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Landscape-level feedbacks in the demand for transgenic pesticidal corn in the Philippines 

Abstract 

We introduce a novel econometric approach to estimate economic pest control feedbacks within 

agroecological systems, using discrete choice endogenous sorting models. We apply this 

approach to deployment of transgenic Bt maize in the Philippines. We show with basic theory 

how areawide pest suppression from largescale Bt maize deployment attenuates farmers’ demand 

for this technology. Econometric results support this hypothesis and imply long-run demand for 

the Bt trait is price-inelastic, contrasting with price-elastic demand estimated from a model 

without feedback. Investigating whether this feedback truly derives from areawide pest 

suppression, we analyze farmers’ pest infestation expectations and find expected damages are 

significantly reduced by higher areawide Bt deployment. We discuss implications of these 

findings and other potential applications of the econometric approach to study coupled biological 

and economic systems. 

 

JEL codes: C33, C35, C36, D24, Q12, Q57 

Keywords: agroecology, bioeconomic feedbacks, areawide pest suppression, crop choice, 
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1 Introduction 

Largescale agricultural production involves ecological feedbacks between farmer decisions, their 

effects on biological systems, and economic reactions to these effects. The control of crop pests 

provides a particularly salient example. Credible estimates put global crop losses due to pests at 

roughly a quarter of potential yields (Oerke 2006; Culliney 2014), with pest damages expected to 

increase with climate change (Deutsch et al. 2018). Pest control choices strongly influence  

economic returns from crop production (Fernandez-Cornejo et al. 2014; Chambers, Karagiannis 

and Tzouvelekas 2010). A growing body of entomological and weed science research shows how 

these choices can impose externalities on neighboring farms, by altering landscape-level pest 

pressure (Hutchison et al. 2010; Wan et al. 2012; Dively et al. 2018),1 background presence and 

movement of chemical pesticides (Werle et al. 2018), and the genetic composition (e.g. pesticide 

resistance) of pest populations (Gould, Brown and Kuzma 2018).  

Theoretical and simulation-based models in biology and economics suggest that 

externalities resulting from such agroecological feedbacks would impact farmers’ incentives and 

decisions to undertake pest control efforts (Milne et al. 2015; Epanchin-Niell and Wilen 2015). 

However, no empirical research has yet investigated whether this is the case. This is at least 

partly due to the difficulty of such an exercise. The econometric measurement of such feedback 

loops would require largescale, landscape-level experiments or – barring these – some strategy to 

address endogeneity. Moreover, directly observing the interactions between farmers and pest 

populations requires biological and economic data with enough detail and variation at both the 

farm and landscape scales.   

In this paper we introduce a novel approach to econometrically measure the effect of 

bioeconomic pest control feedbacks on agents’ choices, by using endogenous sorting models 

developed in the environmental, resource and urban economics literatures (Bayer and Timmins 
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2007; Timmins and Murdock 2007; Hicks, Horrace and Schnier 2012; Bernasco et al. 2017).2 

These tools have been specifically developed to measure how the choices of individual economic 

agents depend on the market-level, aggregate demand shares for discrete alternatives, and in turn 

how these endogenous choices feed back into determining aggregate demand. For example, 

demand for recreation areas is likely to attenuate with increased congestion (Timmins and 

Murdock 2007). The key analogue we use here is the hypothesis, based on previous 

agroecological research, that demand for a specific pest control technology – genetically 

modified Bacillus thuringiensis (Bt) maize – should attenuate due to landscape-level pest 

pressure reductions induced by the technology. 

The general identification strategy used in endogenous sorting models is to observe 

variation in the effective choice set available within each market. Such variation can be used to 

build an instrument that predicts variation in aggregate demand shares, but is exogenous with 

respect to unobserved market-level factors that affect individual preferences and thereby 

aggregate demand. For example, recreation site openings or closures – or more generally 

changes in the relative costs of access or nonmonetary attributes – over time produces variation 

in the effective recreation choice set available at a given interval of time (Timmins and Murdock 

2007). To the extent this variation is exogenously determined (i.e. not itself a product of 

congestion), it can be used to infer how congestion attenuates demand.     

To apply this approach in measuring the bioeconomic pest control feedbacks, we first 

present a simple conceptual model showing how an analogous feedback should manifest in the 

case of Bt maize, given reasonable – and testable – assumptions about agents’ pest damage 

expectations. In this model greater areawide adoption of Bt maize reduces landscape-level pest 

pressure, thereby reducing the incentive for individual farmers in the area to deploy the control 
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measure. One practical consequence of recognizing this bioeconomic feedback is that the long-

run, equilibrating price elasticity of demand for the pest control measure should therefore be less 

than what would be erroneously implied by ignoring it. Our empirical estimates in fact suggest 

demand for the Bt trait switches from being price-elastic to inelastic when accounting for this 

endogeneity.    

Motivated by this theory, we then specify and estimate an endogenous sorting model of 

pest control decisions, using data on the deployment of genetically modified, Bt maize in the 

Philippines. Bt crops express insecticidal toxins (which, in nature, are produced by Bt bacteria) 

that are highly effective at killing and preventing damage from economically important pests. A 

largescale analysis of Bt maize deployment in the Midwestern U.S., by Hutchison et al. (2010), 

showed that European corn borer (Ostrinia nubilalis, or ECB) – once one of the most historically 

significant pests of maize in the region – was effectively eliminated by the widespread 

deployment of Bt varieties. In particular, Hutchison et al. (2010) showed that widespread use of 

these varieties decreased abundance of the pest on both Bt and non-Bt maize over the landscapes 

studied. Based on this observation, they estimated the majority of the net benefits from 

eliminating this pest were accrued by non-users of Bt varieties, who avoided paying the 

additional costs for the proprietary seeds. Subsequent entomological research in a variety of 

agricultural systems has added to the evidence for areawide pest suppression by Bt crops (Wan et 

al. 2012; Dively et al. 2018). In the context of our study, a key related pest in Philippine maize 

farming systems is the Asian corn borer (Ostrinia furnicalis, or ACB). Bt varieties are also 

highly effective at suppressing ACB (Afidchao et al. 2013).  

We first estimate an endogenous sorting model for Philippine maize farmers’ decisions to 

deploy Bt versus non-Bt varieties, using a two-stage fixed effects conditional logit and 
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instrumental variables regression method originally developed by Bayer and Timmins (2007). 

The results from our estimation confirm the prediction of our conceptual model: Greater 

areawide adoption of Bt varieties appears to attenuate individual demand for them. As noted 

above, in qualitive terms, the endogeneity appears to generate price-inelastic long-run demand 

for the Bt trait. To corroborate the bioeconomic explanation for this result, we then 

econometrically analyze survey data on farmers’ expectations regarding ACB infestations, to see 

whether higher areawide Bt deployment leads farmers to expect fewer infestations. We find 

robust evidence for this effect.      

The rest of the paper proceeds as follows: We first present a conceptual model of pest 

suppression spillovers and feedbacks in the demand for Bt maize, followed by a detailed 

description of our econometric approach. We then provide a description of the empirical context 

and the dataset used in the study, before discussing some econometric considerations (vis-a-vis 

our data).  Estimation results are then presented and interpreted.  We then discuss implications 

and limitations of our analysis.  

 

2 Conceptual and econometric models 

We first present a conceptual model of how we can expect area-level adoption of a 

pesticidal crop to determine pest densities (the bioeconomic spillover), and in turn determine 

individual grower choices about whether to adopt GM varieties. While our model makes a 

number of simplifications, in the following section describing the study area, we argue that it 

well characterizes the typical insect pest control environment facing a Philippine maize farmer 

over the time period in our data.  We then translate this conceptual model into an econometric 

approach, and describe the estimation procedure. 
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2.1 Conceptual model 

Consider a farmer facing the ex ante binary choice of whether to plant one of two 

varieties of a crop: a conventional variety fully susceptible to pest damage or a pesticidal variety 

that protects the plant from damage and also kills the pest (as is the case with Bt maize). To fix 

ideas with respect to our application to Bt maize, we refer to the conventional variety as the 

hybrid (𝐻) and the pesticidal variety as the Bt variety. In the model, farmers do not observe pest 

densities in the coming season, but have expectations about future pest pressure (e.g. based on 

previous years and on forecasts of environmental conditions).  

For simplicity, our conceptual model focuses only on uncertainty with respect to pest 

densities in the upcoming season. Let 𝜋𝐻(𝑑) be the ex post profit (crop revenues less costs of 

seed and other inputs) from the non-Bt hybrid given a pest density of 𝑑, and 𝜋𝐵𝑡 the ex post 

profit from adopting the pesticidal variety, apart from the price premium for the Bt variety. 

Assume that 𝜋𝐻
′ < 0, i.e. that ex post profit from the hybrid variety is decreasing in pest density, 

and that the pesticidal crop is fully protected against pest damage so that 𝜋𝐵𝑡 is independent of 

pest density. Also, suppose that given an areawide Bt adoption level of 𝐶 ∈ [0,1] the ex ante 

cumulative distribution function (CDF) for 𝑑 is 𝐹(𝑑|𝐶), which defines farmer expectations about 

pest densities 𝑑 in the upcoming season, conditional on areawide adoption 𝐶 of the Bt variety. 

Finally, let 𝑤 denote the price premium for the Bt variety. Then ex ante expected profits for the 

hybrid and Bt varieties are:   

Π𝐻(𝐶) ≔ 𝔼𝑑[𝜋𝐻(𝑑)|𝐶]        (1) 

Π𝐵𝑡 ≔ 𝔼𝑑[𝜋𝐵𝑡 − 𝑤|𝐶] = 𝜋𝐵𝑡 − 𝑤        

where the operator 𝔼𝑑[⋅ |𝐶] emphasizes that we are focusing on uncertainty with regard to pest 

densities conditional on an assumed level of areawide Bt adoption. The farmer will therefore 
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adopt the Bt variety if 𝜋𝐵𝑡 − Π𝐻(𝐶) > 𝑤 and will plant the conventional variety if 𝜋𝐵𝑡 −

Π𝐻(𝐶) < 𝑤. That is, the farmer will base the decision on the ex ante expected profit differential 

ΔΠ(𝐶) ≔ 𝜋𝐵𝑡 − Π𝐻(𝐶), relative to the price premium 𝑤 of the Bt variety. 

