, several questions arise: 1) what are the 

potential gains of allowing the fee to vary across time and space? 2) should gate fees vary 

by time of day and the level of aggregate use? 3) what are the social costs of exempting 

children or seniors from the fee? and 4) should locals be provided a discount relative to 

non-locals?  Economists have made some progress in answering these questions in the 



19 
 

context of energy and water consumption demand, but the implications of alternative fee 

structures merits further study in the recreation context.   
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Figure 1 – Demand Response to Gate Fee 
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Figure 2 – Sampling Region for Recreational Trips 

 

Note: Survey respondents reported recreational trips to shoreline areas highlighted in green. 
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Table 1 

Summary Statistics for Recreational Trips 

Total Trips 27,717 

Total Trips Used in Estimation1 93% 

Mean Trip Duration 2.2 

Mean Recreation Days 1.5 

% Multi-Day Trips 17% 

Mean Party Size 2.7 

% w/ One-Way Driving Distance < 5 Miles 30% 

% w/ One-Way Driving Distance < 10 Miles 46% 

% w/ One-Way Driving Distance < 100 Miles 84% 

% w/ One-Way Driving Distance < 500 Miles 92% 

% w/ One-Way Driving Distance < 1000 Miles 94% 

Note: Constructed w/ sampling weights. 

1 Trips were primarily dropped because of uncertainty with regard to whether the primary purpose of the trip was 

recreation or the destination of the trip. 

 

  



24 
 

Table 2  
First-Stage Parameter Estimates 

 (1) (2) (3) (4) (5) 
 Annual Model Jan / Feb / 

Mar 
Apr / May / 

Jun 
Jul / Aug / 

Sep 
Oct / Nov / 

Dec 
Travel Cost -1.0243*** -0.7521*** -1.1972*** -1.1766*** -1.0322*** 
 (11.8) (19.7) (8.17) (22.3) (18.3) 
Dissimilarity  0.2116*** 0.1981*** 0.3195*** 0.2199*** 0.2266*** 
Coefficient (14.8) (6.85) (15.5) (6.19) (10.9) 
N 41,716 23,635 16,607 26,799 19,289 
Log-Like -33,427 -12,300 -27,178 -14,002 -11,507 
t-statistics based on standard errors clustered by site in parentheses.   * p < .10, ** p < .05, *** p < .01. 
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Table 3 
Simulation Results across Assumed Per Trip WTP to Avoid Congestion 

Assumed Per Trip WTP to Avoid  
   Doubling of Congestion Levels 

$0 $5 $10 $15 $20 $25 

       

Revenue Raised $424 $455 $471 $483 $493 $502 
       
Compensating Variation (CV) -$556 -$566 -$538 -$511 -$486 -$462 
Decomposition       
   Pure Price Effect -$556 -$556 -$556 -$556 -$556 -$556 
   Taxed Site Congestion Effect $0 $99 $159 $204 $242 $273 
   Non-Taxed Site Congestion Effect $0 -$108 -$141 -$159 -$171 -$179 
       
Avg. Fee Per Trip $9.65 $9.83 $9.91 $9.98 $10.02 $10.07 
       
Gulf Beach Trips w/o Fee 57 57 57 57 57 57 
Gulf Beach Trips w/ Fee 44 46 48 49 49 50 
% Change -22.4% -18.4% -16.1% -14.5% -13.1% -12.0% 
       
Non-Gulf Beach Trips w/o Fee 99 99 99 99 99 99 
Non-Gulf Beach Trips w/ Fee 106 104 103 102 102 102 
% Change  6.9% 4.6% 3.6% 3.0% 2.5% 2.1% 
       
Gulf Beach User Days w/o Fee 107 107 107 107 107 107 
Gulf Beach User Days w/ Fee 71 76 78 80 81 83 
% Change -33.6% -29.4% -27.0% -25.3% -23.9% -22.8% 
       
Non-Gulf Beach User Days w/o Fee 177 177 177 177 177 177 
Non-Gulf Beach User Days w/ Fee 196 191 189 188 187 186 
% Change  10.8% 8.1% 6.9% 6.2% 5.6% 5.1% 
       
Efficiency Measures       
   Revenue Raised + CV -$132 -$112 -$67 -$28 $8 $39 
   ½△TripsG×Avg. Fee -$61 -$51 -$45 -$41 -$37 -$34 
       