A generic way to model a pest suppression effect of areawide adoption in the above 

framework is to assume that 𝐹(𝑑|𝐶) > 𝐹(𝑑|𝐶′) for all 𝐶 > 𝐶′, i.e. the CDF conditional on 𝐶′ 

first-order stochastically dominates any CDF conditional on a higher 𝐶. Under this assumption, 

and because 𝜋𝐻(𝑑) is strictly decreasing, then Π𝐻
′ > 0 (a basic implication of first-order 

stochastic dominance). Consequently, the expected profit gain from the Bt variety relative to the 

hybrid variety is decreasing in areawide adoption, i.e. ΔΠ′ < 0. 

This provides an intuitive model of a negative, pest suppression feedback from pesticidal 

crop adoption. As areawide use of Bt increases, farmers expect decreased pest pressure on their 

own farms.3 Equilibrium properties mirror those found with respect to congestion externalities 

(Bayer and Timmins 2005): If any solution 𝐶∗ to the equation ΔΠ(𝐶∗) = 𝑤 exists on the interval 

[0,1], then it is the unique equilibrium of the model, the point at which the marginal farmer is 

indifferent between adopting Bt or the conventional variety. This equilibrium is stable in the 

sense that there is an individual incentive to 

adopt Bt if areawide adoption is below 

equilibrium, and disincentive to adopt if 

areawide adoption is above equilibrium. That 

is, ΔΠ(𝐶) > 𝑤 for all 𝐶 < 𝐶∗ and ΔΠ(𝐶) >

𝑤 for all 𝐶 > 𝐶∗. Figure 1 illustrates such an 

equilibrium. If no solution to this equation 

exists, then ΔΠ(𝐶) exceeds 𝑤 across the whole Figure 1 
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unit interval, in which case full adoption of Bt is the equilibrium, or 𝑤 exceeds ΔΠ(𝐶) across the 

whole unit interval, in which case the unique equilibrium is no adoption of the Bt variety.    

Alternatively, a pest control method could feasibly result in repelling – rather than 

suppressing – pests from areas where the method is adopted to areas where the method was not 

yet adopted. In this case CDFs of pest pressure for non-adopters conditional on high area-level 

adoption could stochastically dominate those with lower adoption, ultimately flipping the 

polarity of the modeled feedback from negative to positive. This would be analogous to an 

agglomeration externality (Bayer and Timmins 2005). In our context, we hypothesize that a pest 

suppression feedback is the most relevant for study, rather than repulsion. For Lepidopteran pests 

like ECB and ACB, Bt crops have a clear suppressing as opposed to repelling effect because they 

act on the caterpillar larvae, which have limited ability to avoid exposure to the Bt toxins 

(Hutchison et al. 2010). 

Such an areawide pest suppression feedback will also in general reduce the absolute price 

elasticity of demand for the Bt variety. To see this in a discrete choice model of seed choice, we 

must extend the above model to allow for heterogeneity or some random component to farmer 

profits. For exposition assume that the profit differential ΔΠ𝑖(𝐶) for farmer 𝑖 is ΔΠ𝑖(𝐶) ≔

ΔΠ(𝐶) + 𝜖𝑖, where 𝜖𝑖 is a random component of the farmer returns to Bt-versus-hybrid varieties, 

with pdf 𝑓(𝜖𝑖). Then all farmers with 𝜖𝑖 such that ΔΠ(𝐶) + 𝜖𝑖 > 𝑤 will adopt the Bt variety, and 

the resulting demand for the Bt variety is 𝐷𝐵𝑡(𝑤, 𝐶) ≔ ∫ 𝑓(𝜖𝑖)𝑑𝜖𝑖
∞

𝑤−ΔΠ(𝐶)
.  

With the pest suppression feedback and this random component to profits, an equilibrium 

areawide Bt adoption level 𝐶∗ now satisfies 𝐷𝐵𝑡(𝑤, 𝐶∗) = 𝐶∗. Applying the Implicit Function 

Theorem to this equation to derive 𝑑𝐶∗/𝑑𝑤 when ΔΠ′ < 0 (i.e. areawide pest suppression) and 

given 𝑓(⋅) > 0, we obtain the relation: 
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𝜕𝐷𝐵𝑡

𝜕𝑤
|

𝐶=𝐶∗
= −𝑓[𝑤 − ΔΠ(𝐶∗)] < −

𝑓[𝑤−ΔΠ(𝐶∗)]

1−𝑓[𝑤−ΔΠ(𝐶∗)]ΔΠ′⏟
(−)

= −
𝜕𝐷𝐵𝑡

𝜕𝑤
𝜕𝐷𝐵𝑡

𝜕𝐶
−1

|
𝐶=𝐶∗

=
𝑑𝐶∗

𝑑𝑤
(< 0) (2) 

This relation shows the price elasticity of demand accounting for pest suppression feedbacks is 

lower in absolute magnitude than the price elasticity ignoring it, i.e. |
𝑑𝐶∗

𝑑𝑤
|

𝑤

𝐶∗ < |
𝜕𝐷𝐵𝑡

𝜕𝑤
|

𝑤

𝐶∗. In 

economic terms, a price change in the Bt variety is met by a countervailing change in pest 

pressure which attenuates the demand effects of the price change.                 

 

2.2 Econometric approach  

To empirically evaluate the presence of endogenous feedbacks from Bt seed use, we use 

an IV method developed by Bayer and Timmins (2007) to estimate a discrete choice econometric 

random utility model (RUM) with endogenous sorting. We apply this method to model farmers’ 

crop variety choices. Following Ciliberto et al. (2019), who also estimate a discrete choice model 

of farmers seed variety choices (without endogenous sorting), ex ante utility can be interpreted as 

implicitly containing the expected profit from selecting seed variety 𝑗, but may also be related to 

other factors directly affecting utility, such as farmer preferences specifically regarding 

genetically modified crops (Useche, Barham and Foltz 2009; Birol, Villalba and Smale 2008).4  

We specify the ex ante utility 𝑈𝑗𝑖ℎ to the farmer of crop variety 𝑗 for grower 𝑖 in area ℎ by 

partitioning farmer and area-level utility components: 

𝑈𝑗𝑖ℎ = 𝛿𝑗ℎ + 𝜷′𝒙𝑗𝑖 + 𝜖𝑗𝑖ℎ (3) 

where 𝛿𝑗ℎ is the area-level effect of variety 𝑗 on utility, 𝒙𝑗𝑖 is a vector of farmer-level covariates 

varying across varieties, 𝜷 is an associated vector of regression coefficients, and 𝜖𝑗𝑖ℎ is a random 

utility component. The area-level effect is decomposed as: 

𝛿𝑗ℎ = 𝛿�̅� − 𝜂𝑝𝑗ℎ + 𝛼𝐵𝑡𝑗𝐶ℎ + 𝜉𝑗ℎ (4) 
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where 𝛿�̅� is a variety-specific constant, 𝑝𝑗ℎ is the price of variety 𝑗 in area ℎ with associated 

marginal utility 𝜂, 𝐶ℎ is the fraction of growers in area ℎ employing varieties with the Bt trait, 

𝐵𝑡𝑗 is a dummy variable indicating whether variety 𝑗 possesses the Bt trait, and 𝜉𝑗ℎ is an area-

level residual. We aim to estimate the utility parameters 𝛼, 𝜷, 𝜂 and, 𝛿�̅�.  

The parameter we focus on is the spillover effect, 𝛼, of areawide Bt use, 𝐶ℎ. Note that 

areawide Bt use 𝐶ℎ is interacted with 𝐵𝑡𝑗 in equation (4) for both theoretical and mechanical 

reasons. The simple theory in section 2.1 implies that greater areawide use of Bt decreases the 

relative utility (𝜕𝑈𝑗𝑖ℎ /𝜕𝐶ℎ < 0) only for those 𝑗 with the Bt trait (𝐵𝑡𝑗 = 1), yielding the 

hypothesis that 𝛼 < 0. Mechanically, 𝐶ℎ cannot enter alone as a covariate in (4) because this 

variable does not vary over alternatives 𝑗, and it is only differences between alternatives that 

identify preferences in a RUM (Train 2009). Interacting 𝐶ℎ with 𝐵𝑡𝑗 produces necessary 

variation over 𝑗. 

Assuming the farm-level random utility component 𝜖𝑗𝑖ℎ in (3) is iid extreme value, we 

obtain the fixed effects conditional logit model for the probability 𝑃𝑗𝑖ℎ of grower 𝑖 selecting 

variety 𝑗 in area ℎ: 

𝑃𝑗𝑖ℎ(𝜷, 𝜹ℎ) =
exp{𝜷′𝒙𝒋𝒊 + 𝛿𝑗ℎ}

∑ exp{𝜷′𝒙𝒌𝒊 + 𝛿𝑘ℎ}𝑘∈ℎ
 (5) 

where “𝑘 ∈ ℎ” is short-hand to indicate the denominator in (5) sums over all the varieties 

𝑘 available in area ℎ (in our application, areas are village×year).  

The standard approach to estimating this model is via a two-stage procedure. In the first 

stage, estimates �̂� and �̂�ℎ ≔ (𝛿𝑗ℎ)
𝑗=1,…,𝐽

 are obtained from maximum-likelihood (ML) 

estimation combined with a contraction mapping algorithm from Berry et al. (1995). In the 

second stage, the estimated �̂�𝑗ℎ serve as dependent variables in a linear regression on observable 
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variety-specific factors varying at the area level, using the decomposition in (4) and treating the 

unobserved area-level component 𝜉𝑗ℎ as a regression error. If the explanatory variables in (4) are 

orthogonal to 𝜉𝑗ℎ, then this second-stage can be estimated consistently with OLS or other 

standard panel data methods (Murdock 2006).    

However, with endogenous sorting, area-level explanatory variables in the second stage 

include the area-level adoption of Bt. This creates an obvious endogeneity problem, since 

correlation in areawide unobservables likely implies 𝔼(𝜉𝑗ℎ|𝐶ℎ) ≠ 0. As Timmins and Murdock 

(2007) point out, naïve OLS of (4) tends to bias estimates of 𝛼 upwards, because of unobserved 

area-level factors giving rise to correlated choices. Examples of such unobserved areawide 

correlation in the present context include (i) unobserved agronomic characteristics of different 

varieties that make them more or less suited for a given area, (ii) unobserved expected profit and 

utility effects of other inputs (e.g. fertilizer, pesticides, or labor) that are altered by adoption of 

Bt-versus-alternative maize varieties (Afidchao et al. 2013), and (iii) local ecological conditions 

favoring pests that may increase relative demand for pesticidal varieties. 

To specifically account for endogenous sorting in the econometric analysis, Bayer and 

Timmins (2007) propose an IV for the market shares 𝜎𝑗ℎ. In their originally intended application 

to urban economics, 𝑗 indexes geographic location (rather than seed variety) and ℎ indexes 

market. In the context of geographic sorting models, they propose as an IV a function 𝑓(𝑋𝑗 , 𝑋−𝑗) 

of “the attributes [𝑋𝑗ℎ ≔ (𝑥𝑗𝑖ℎ)
𝑖=1,…,𝑛ℎ

] of location 𝑗 and the exogenous attributes [𝑋−𝑗 ≔

(𝑥−𝑗𝑖ℎ)
𝑖=1,…,𝑛ℎ

] of other locations [−𝑗]” (pp. 361, emphasis added). In practice, this function is 

the conditional logit predicted probability,  𝑓(𝑋𝑗ℎ, 𝑋−𝑗ℎ) ≔ 𝑛ℎ
−1 ∑

exp 𝜷′𝒙𝑗𝑖ℎ

∑ exp 𝜷′𝒙𝑘𝑖ℎ𝑘∈ℎ
𝑖∈ℎ . Bayer and 

Timmins demonstrate the validity and performance of this estimator using Monte Carlo analysis, 
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and a number of subsequent studies have applied this method to domains ranging from 

congestion in fishing sites (Timmins and Murdock 2007; Hicks et al. 2012), nonmarginal 

valuation of climate amenities (Timmins 2007), to urban crime (Bernasco et al. 2017).  

Bayer and Timmins (2007, p. 365) explain that identification using their instrument is 

provided by exogenous variation in “effective choice sets” – that is, not only variation between 

areas in the available alternatives (seed varieties in our application), but also exogenous variation 

in the relative utility those alternatives convey. In our application this means that exogenous, 

between-area differences in the utility conveyed by seed varieties can generate variation in the 

effective choice set. For example, more remote farmers might find it more costly to access 

agricultural inputs such a pesticides and thus find the built-in pest control services of Bt seed 

varieties relatively more attractive. In this example, we would then expect relatively greater 

exogenous utility from the Bt trait in areas characterized by relatively remote farms. Interacting 

an indicator for farm remoteness with the variety-specific Bt trait would allow for such 

observable preference heterogeneity to generate effective choice set variation. Similar conceptual 

examples could be constructed to illustrate how observable heterogeneity in preferences for the 

herbicide tolerance (HT) trait (e.g. via farm terrain) could also generate effective choice set 

variation.  

To implement this identification strategy, we include an array of exogenous farm(er) 

characteristics interacted with variety-specific dummy variables in the discrete choice RUM 

(since discrete-choice RUMS require such characteristics to interact with alternative-specific 

variables). Our IV for areawide Bt deployment therefore takes the following form in our 

application: 



13 

 

𝐶ℎ
𝐼𝑉 ≔ ∑

𝐵𝑡𝑗

𝑛ℎ
∑

exp{�̂�𝑥𝑗𝑖ℎ − 𝜂𝑝𝑗ℎ}

∑ exp{�̂�𝑥𝑘𝑖ℎ − 𝜂𝑝𝑘ℎ}𝑘∈ℎ𝑖∈ℎ
𝑗∈ℎ

 (6) 

where 𝜂 is an initial guess of the price coefficient obtained by regressing �̂�𝑗ℎ on 𝑝𝑗ℎ without 

areawide feedbacks (Timmins and Murdock 2007; Hicks et al. 2012; Bernasco et al. 2017).         

One potential limitation of the above methodology is the conditional logit model’s 

assumption of the ‘independence of irrelevant alternatives’ (IIA) (McFadden 1978), which would 

imply that introduction of the stacked HT-Bt variety would draw farmer demand in equal 

proportions away from the other available varieties (the single-trait Bt and non-GM hybrid 

maize). Although our inclusion of area-level fixed effects in (3) relaxes the IIA assumption at the 

area level, as a robustness check we also estimate a mixed logit model with area-level fixed 

effects (see Supplementary Material). We do not reject the more parsimonious conditional logit 

model.  

As an additional investigation of bioeconomic feedbacks, we investigate whether results 

from our RUM are consistent with other indicators of areawide pest suppression. Areawide pest 

suppression from Bt implies that higher areawide deployment of Bt decreases expected pest 

pressure. While lacking pest monitoring and entomological data, our surveys elicited a binary 

indicator 𝑏𝑖ℎ of whether farmer 𝑖 in village-year ℎ expects ACB infestation. To test for areawide 

ACB suppression, we therefore estimate the following probit regression: 

𝔼[𝑏𝑖ℎ|𝐶ℎ , 𝑐𝑖ℎ, 𝑋𝑖ℎ] = Φ(𝛽0 + 𝛽𝐶𝐶ℎ + 𝛽𝑐𝑐𝑖ℎ + 𝜷𝑋
′ 𝑿𝑖ℎ) (7) 

where 𝑐𝑖ℎ is an indicator of whether farmer 𝑖 plants a Bt variety (single trait or stacked), 𝑿𝑖ℎ is a 

vector of control variables, Φ(⋅) is the standard normal CDF and the 𝛽’s are regression 

coefficients to be estimated. To allow 𝑐𝑖ℎ to be endogenous, we estimate (7) using a full-

information ML (FIML) bivariate probit regression (see Supplementary Material for details).  
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3 Study context and data 

We apply the above econometric framework using data from surveys of Filipino maize 

growers. Maize is the second most important crop in the Philippines after rice, with 

approximately one-third of Filipino farmers (~1.8 million) depending on maize as their major 

source of livelihood. Yellow maize, which accounts for about 60% of total maize production 

(white maize accounts for the rest), is the type considered in this study. Maize growing in the 

Philippines is typically rain-fed in lowland, upland, and rolling-to-hilly agro-ecological zones of 

the country. There are two cropping seasons per year: wet season cropping (usually from 

March/April to August) and dry season cropping (from November to February). Most maize 

farmers in the Philippines are small, semi-subsistence farmers with an average farm size ranging 

from less than a hectare to about 4 hectares (Mendoza and Rosegrant 1995; Gerpacio et al. 

2004).  

The most destructive pest in the major maize producing regions of the Philippines is ACB 

(Morallo-Rejesus, Belen G. Punzalan 2002; Gerpacio et al. 2004; Afidchao et al. 2013). Like its 

European relative, ACB larvae damage all parts of the maize plant in feeding, before 

metamorphosing into moths, which can disperse widely (Nafus and Schreiner 1991; Shirai 

1998). Historically, ACB infestation has occurred yearly, with pest pressure being roughly 

constant or increasing over time. Farmers report that yield losses from this pest range from 20% 

to 80%. According to Gerpacio et al. (2004), although ACB is a major pest in the country, 

insecticide application has been moderate compared to other countries in Asia. Insecticide 

application for control of ACB is difficult to effectively implement, often not economical, can 

interfere with beneficial parasitoids, and can have adverse health and environmental effects 
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(Nafus and Schreiner 1991; PestNet 2017). In the Philippines, insecticide applications for ACB 

have been uncommon (Nafus and Schreiner 1991; Yorobe and Quicoy 2006).  

Given ACB’s dominance as the major insect pest for maize in the country, the 

agricultural sector was naturally interested in Bt maize varieties as a means of control. As with 

ECB, Bt maize is highly effective at suppressing ACB larvae (Afidchao et al. 2013).5 In 

December 2002, after extensive field trials, the Philippine Department of Agriculture (DA) 

provided regulations for the commercial use of GM crops, including Bt maize (specifically 

Monsanto’s YieldgardTM 818 and 838). In the first year of its commercial availability, 2002, Bt 

maize was grown in only 1% of the total area planted with maize – on about 230,000 hectares. In 

2008, about 12.8% of maize planted was Bt, and in 2009 this increased to 19%, or about 500,000 

hectares. Apart from Monsanto, Pioneer Hi-Bred (since 2003) and Syngenta (since 2005) sell Bt 

maize seeds in the Philippines.  

The data used in this study come from the International Food Policy Research Institute 

(IFPRI) maize surveys for crop years 2007/2008 and 2010/2011 in the Philippines. The data 

represent a panel where 278 of the farmers in the 2007 cycle were retained into 2010. Data 

collected in the survey included information on maize farming systems and environment, inputs 

and outputs, costs and revenues, marketing environment, and other factors related to Bt maize 

cultivation were collected (i.e., subjective perceptions about the technology). Actual data 

collection was implemented through face-to-face interviews using pre-tested questionnaires.  