Price Elasticity of Trip Demand       
   Gulf Beach Trips 1.78 1.43 1.25 1.11 1.00 0.91 
   Total Beach Trips 0.29 0.29 0.27 0.26 0.24 0.23 
       

This table reports simulated results for a $5/day fee for residents of Florida, Alabama, and Mississippi and $10/day fee for others.  All 
estimates except avg. fee per trip are reported in millions.  Monetary estimates are in 2012 $s. Price elasticity of demand for trips to 
Gulf sites approximated by the percentage change in average price divided by the percentage change in trips to the Gulf. 
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Table 4 

Distributional Impacts by Race and Trip Origin 
Assumed Per Trip WTP to Avoid  
   Doubling of Congestion Levels 

$0 $5 $10 $15 $20 $25 

       

White (75% of sample)       
    Percent of Total Trips w/ Fee 83% 83% 83% 83% 83% 83% 
    Percent Reduction in Trips 21% 17% 15% 13% 12% 11% 
    Percent of Total CV 79% 78% 77% 76% 76% 76% 
    Percent of Total Fees Paid 80% 79% 79% 79% 79% 79% 
       
Non-White (25% of sample)       
    Percent of Total Trips w/ Fee 17% 17% 17% 17% 17% 17% 
    Percent Reduction in Trips 28% 24% 21% 20% 18% 17% 
    Percent of Total CV 21% 22% 23% 24% 24% 24% 
    Percent of Total Fees Paid 20% 21% 21% 21% 21% 21% 

Locals (9% of sample)       
    Percent of Total Trips w/ Fee 90% 89% 89% 89% 89% 88% 
    Percent Reduction in Trips 14% 10% 7% 6% 4% 3% 
    Percent of Total CV 56% 54% 51% 49% 46% 44% 
    Percent of Total Fees Paid 67% 66% 66% 65% 65% 65% 
       
Non-Locals (91% of sample)       
    Percent of Total Trips w/ Fee 10% 11% 11% 11% 11% 12% 
    Percent Reduction in Trips 59% 55% 52% 51% 49% 48% 
    Percent of Total CV 44% 46% 49% 51% 54% 56% 
    Percent of Total Fees Paid 33% 34% 34% 35% 35% 35% 
       

All estimates except are reported in millions.  Monetary estimates are in 2012 $s. 

 

  



27 
 

 
Table 5 

Distributional Impacts by Income 
Assumed Per Trip WTP to Avoid  
   Doubling of Congestion Levels 

$0 $5 $10 $15 $20 $25 

       

Lowest 20% of Income       
    Percent of Total Trips w/ Fee 14% 14% 14% 14% 14% 14% 
    Percent Reduction in Trips 37% 32% 30% 28% 26% 25% 
    Percent of Total CV 24% 24% 24% 25% 25% 26% 
    Percent of Total Fees Paid 21% 21% 22% 22% 22% 22% 
       

2nd Lowest 20% of Income       
    Percent of Total Trips w/ Fee 24% 24% 24% 24% 24% 24% 
    Percent Reduction in Trips 27% 22% 19% 17% 16% 14% 
    Percent of Total CV 27% 27% 27% 27% 27% 27% 
    Percent of Total Fees Paid 27% 27% 27% 27% 27% 27% 
       

Middle 20% of Income       
    Percent of Total Trips w/ Fee 21% 21% 21% 21% 21% 21% 
    Percent Reduction in Trips 21% 17% 15% 13% 12% 11% 
    Percent of Total CV 20% 20% 19% 19% 19% 19% 
    Percent of Total Fees Paid 21% 21% 21% 21% 21% 21% 
       

2nd Highest 20% of Income       
    Percent of Total Trips w/ Fee 19% 19% 19% 19% 19% 19% 
    Percent Reduction in Trips 17% 14% 12% 10% 9% 8% 
    Percent of Total CV 16% 16% 16% 16% 15% 15% 
    Percent of Total Fees Paid 17% 17% 16% 16% 16% 16% 
       

Highest 20% of Income       
    Percent of Total Trips w/ Fee 23% 22% 22% 22% 22% 22% 
    Percent Reduction in Trips 10% 8% 6% 5% 4% 3% 
    Percent of Total CV 13% 14% 14% 14% 14% 13% 
    Percent of Total Fees Paid 15% 15% 14% 14% 14% 14% 
       