The survey was confined to the provinces of Isabela and South Cotabato, both major 

maize-producing provinces with a high, sustained level of Bt crop deployment. The non-Bt 

farmers in our data are strictly hybrid maize users, and there were no observations in the data of 

farmers using traditional, open-pollinated varieties. This uniformity in the non-Bt group allows 
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for a useful baseline to compare the performance difference between Bt maize relative to a more 

homogenous population of non-Bt farmers (i.e. hybrid maize users only). Seventeen top maize-

producing villages (‘barangays’) were selected for surveying from these two provinces. Survey 

sampling proceeded by obtaining lists of farms from each village, and randomly selecting a fixed 

proportion of farms for surveying.  

A total of 468 farmers were interviewed in the 2007/2008 round and 278 of those farmers 

were also interviewed in the 2010/2011 round of data collection. After dropping farmers with 

missing and inconsistent information, a total of 683 total observations across both survey years. 

For the purposes of this analysis, we furthermore exclude villages with fewer than eight growers, 

due to the difficulties of estimating the 𝛿𝑗ℎ’s in (5) with such small area-level sample sizes.  In 

retained villages, we also restrict econometric analysis presented here to the balanced panel of 

261 growers present in both the 2007 and 2011 surveys. We focus on the balanced panel because 

of additional information that was collected in the 2011 survey and which we use in the analysis 

here, such as the distance of the farm to the nearest road.6 

Table 1 summarizes the adoption shares for the different seed types by village 

(corresponding to the 𝜎𝑗ℎ in section 2.2). From this we can quickly see a number of patterns. 

First, there is significant heterogeneity in GM crop adoption between villages and years. Second, 

between 2007 and 2011 there was a significant shift to GM varieties, specifically to the stacked 

trait variety. In particular 100% of the sampled farmers in five of the 11 villages in 2011 chose 

the stacked-trait variety; this evidently high demand both poses complications and offers some 

identifying variation for our proposed econometric approach.  

To estimate the choice models used in this study, we require subsets of variables that 

differ over area, individual and variety. Identification requirements for these variables are that 
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they should be exogenous to both individual choices and area-level adoption of GM varieties. 

Table 2 summarizes the grower-level variables used in this analysis. At the individual level, we 

include individual growers’ distances to the nearest seed supply source and nearest road in the 

first-stage estimation, following Sanglestsawai et al.’s (2014) study of the yield effects of Bt 

adoption in the Philippines using the 2007 survey data. We also include a measure of farmer 

experience – the number of years farming maize (as of 2007) – and basic indicators of the farm 

terrain.  

While we do not observe pest densities, we do use in this analysis survey data on farmer 

expectations about the future ACB infestations. Table 2 also shows the mean and standard 

deviations for responses to the survey question:  

In using this variety [of seed selected by the farmer], do you expect corn borer 

infestation? (Yes/No) 

We employ responses to this question as the pest infestation indicator in regression equation (7). 

As noted above, this indicator is clearly endogenous with seed choice. Table 2 shows that 

perceived pest infestation risk exhibits proportionally greater between-village than within-village 

variation, more than any of the other variable in this table. This suggests a high within-village 

correlation of this variable and an important areawide component to perceived pest infestation 

risks.   

Lastly, to obtain variety-specific prices which vary over villages and years for the RUM 

in (3) and (4), we follow Ciliberto et al. (2019) in their discrete choice model of seed choice and 

compute the average price for each maize variety in the dataset for each area. Like in Ciliberto et 

al. farm-level seed prices are only observed for purchased varieties, and so we regress the 
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survey-elicited price 𝜑𝑖𝑣𝑡 that farmer 𝑖 paid for their seed in village 𝑣, year 𝑡 on village fixed 

effects interacted with the seed type planted by the farmer and a year dummy.  

𝜑𝑖𝑣𝑡 = ∑(𝜃𝑗𝑣 + 𝜃𝑗𝑡)𝑐𝑖𝑗𝑡

𝑗

+ 𝜐𝑖𝑣𝑡 (8) 

where 𝑐𝑖𝑗𝑡 indicates which variety 𝑗 farm 𝑖 purchased in year 𝑡, the 𝜃’s are regression coefficients 

to be estimated and 𝜐𝑖𝑣𝑡 is the residual. After estimating (8) via OLS, we use predictions from 

this regression to obtain area-level prices, where an “area” is defined here and throughout as a 

year-village combination ℎ = (𝑣, 𝑡), so that 𝑝𝑗ℎ = 𝜃𝑗𝑣 + 𝜃𝑗𝑡.
7 Table 3 summarizes these 

computed variety-specific prices. The price premium for Bt single-trait in 2007 is 62% that of the 

mean conventional hybrid price, declining to 41% in 2011. The premium for the stacked variety 

is 65% of the mean hybrid seed price in 2011. The price of the hybrid variety increased by an 

average of 48% between 2007 and 2011. These relative premiums for single-trait Bt and stacked 

trait varieties are roughly in line with those reported by Ciliberto et al. (2019, Table 3) for the 

U.S. corn seed market. The price premium differential is largely expected, e.g. given the large 

regulatory costs involved in getting varieties with genetically-modified traits approved by 

country governments (Smart, Blum and Wesseler 2017). Given that the costs of Bt seed were 

estimated at that time to amount to around a fifth of Philippine maize growers’ input costs 

(Afidchao et al. 2013), these premiums can be expected to comprise an important consideration 

in their seed choices. 

 

4 Econometric estimation and specification 

The most significant complication to implementing our econometric approach with these 

data is the presence of some 0% and 100% village-level adoption shares for 2011, which causes 

estimated �̂�𝑗ℎ’s in these cases to converge to negative or positive infinity. To deal with this issue, 
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in addition to an IV quantile regression (IVQR) used by Timmins and Murdock (2007) for this 

same purpose, we estimate an IV Tobit in the second stage regression. Whereas the IVQR treats 

the 0% or 100% village-level adoption as outlier observations, the IV Tobit more appropriately 

treats them as censored observations. The censoring in this application results from being unable 

to observe finite �̂�𝑗ℎ’s in cases where the finite survey sample produces no variation in choices 

within these areas. The details of how we implement this approach and evaluate its validity are 

described in the Supplementary Material.    

Another econometric issue for estimating the RUM specified in (3) and (4) is the 

potential for seed price endogeneity (Ciliberto et al. 2019). For example, within-area market 

power might permit seed producers to increase prices to capture rent, in a way that varies 

systematically across local geographies or between years (e.g. due to the 2007/2008 world food 

price crisis, as a reviewer noted). This concern is somewhat alleviated because the logic of 

RUMs implies only between-variety differences (𝑝𝑗ℎ − 𝑝𝑘ℎ) in seed prices affect choices in 

these models. Any endogenous markups to price would have to differ by variety and by area to 

contaminate our model with price endogeneity. For example, if an omitted factor was driving 

endogenous variation in GM seed prices but this variation was constant across varieties, then it 

would have no effect on the identification of a discrete choice RUM. Alternatively, if there was 

endogenous variation in GM seed price premiums that was constant across areas, it would be 

picked up by the variety-specific constants (𝛿�̅� in eq. 4), which we make no attempt to 

economically interpret in this manuscript (e.g. for an overall economic valuation of GM maize, 

which is a central aim of Ciliberto et al.’s analysis). Nevertheless, heterogeneous GM-specific 

premiums remain possible. Ciliberto et al. (2019) address price endogeneity in the U.S. seed 

market by instrumenting with the total number of competing products in local markets. We 
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cannot execute this method in our data, because in any given year the number of competing 

products is constant across villages.   

We therefore adopt a two-part approach to address the potential for price endogeneity 

vis-à-vis our primary empirical aims. We use our knowledge of the Philippine maize seed market 

and a statistical check for systematic variation in prices. As noted in Section 3 above, the seed 

brands available in the villages in our data did not change over the course of the dataset. And as 

noted above, single trait Bt was uniformly available in the sampled villages in 2007, and both the 

single trait and stacked varieties were uniformly available in 2011. This uniformity means that 

we would not expect market power to be differentially exercised heterogeneously across villages, 

which would therefore not empirically generate price endogeneity.  

We also consider potential market power at the seed retailer level: On this point, our 

understanding is that there were no significant institutional barriers to entry for sellers in the 

area-level retail markets in the Philippines. However, one possibility is that the size of the area-

level seed markets limited entry and affected market power (Campbell and Hopenhayn 2005; 

Melitz and Ottaviano 2008). To investigate this, we examine whether there is a relationship 

between 𝑝𝑗ℎ and measures of area-level market size (elicited in our survey). The Supplementary 

Material provides details on this test, which cannot statistically reject the null hypothesis of no 

such relationship.  

 

5 Results 

Table 4 shows the first-stage conditional logit models, with and without area-level fixed 

effects. For our purposes the important takeaway from this table is that the set of farm-level 

covariates, taken as a whole, have statistically significant explanatory power over seed choice (as 

seen in the significant Wald 𝜒2 statistics in the table). In the baseline conditional logit 
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regressions without area-level fixed effects (first two columns of table 4), a farm’s distance to the 

nearest seed source and indicators of farm terrain appear to have the most explanatory power for 

use of the GM seed varieties. As in Sanglestsawai et al. (2014), distance to nearest seed source 

appears in these columns to have a counterintuitive effect on use of the single-trait Bt variety, 

with farms farther from their nearest seed supplier evidently more likely to purchase the single-

trait Bt seed. However, the counterintuitive effect of seed supplier distance on single-trait Bt use 

becomes insignificant when area-level fixed effects are included (second and fourth columns of 

table 4).  

The farm’s distance to the nearest road also appears to significantly explain demand for 

the single-trait Bt variety (Table 4). The positive sign of the estimated coefficient, in all 

specifications, implies more remote farms (i.e. those less connected to transportation networks) 

are more likely to use the single-trait Bt variety (as well as the stacked trait variety, though none 

of these coefficients are statistically significant). This patterns appears even stronger when area-

level fixed effects are included in the regression (in terms of statistical significance; recall that 

the coefficient magnitudes in RUMs cannot be directly compared between specifications). 

Multiple explanations could accommodate this result: More remote farms may find it more 

costly to access local labor markets, and be using the Bt and herbicide-tolerant varieties to reduce 

hired labor inputs in pre-harvest pest control (e.g., detasselling) and weeding activities (Felkl 

1988a and 1988b; Gouse et al. 2016; Connor 2017). Areawide pest suppression may also play a 

role: More remote farms may also enjoy fewer benefits of areawide pest suppression from 

neighbors’ use of Bt seed, thereby increasing remote farms’ own incentive to use these varieties, 

ceteris paribus. Alternatively, more remote farmers may find it more costly to access and 

reactively apply topical insecticides upon pest outbreaks, and thus find the Bt trait relatively 
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more desirable as a means of ACB control. This latter hypothesis could also explain why 

distance to roads has a smaller and insignificant effect on utility from the stacked variety, since 

access to herbicides is important to benefit from the HT trait in this variety.    

The dummy variable indicators for terrain, despite their coarseness, show explanatory 

power and mostly intuitive relationships with seed choices in table 4. Farms with “rolling 

terrain” generally appear more likely to use the GM varieties over the hybrid. This could be 

explained by ecological conditions on such terrain that favor ACB and weeds. Afidchao et al. 

(2013) find that ACB damage on maize in the Philippines is positively correlated with distance 

away from rivers and floodplains. “Hilly/mountainous” terrain, meanwhile, can limit potential 

yield and increase farming costs, limiting incentives for farmers to invest in the extra price 

premia for more productive varieties.  

The seed price coefficient in the base conditional logit model is of the expected sign, 

though only significant at the 10% level. Seed price is omitted from the fixed effects conditional 

logit model, because as an area-level variable it is contained within the estimated area-level fixed 

effects (eq. 4), and thus is included in the second stage regressions (table 5). The seed price 

coefficient is always negative and significant in these regressions (in all but one model, at <1% 

levels).  

The second-stage regression estimates in table 5 exhibit intuitive patterns and appear to 

confirm our bioeconomic prediction. Across all of the specifications in table 5, we find a 

statistically significant negative feedback effect of areawide Bt deployment on utility from these 

varieties in the IV regressions (columns 3 and 8). Moreover, comparing the naïve OLS model 

(column 1) with the IV models (columns 3-5), we see as expected that ignoring endogeneity of 

the feedback results in a smaller magnitude (though still negative) feedback effect. (The 
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magnitudes of the coefficients are comparable across columns, since the same fixed effects from 

the first-stage logit are used as dependent variables throughout table 5.) Our preferred 

specification, the IV Tobit in column 5 that allows for endogeneity and censoring of the fixed 

effects, appears to be conservative both in the estimated relative magnitude (discussed below) 

and statistical precision of the feedback effect, compared to the IV and IVQR models.  In terms 

of IV performance, we confirm the Bayer and Timmins instrument appears to have sufficient 

power, with an F-statistic = 11 yielded by a linear regression of observed area-level Bt shares on 

the IV. Without additional structural assumptions, statistical tests of exogeneity of the instrument 

are not possible, since this IV system is not over-identified.  

The estimated coefficients in table 5 are marginal utilities and preclude direct economic 

interpretation of magnitudes (although they are comparable across the columns). Two relevant 

economic quantities can be computed from the estimated coefficients. The first is the ratio 

between the areawide feedback coefficient and the price coefficient, which can be interpreted as 

the equivalent variation in utility between a marginal change in seed price or a marginal change 

in areawide Bt deployment. In terms of reduced utility to farmers, this calculation implies a 1% 

increase in areawide Bt deployment is equivalent to an approximately 1.7% increase in seed 

prices in the IV and IV Tobit models (t-statistics of 1.74 and 1.42 respectively), and in the IVQR 

model to a 2.82% increase in prices (t-statistic = 1.81). This contrasts with a much lower 

equivalent variation estimate of 0.88% estimate implied by the naïve OLS model.   

A second quantity of economic interest, as discussed in section 2.1, are price-elasticities 

of demand for the Bt varieties. Similarly to our theoretical analysis in eq. (2), we apply the 

Implicit Function Theorem to the estimated conditional logit model with endogenous sorting; the 

Supplementary Material provides details. We compute average price elasticities of demand for 
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the Bt varieties across areas (table S3 in the Supplementary Material). In the fixed effects 

conditional logit model ignoring areawide feedbacks, we estimate that that a 1% price increase 

results in a 1.77% decrease in demand for the Bt varieties (i.e. price-elastic demand). When we 

account for the estimated areawide feedback (using our preferred IV Tobit model), we estimate 

that a 1% price increase results in a 0.58% decrease in demand (i.e. price-inelastic demand). 

Turning to the question of whether the above evidence for endogenous sorting is arising 

due to a bioeconomic feedback from areawide pest suppression, table 6 shows results of the 

FIML model described at the end of section 2.2 and in the Supplementary Material. We find 

results highly consistent with our bioeconomic hypothesis. Greater areawide Bt deployment is 

strongly associated with a significantly reduced perceived likelihood of infestation. Table 6 

reports marginal effects. For example, using our preferred specification in the last column of 

table 6, a 10% increase in areawide Bt deployment is estimated to be associated with a minimum 

10.8% reduction in the likelihood that the farmer indicates expecting ACB infestation. This 

marginal effect is highly robust across specifications controlling for endogeneity and village-

level fixed effects.  

 

6 Conclusions  

Bioeconomic feedbacks associated with pest control have important implications for 

agroecological systems. In addition to negative environmental externalities associated with 

chemical pesticides and the open-access resource issues associated with pesticide resistance, we 

draw attention here to the positive externalities associated with areawide pest suppression 

spillovers. While previous entomological research has shown these spillovers to be biologically 

significant, our econometric analysis is the first to empirically show the potential economic 

significance of these spillovers, in terms of affecting farmers’ demand for pest control 
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technologies. In the presence of pest suppression spillovers from Bt crops, farmers who choose 

not to plant such crops initially are more likely to continue doing so, as they enjoy the spillover 

benefits of neighboring farms’ use of Bt crops. Indeed, prior media reports in the U.S. have 

suggested that “farmers are getting savvier about gene shopping” (WSJ 2016), for example 

avoiding paying the extra technology fee associated with Bt traits in maize targeting the Western 

corn rootworm, due to generally low perceived risks from that pest in the U.S. in recent years. 

Beyond Bt crops, our endogenous sorting approach could be adapted for empirically 

analyzing other possible bioeconomic feedbacks in the control of pests, other bioinvasions and 

transmissible diseases. As reviewed at the outset of this paper, previous applications of the 

instrumental variables strategy introduced by Bayer and Timmins (2007) have ranged over a 

variety of topics and data structures. Ours is arguably the first paper to show how this approach 

can be used to identify explicitly bioeconomic feedbacks. These methods could prove equally 

flexible for such applications, which could include study of spillovers from vaccination choice 

(Oster 2016), culling to prevent the spread of animal diseases (Gramig and Wolf 2007), or 

economic responses to invasive species (Jones 2016).  

The econometric approach and application this paper develops is not without limitations. 

Discussing these limitations and their implications in detail is instructive for understanding 

common empirical issues that arise in studying bioeconomic feedbacks, and for identifying 

future research avenues. First, while we highlight the importance of landscape-level bioeconomic 

feedbacks, we lack geolocation data on farms and fields within the villages surveyed. Future 

research using such data could model and estimate heterogeneous spillover effects across the 

landscape, characterize network effects, and corroborate results obtained from alternative 

analytical treatments of pest control spillovers (e.g. using spatial econometrics, Aglasan 2020).  
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Another limitation of our application is the relatively narrow variety of seed products and 

trait combinations in the data, e.g. compared to U.S. maize farming where the number of seed 

products available in any given year and market can exceed a dozen (or a hundred, depending on 

how a ‘seed product’ is defined, Ciliberto et al. 2019). Applications of our framework to contexts 

with greater variety in seed products (and variation in their availability across geographies) 

would permit the study of how bioeconomic feedbacks affect the economic value of a wide 

variety of crop traits. Indeed, Ciliberto et al. (2019) use the same underlying discrete-choice 

framework used in this paper – with a more flexible and expansive model of farmer choice but 

without bioeconomic spillovers or feedbacks – to obtain economic valuations of GM traits in 

maize and soy in the U.S.   

An open research question is how accounting for the type of bioeconomic spillovers we 

identify here, reestimated for the U.S., would affect Ciliberto et al.’s valuations. At a basic level, 

because our analysis empirically shows that farmers to some extent ‘free-ride’ on others’ 

adoption of the Bt trait, and because Ciliberto et al.’s valuations are based on estimated farmers’ 

willingness to pay for different traits, one might infer from our findings that Cilberto et al. 

underestimate valuations of Bt traits. An important caveat to this inference, however, is the 

evolution of pest resistance to Bt in the U.S. compared to the Philippines (where Bt resistance 

was relatively low during the period we analyze). With Bt resistance operating analogously to an 

open-access resource (Ambec and Desquilbet 2012; Brown 2018), its interaction with the ‘local 

public good’ of areawide pest suppression from Bt is likely to have complex implications, e.g. 

for economic valuation and policy. For example, Wan et al. (2012), in finding evidence for 

areawide pest suppression of pink bollworm within Bt cotton systems in China, argue these pest 

suppression spillovers may be leveraged to assist Bt resistance management. Alternatively, 
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landscape-level pest pressure of secondary (non-target) pests may increase and encourage further 

pest control expenditures of Bt growers and their neighbors (Kuosmanen, Pemsl and Wesseler 

2006). In terms of agricultural policy, these interactions suggest that a mix of positive and 

negative incentives is likely appropriate to address the multiple externalities generated by these 

complex ecological feedbacks (Lefebvre, Langrell and Gomez-y-Paloma 2015). 

Another important limitation of this paper’s analysis is the inability to disentangle purely 

behavioral or sociological feedbacks (e.g. peer effects or social learning) from the alleged pest 

suppression feedback. There are two concerns here: the validity of our econometric results and 

the suitability of our endogenous sorting approach in future applications to bioeconomic systems. 

While we cannot rule out potential econometric bias in our results from unmeasured peer effects 

and behavioral spillovers, we argue these are likely to have a small impact in our application and 

that any resulting bias is likely to make our conclusions more conservative: Bt crops were 

available for a number of years and widely deployed in the Philippines prior to the study period, 

and information about these crops appears to have been disseminated widely. Likewise, the 

stacked trait variety was deployed between the first and second farmer surveys, and (as shown 

above) achieved rapid adoption by the time of the second survey. Additionally, to the extent that 

such behavioral spillovers are present and positive (with farmers being more likely to mimic 

their neighbors in deploying Bt), they likely bias our negative estimated pest suppression 

feedback towards zero. This means that the magnitude we estimate on this feedback is likely 

conservative.  

In terms of the suitability of an endogenous sorting approach for future bioeconomic 

analyses, separating out the behavioral feedbacks requires a dedicated identification strategy on 

top of the endogenous sorting models we study here. A number of recent papers and works in 
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progress introduce novel strategies using field experiments for identifying peer and network 

effects in technology adoption (Magnan et al. 2015; Beaman et al. 2018), some using the same 

discrete choice, random utility framework used here (Dickinson et al. 2018; Guiteras, Levinsohn 

and Mobarak 2019). Combining such behavioral experiments (or quasi-experiments) with study 

of the underlying ecology can create more empirically grounded models of bioeconomic systems 

(Brown 2018).   

Our analysis could also benefit from the addition of instrumental measurements on pest 

density or physical crop damage, to corroborate the areawide pest suppression implied by our 

analysis of farmer seed choices. This paper addresses the lack of such measurements by citing 

extensive areawide suppression of the European corn borer (a close relative of ACB) with Bt 

maize that has been observed in U.S. (Hutchison et al. 2010), and by showing that Filipino maize 

farmers’ perceived ACB infestation risk appears to significantly decrease in response to greater 

village-level use of Bt. Nevertheless, having direct pest density or damage measurements would 

undoubtedly improve our approach. Whereas the reader could view this paper as a ‘partial 

information’ analysis of endogeneity in farmer demand for Bt maize, the addition of pest density 

observations could be used for a ‘full information,’ simultaneous estimation of farmer seed 

choices and explicitly modeled pest population dynamics. Estimating such a model would 

facilitate empirically based counterfactual or predictive bioeconomic simulations, e.g. of how 

pest populations react to farmer responses to changes in pricing of Bt traits or in the bundling of 

Bt with other seed traits such as herbicide tolerance. The addition of explicit pest density data 

could also be useful for separating out bioeconomic and previously discussed social learning 

spillovers. 
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Tables 

Table 1: Maize variety adoption shares and number of surveyed growers by village 
  2007  2011 

Province Village / Barangay Hybrid Bt N  Hybrid Bt Stacked N 

          

Mindanao Olympog 71% 29% 38  14% 18% 68% 28 

Sinawal 79% 21% 52  65% 27% 8% 26 

Tampakan 73% 27% 70  27% 9% 64% 22 

          

Isabela Andarayan 30% 70% 10  0% 0% 100% 8 

Bugallon 46% 53% 28  0% 17% 83% 18 

San Pablo 50% 50% 20  0% 0% 100% 14 

Villa Luna 26% 74% 35  0% 20% 80% 20 

Cabaseria 5 29% 71% 92  0% 0% 100% 60 

Dappat 45% 55% 33  0% 0% 100% 22 

San Fernando 28% 72% 36  3% 0% 97% 34 

San Manuel 7% 93% 14  0% 0% 100% 12 

          
 TOTAL 207  221  428   28  21  215  264  

  48% 52%   11% 8% 81%  
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Table 2. Grower-level characteristics used in the choice models. 

 

 

Table 3. Variety-specific, area-level seed prices (Philippine pesos, PHP). 

 2007 2011 

Variety Mean Std. Dev. Mean Std. Dev. 

Conventional hybrid 185 32 274 36 

Bt single-trait 300 44 386 48 

Bt/HT stacked-trait n/a n/a 451 42 

Table 3 notes: These data are obtained from an OLS regression of 

seed prices paid by growers on village-level fixed effects interacted 

with variety-specific dummy variables and an independent time trend. 

Prices for stacked trait in 2007 are not applicable (n/a) because this 

variety was not available in that year. 

 

 

 

 

 

 

 

 

  

 
Mean 

Standard 

deviation 

Village-level 

std. dev.1 

Village-level 

variation (%)2 

Years maize farming 22 11 4 36% 

Distance to roads (km) 0.5 1.1 0.3 31% 

Distance to seed source (km) 6.2 10.2 3.5 34% 

 
    

Terrain     

Flat 66% 48% 29% 61% 

Rolling 21% 40% 17% 42% 

Hilly or mountainous 14% 35% 14% 40% 

     

Expect corn borer infestation 45% 50% 38% 76% 

Table 2 notes: 1. Standard deviation in village×year-level means, 2. Defined as the standard 

deviation of area (village×year) means divided by the total standard deviation. 
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Table 4. First-stage random utility model estimates (conditional logit, see equation 5). 

 Conditional logit Fixed-effects conditional logit 

Log(seed price) -1.071* [in fixed effect] 

 (0.564)   

     

Maize variety:  Bt single-trait Stacked Bt single-trait Stacked 
 

    

×Constant 0.233 2.463*** [in fixed effect] [in fixed effect] 

 (0.385) (0.530)   

×Distance to seed source 0.0288*** -0.0490** 0.0149 -0.0714* 

 (0.0105) (0.0217) (0.00967) (0.0409) 

×Rolling terrain 0.865** 2.228*** 0.139 1.245* 

 (0.342) (0.733) (0.320) (0.730) 

×Hilly/mountainous terrain -0.561 -0.360 -1.005*** -0.875 

 (0.344) (0.446) (0.352) (0.640) 

×Distance to nearest road 0.244 0.102 0.362** 0.111 

 (0.165) (0.246) (0.153) (0.242) 

×Years farming maize 0.00197 0.0289 0.00125 0.0149 

 (0.0132) (0.0215) (0.00781) (0.0172) 

     

Area fixed effects# No Yes 

Choice occasions 515 515 

Farmers 261 261 

Deg. Freedom 13 10 

Log-likelihood -313.6 -220.9 

Wald-𝜒2 196.66*** 41.11*** 

Pseudo-R2 0.321 0.0575 

Table 4 notes: Robust standard errors clustered at the grower level and in parentheses. Statistical 

significance: *** p<0.01, ** p<0.05, * p<0.1. # Area-level fixed effects model calculated using 

contraction mapping algorithm (Berry et al. 1995). Area-level coefficients (price and variety-

specific constants) are contained within area-level effects. ‘Within’ pseudo-R2 calculations in 

fixed-effect models calculated relative to a null conditional logit model with only area-level 

fixed effects. 
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Table 5. Second-stage random utility model estimates (see equation 4). 

 OLS  2SLSa  IVQRa,b  IV Tobita,c 

 (1) (2)  (3)  (4)  (5) 

Area Bt fraction 

× Bt variety 

 -7.811**  -17.79**  -19.98***  -24.19* 

 (3.626)  (7.201)  (4.878)  (13.59) 

Log(seed price) -10.30*** -8.829***  -10.44***  -7.098*  -14.06*** 

 (2.972) (2.894)  (3.084)  (4.008)  (4.252) 

Bt single trait 4.265** 9.433***  17.81***  16.26***  24.05** 

 (1.609) (2.870)  (5.778)  (4.206)  (11.31) 

Stacked variety 11.31*** 17.42***  26.38***  29.63***  35.01*** 

 (2.771) (4.273)  (6.604)  (5.498)  (12.27) 

Constant 54.83*** 46.84***  55.62***  39.97*  74.8*** 

 (16.21) (15.75)  (16.84)  (21.84)  (23.22) 

         

Areas 22 22  22  22  22 

Observations 55 55  55  55  55 

(Pseudo-)R2 0.296 0.362  0.22    0.13 

Table 5 notes: Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01. Unless 

otherwise noted, we report jackknife standard errors clustered at the area level and obtained from 

joint estimation of first-stage (fixed effects conditional logit, Table 4) and second-stage 

regressions. a Area Bt fraction instrumented using Bayer and Timmins instrument. b IVQR is an 

instrumental variable quantile regression, using the quantile treatment effects model of 

Chernozhukov and Hansen (2005; 2006). Due to invalidity of jackknifed standard errors for 

quantile regression (Shao and Wu 1989) and complex data structure for bootstrap resampling 

jointly over the discrete choice first stage and area-level second stage, IVQR standard errors are 

obtained from bootstrap resampling only over the second-stage data (ignoring first-stage 

measurement error in 𝛿’s). 
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Table 6. Marginal effects on farmer expecting corn borer infestation (see equation 7).  

 Probit  IV Probit (FIML)a 

 (1) (2) (3)  (4) (5) 

Area-level fraction 

adopting GM 

-0.555*** -0.810*** -1.433***  -1.283*** -1.078*** 

(0.0703) (0.0893) (0.0860)  (0.210) (0.194) 

Own GM adoption 

(binary) 

 0.258*** 0.235***  -0.0359 -0.214 
 (0.0605) (0.0536)  (0.218) (0.131) 

Rolling terrain 0.127*** 0.116** 0.0917*  0.0935* 0.0880* 
 (0.0480) (0.0468) (0.0514)  (0.0521) (0.0495) 

Hilly/mountainous  0.0369 0.0589 0.101*  0.0782 0.0539 
 (0.0529) (0.0524) (0.0589)  (0.0572) (0.0538) 

Years farming  0.00331** 0.00323** 0.00185  0.00185 0.00171 
 (0.00150) (0.00148) (0.00142)  (0.00180) (0.00171) 

Cross-eq. correl.     0.540 0.795* 
     (0.372) (0.208) 

Village fixed effects No No Yes  Yes Yes 

Excluded IVs a     All GM premium 

F-stat 1st stage IVs     18.78*** 17.31*** 

Observations 515 515 515  515 515 

Farms 261 261 261  261 261 

Degrees of freedom 4 5 15  31 29 

Log-likelihood -329.1 -318.3 -270.9  -509.7 -510.7 

Pseudo-R2 0.0704 0.101 0.235    

Table 7 Notes: Robust standard errors clustered at grower level in parentheses, * p < 0.10, ** p < 

0.05, *** p < 0.01. a FIML IV probit estimated as a correlated bivariate probit system between 

farmer’s expected corn borer infestation and own use of GM maize. Instruments include village-

level mean GM seed premium, farm distance to seed source and distance to nearest road.    
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Notes 

1 Certain pest control choices (like use of transgenic Bt crops) not only alter landscape-level pest pressure 

for the primary (e.g., target) pest, but these choices can also alter landscape-level pest pressure for secondary (e.g., 

non-target) pests. For example, one would generally expect that landscape-level pest pressure for the primary pest 

would decrease with Bt corn and then landscape-level pest pressure for the secondary pest (not susceptible to the Bt 

toxin) may increase (Kuosmanen et al. 2006; Catarino et al. 2015). 
2 Throughout this paper, we use the term bioeconomic as an abbreviation for ‘coupled biological and 

economic’ (system). This mirrors the term’s meaning in the context of fisheries (Clark 2010), although we do not 

analyze explicit biological data in this paper (beyond farmers’ expectations about pest infestation) in the way that 

harvest data are used for bioeconomic analyses of fisheries.   
3 However, as one reviewer has noted, areawide pest suppression benefits of Bt corn not only depends on 

the relative share of Bt corn on total corn production area, but also on the share of total corn production relative to 

the total cropland area. In the Philippines in 2018 (and in 2007 when the first survey we analyze was conducted), 

corn was the second most important crop after rice (see section 3) (FAOSTAT 2020). Moreover, between 70%-

100% of crop acres is planted to corn in the lowland and 35%-100% in the uplands (Gerpacio 2004). Our study areas 

also have traditionally agricultural landscapes where the proportion of agricultural land to total area ranges from 

44% to 60% (Philippine Statistics Authority, 2014). Hence, the relative share of corn in the country and the 

proportion of agricultural land to total land area supports the existence of potential area-wide pest suppression and 

indicates that this conceptual model applies to our empirical setting. 
4 Other factors that may influence utility from adoption of Bt seed variety are existing policies regarding 

refuge requirements and coexistence regulations (Skevas, Fevereiro and Wesseler 2010; Groeneveld, Wesseler and 

Berentsen 2013). For the study period in this paper, there was a 20% refuge requirement in place in the Philippines 

(Rodriguez 2014), though there is no reliable information with regards to enforcement and compliance to this 

directive in the study period. In countries where they are present, Bt refuge mandates or recommendations are often 

poorly enforced, particularly in areas with relatively small, heterogeneous farms and larger numbers of farmers 

(Carrière et al. 2020). In addition, note that there are no coexistence policies currently in place in the Philippines 

(nor were there at the time of the study). Thus, these policy-related factors likely do not play a major role in 

affecting utility derived from Bt seed adoption. One reviewer also noted the potential role of option values in 

farmers’ seed decisions, e.g., the “sunk” nature of Bt seed purchases vis-à-vis the value of waiting for information 

about the likely severity of pest infestation in the upcoming season. While we do not address this aspect explicitly in 

our analysis (i.e. we cannot estimate this option value), it does not change the main implications of our conceptual 

model in Section 2 (by including this option value as a discount on the expected relative benefits of adopting Bt 

seed), and can be viewed as being subsumed within our econometric model. See Mbah et al. (2010) for analysis of 

this dimension of the decision problem in bioinvasions.  
5 Other Bt varieties, expressing proteins for controlling rootworms, were not available in the Philippines 

over the time period analyzed, because these are not considered major pests of corn there. The only other common 

non-ACB insect pests of corn in the Philippines are the armyworm and cutworm (Gerpacio et al. 2004; Afidchao et 

al. 2013), which the available Bt varieties do protect against.   
6 We have also replicated the analysis with the unbalanced panel of farmers, excluding the variables only 

collected in 2011. The main results of the paper are robust; results are available on request to the authors.  
7 Note that in a departure from Ciliberto et al. (2019), who simply calculate the market-level variety 

specific averages prices for each variety, we specify village 𝜃𝑗𝑣 and time 𝜃𝑗𝑡 effects as additively separable. This is 

specifically because of the 5 villages in 2011 for which we only observe farmers purchasing the stacked variety 

(Table 1), therefore making estimation of a fully model with village×year fixed effects infeasible. That is, we require 

imputations for the prices for the Bt single trait and hybrid varieties even in village-years where no one was 

observed purchasing these varieties.  
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Mixed Logit Tests of IIA Assumption 

Mixed logit relaxes the IIA assumption by allowing for randomly distributed preference 

parameters 𝜷𝑖~𝜙(𝜷𝑖|�̂�) across decision makers 𝑖, where 𝜙(⋅) is a probability density function 

(pdf), typically assumed as we do here to be multivariate normal, and �̂� is a collection of 

distributional parameters (for a normal pdf, a mean and variance-covariance matrix). The 

econometric approach described above translates completely to the mixed logit case, integrating 

the predicted probabilities 𝑃𝑗𝑖ℎ(𝜷𝑖, 𝛿) in (5) over the pdf for 𝜷𝑖. Thus, the area-level predicted 

shares in the mixed logit model are �̂�𝑗ℎ ≡ 𝑛ℎ
−1 ∑ ∫ 𝑃𝑗𝑖ℎ(𝜷𝑖, �̂�ℎ)𝑖∈ℎ 𝜙(𝜷𝑖|�̂�)𝑑𝜷𝑖, and the logit 

fixed-effects contraction mapping still holds (Berry, Levinsohn and Pakes 2004). Because mixed 
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logit contains conditional logit as a restricted case, we test whether we can reject the conditional 

logit restrictions using a likelihood ratio (LR) test. The mixed logit model also makes some use 

of the panel nature of our data: Farmer 𝑖’s choices are observed in two separate years, 2007 and 

2011, which are treated as distinct areas (ℎ) in this model, and in the mixed logit model each 

farmer’s preference parameters 𝜷𝑖 are fixed across choice occasions.  

Modifying our empirical specification in eq. (3), we also perform specification tests of 

random (mixed logit) versus fixed parameters (conditional logit) in the first-stage RUM. Our 

general specification allows for a farm-level random utility effect Δ𝑗𝑖 associated with each 

variety 𝑗:1 

𝑈𝑗𝑖ℎ = 𝛿𝑗ℎ + 𝜷′𝒙𝑗𝑖 + Δ𝑗𝑖 + 𝜖𝑗𝑖ℎ (S1) 

with the assumption that (Δ𝐵𝑡,𝑖, Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖) are jointly i.i.d. 𝒩(𝟎, 𝚺) and the standard RUM 

restriction that reference alternative 𝐻’s random effect is zero (Δ𝐻,𝑖 = 0) to ensure identification 

(Train 2009). In this model, the covariance matrix 𝚺 of the random effects is to be estimated in 

addition to the coefficients in (S1). This model relaxes the IIA assumption by allowing for 

nonzero off-diagonal elements of 𝚺. Further analysis in last two columns  of table S2 shows that 

imposing the restriction that corr(Δ𝐵𝑡,𝑖 , Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖) = 1 does not result in the loss of any 

statistically significant explanatory power (LR test p-value = 0.33). Therefore, our preferred 

mixed logit specification for first-stage seed choice RUM (last two columns of table S2) assumes 

a common random effect from either of the GM varieties, with Δ𝐺𝑀,𝑖 ≔ Δ𝐵𝑡,𝑖 = Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖, 

reducing 𝚺 to a single component, 𝑠𝐺𝑀. 

                                                 
1 Note that the two-year panel rules out fixed effect estimation of Δ𝑗𝑖 in a conditional logit model: For any 

farmer who planted the same variety 𝑗 in both years, fixed effects estimation yields Δ𝑗𝑖 = ∞ (or Δ𝑘𝑖 = −∞ ∀𝑘 ≠ 𝑗), 

to ensure that farmer’s predicted probability of selecting that variety equaled one, i.e. the observed share of choice 

occasions they purchased that variety.  
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Results from the mixed logit estimation suggest that inclusion of area-level fixed effect 

estimation appears to obviate the need for relaxing IIA using the farm-level mixed logit model. 

While mixed logit model without area-level fixed effects (second column, table S2) yields a 

statistically significant estimate of 𝑠𝐺𝑀, suggesting the importance of unobserved preference 

heterogeneity, this additional explanatory power dissipates when area-level fixed effects are 

included (last column, table S3). An LR test between the mixed and conditional logit models 

with area-level fixed effects (column 3 of table S2 v. the fixed effects conditional logit model in 

table 4 of the paper) yields a p-value of 0.24, compared to a p-value of 2.7×10-5 from the same 

test of mixed v. conditional logit without area-level fixed effects. These results suggest that 

accounting for unobserved farm-level heterogeneity in seed preference in these data is less 

important than accounting for area-level heterogeneity. 
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Table S1. First-stage seed choice, mixed logit specification tests 

 (1) (2) (3) 

Log(seed price) -1.214 -1.910** [in fixed effect] 

 (0.850) (0.837)  

Bt single-trait ×    
 

   

Constant 0.488 0.791 [in fixed effect] 

 (0.557) (0.603)  

Distance to seed source 0.0321* 0.0352* 0.0159 

 (0.0169) (0.0186) (0.0136) 

Rolling terrain 0.730* 0.875* 0.158 

 (0.418) (0.469) (0.367) 

Hilly/mountainous terrain -0.627 -0.650 -1.056*** 

 (0.440) (0.493) (0.390) 

Distance to nearest road 0.261* 0.290 0.377*** 

 (0.155) (0.177) (0.139) 

Years farming maize 0.00447 0.00331 0.00186 

 (0.0156) (0.0182) (0.00849) 

Stacked variety ×   0.0159 
 

   

Constant 3.189*** 3.404*** [in fixed effect] 
 (0.740) (0.765)  

Distance to seed source -0.0576 -0.0426 -0.0707* 
 (0.0376) (0.0291) (0.0379) 

Rolling terrain 2.482*** 2.312*** 1.345 

 (0.923) (0.774) (0.936) 

Hilly/mountainous terrain -0.0355 -0.120 -0.869 

 (0.596) (0.523) (0.608) 

Distance to nearest road 0.0256 0.0664 0.122 

 (0.232) (0.203) (0.206) 

Years farming maize 0.0398 0.0339 0.0171 

 (0.0262) (0.0225) (0.0167) 

Random parameters1    

𝑠GM  1.767*** 0.658 

  (0.357) (0.442) 

𝑠Bt 1.260***   

 (0.454)   

𝑠Stacked 2.182***   

 (0.650)   

𝑠Bt,Stacked 2.750***   

 (1.040)   

Area fixed effects2 No No Yes 

Choice occasions 515 515 515 

Farmers 261 261 261 

Deg. Freedom 16 14 11 

Log-likelihood -303.7 -304.8 -220.2 

Pseudo-R2 0.343 0.341 0.0596 
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Table S2 notes: Robust standard errors clustered at the grower level and in parentheses. 

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 1 𝑠Bt, 𝑠𝑆𝑡𝑎𝑐𝑘𝑒𝑑, 𝑠Bt,Stacked are the 

estimated standard deviations and covariance (𝑠Bt,Stacked) from a mixed logit model allowing for 

separate random components for the Bt-only and Stacked varieties; 𝑠GMis the estimated standard 

deviation in a mixed logit model for a single random component associated with both the GM 

seed varieties: single trait B or stacked trait.  2Area-level fixed effects model calculated using 

contraction mapping algorithm (Berry et al. 1995). Area-level coefficients (price and variety-

specific constants) are contained within area-level effects. Pseudo-R2 calculations in fixed-effect 

model calculated relative to a null conditional logit model with only area-level fixed effects. 
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Econometric specification to test for areawide pest suppression 

For convenience we reproduce eq. (7) from the published manuscript here: 

𝔼[𝑏𝑖ℎ|𝐶ℎ , 𝑐𝑖ℎ, 𝑋𝑖ℎ] = Φ(𝛽0 + 𝛽𝐶𝐶ℎ + 𝛽𝑐𝑐𝑖ℎ + 𝜷𝑋
′ 𝑿𝑖ℎ) (7) 

where 𝑐𝑖ℎ is an indicator of whether farmer 𝑖 plants a Bt variety (single trait or stacked), 𝑿𝑖ℎ is a 

vector of control variables, Φ(⋅) is the standard normal CDF and the 𝛽’s are regression 

coefficients to be estimated. The hypothesis to test is 𝛽𝐶 < 0. We include own-farm Bt adoption 

𝑐𝑖ℎ because its obvious correlation with area-level Bt adoption, 𝐶ℎ = 𝑛ℎ
−1 ∑ 𝑐𝑖ℎ𝑖 , threatens 

omitted variable bias if excluded from (7). However, inclusion of 𝑐𝑖ℎ also poses potential 

endogeneity concerns. For example, environmental conditions might predispose certain lands to 

greater pest infestation, in which case farmers on that land might both expect more infestation 

and exhibit a greater likelihood of using Bt maize. To address endogeneity of 𝑐𝑖ℎ (which like 𝑏𝑖ℎ 

is binary), we therefore estimate a full-information maximum likelihood (FIML) bivariate probit 

regression with 𝑏𝑖ℎ and 𝑐𝑖ℎ as dependent variables. This models captures endogeneity through 

the cross-equation correlation in normally distributed residuals associated with each dependent 

variable (Amemiya 1985). The selection of instruments for 𝑐𝑖ℎ is motivated by the RUM in (3) 

and is described in more detail in subsequent sections. Our expectation in the FIML model is that 

𝛽𝑐 < 0 (own-farm Bt adoption causes a reduction in expected pest infestation). As an additional 

robustness check, we also include village-level fixed effects in (7), in which case identification 

of 𝛽𝐶  rests on within-village variation in 𝐶ℎ between 2007 and 2011.      

For this model we must select excludable instruments predicting use of the Bt varieties 

(𝑐𝑖ℎ in eq. 7), but do not directly predict expected pest infestation (𝑏𝑖ℎ). For this purpose, we use 

a subset of the farmer-level covariates in our seed choice RUM: price premiums for GM varieties 

(computed in this regression as the average premium between the Bt and single trait varieties), as 
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well as the farm’s distance to the nearest road and the nearest seed source. As shown below (e.g. 

the F-statistics in table 6), these factors are statistically significant determinants of seed choice, 

and we argue should satisfy the exclusion assumptions that they not directly affect pest pressure. 

(In contrast, the other seed choice variables in the RUM – the terrain indicators – we consider as 

violating the exclusion restrictions.) We investigate robustness of the FIML probit results with 

respect to subsets of these instruments, finding that the GM seed price premium has nearly the 

same F-statistic with respect to explaining 𝑐𝑖ℎ as compared to all excluded instruments.  

The marginal effect of areawide Bt deployment on expected infestation is also robust 

across specifications, and in fact increases as we account for additional potential sources of bias 

(moving from left to right in table 6), from omitted variables to endogeneity. In the probit 

regressions including own-farm use of Bt, the marginal effect of areawide deployment increases, 

whereas own-farm Bt use exhibits a highly significant positive marginal ‘effect.’ This result 

raises obvious concerns about endogeneity described above. When we control for this 

endogeneity of own-farm Bt use in the FIML models (columns 4-5), using either the full set of 

instruments or only the GM seed price premium, the estimated marginal effect of own-farm Bt 

use changes sign as we would expect, though loses statistical significance. A negative marginal 

effect would be consistent with the own-farm use of Bt varieties reducing perceived ACB 

infestation risk. In contrast, the positive cross-equation correlation of residuals between 

perceived infestation risk and Bt use suggests that farmers who ex ante perceive greater pest 

pressure are also more likely to select Bt varieties, although this correlation is only statistically 

significant in a single specification and only at the 10% level.  
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Estimating the IV Tobit model for the area-level second stage regression.  

We use an IV Tobit to jointly address censoring of the �̂�𝑗ℎ’s and endogeneity of 𝐶ℎ. The logic of 

censoring the 𝛿’s associated with boundary shares is that, because we have finite samples of 

farmers in each area, the smallest and largest area-level interior shares we can observe with a 

sample of size 𝑛ℎ are, respectively, 𝑛ℎ
−1 and (1 − 𝑛ℎ

−1). And because the predicted shares �̂�𝑗ℎ are 

strictly monotonic in the fixed effects, with 𝜕�̂�𝑗ℎ/𝜕𝛿𝑗ℎ > 0 and lim
𝛿𝑗ℎ→∞

�̂�𝑗ℎ = 1 (and lim
𝛿𝑗ℎ→−∞

�̂�𝑗ℎ =

0), then if the true 𝛿𝑗ℎ is large enough (but finite) in magnitude it will yield �̂�𝑗ℎ(𝛿𝑗ℎ) >

(1 − 𝑛ℎ
−1), i.e. the predicted share at the true parameters is greater than can be measured with a 

sample size of 𝑛ℎ. This implies the true 𝛿𝑗ℎ is greater than any estimate a size-𝑛ℎ data sample 

could produce and makes it more likely we observe 𝜎𝑗ℎ = 1, in which case we treat �̂�𝑗ℎ as 

censored from above. Conversely, if 𝛿𝑗ℎ is negative and so large in magnitude that �̂�𝑗ℎ(𝛿𝑗ℎ) <

𝑛ℎ
−1 and we likely observe 𝜎𝑗ℎ = 0, then we treat �̂�𝑗ℎ as censored from below.2   

We implement IV Tobit via limited-information maximum likelihood (LIML), with first-

stage linear projection of 𝐶ℎ onto 𝐶ℎ
𝐼𝑉 inserted into the Tobit regression (Roodman 2011). In 

theory, for maximal efficiency with the Tobit, the upper and lower censoring bounds should vary 

by area-level sample sizes 𝑛ℎ
−1. However, in practice this makes the censoring bounds not only 

variable but also dependent on the first-stage estimates �̂�′𝒙𝑗𝑖 in (5). So we instead manually 

specify the lower and upper bounds for the �̂�𝑗