All estimates are reported in millions.  Monetary estimates are in 2012 $s. 
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Supplemental Materials 

Derivation of Equation (3) 

We can write the effects at each site symmetrically like so: 

(S1) 
𝑑𝑥1

𝑑𝐹1
=

𝜕𝑔1

𝜕𝑝1
+

𝜕𝑔1

𝜕𝑐1

𝑑𝑥1

𝑑𝐹1
/𝐿1 +

𝜕𝑔1

𝜕𝑐2

𝑑𝑥2

𝑑𝐹1
/𝐿2 

 

(S2) 
𝑑𝑥2

𝑑𝐹1
=

𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝑑𝑥1

𝑑𝐹1
/𝐿1 +

𝜕𝑔2

𝜕𝑐2

𝑑𝑥2

𝑑𝐹1
/𝐿2 

 

Re-arranging (S1): 

(S3) 
𝑑𝑥1

𝑑𝐹1
=

𝜕𝑔1

𝜕𝑝1
+

𝜕𝑔1

𝜕𝑐2

𝑑𝑥2

𝑑𝐹1
/𝐿2

1 −
𝜕𝑔1

𝜕𝑐1
/𝐿1

 

 

Substituting into (S2): 

(S4) 
𝑑𝑥2

𝑑𝐹1
=

𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1
[

𝜕𝑔1

𝜕𝑝1
+

𝜕𝑔1

𝜕𝑐2

𝑑𝑥2

𝑑𝐹1
/𝐿2

𝐿1 −
𝜕𝑔1

𝜕𝑐1

] +
𝜕𝑔2

𝜕𝑐2

𝑑𝑥2

𝑑𝐹1
/𝐿2 

 

 
𝑑𝑥2

𝑑𝐹1
=

𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑝1

𝐿1 −
𝜕𝑔1

𝜕𝑐1

+ [

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑐2
+

𝜕𝑔2

𝜕𝑐2

𝐿1 −
𝜕𝑔1

𝜕𝑐1

]
𝑑𝑥2

𝑑𝐹1
/𝐿2 
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(S5) 

[
 
 
 
 
 

1 −

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑐2

𝐿2

𝐿1 −
𝜕𝑔1

𝜕𝑐1

−
𝜕𝑔2

𝜕𝑐2
/𝐿2

]
 
 
 
 
 

𝑑𝑥2

𝑑𝐹1
=

𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑝1

𝐿1 −
𝜕𝑔1

𝜕𝑐1

 

 

(S6) [(𝐿1 −
𝜕𝑔1

𝜕𝑐1
) (1 −

𝜕𝑔2

𝜕𝑐2
/𝐿2) −

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑐2

𝐿2
]
𝑑𝑥2

𝑑𝐹1
= (𝐿1 −

𝜕𝑔1

𝜕𝑐1
)
𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑝1
 

 

Finally, change in per-mile demand at site two from a fee at site one is: 

(S7) 
𝑑𝑥2/𝑑𝐹1

𝐿2
=

(𝐿1 −
𝜕𝑔1

𝜕𝑐1
)
𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑝1

(𝐿1 −
𝜕𝑔1

𝜕𝑐1
) (𝐿2 −

𝜕𝑔2

𝜕𝑐2
) −

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑐2

 

 

Or alternatively: 

(S7') 
𝑑𝑥2

𝑑𝐹1
=

(1 −
𝜕𝑔1

𝜕𝑐1
/𝐿1)

𝜕𝑔2

𝜕𝑝1
+

𝜕𝑔2

𝜕𝑐1

𝜕𝑔1

𝜕𝑝1
/𝐿1

(1 −
𝜕𝑔1

𝜕𝑐1
/𝐿1) (1 −

𝜕𝑔2

𝜕𝑐2
/𝐿2) − (

𝜕𝑔2

𝜕𝑐1
/𝐿2) (

𝜕𝑔1

𝜕𝑐2
/𝐿1)

 

 

The first term in the denominator is positive, but the second term is negative.  Similarly in 

the numerator, the first term is positive, but the second is negative.  Therefore, it is not 

possible to sign dx2/dF1 in general. 

 

 


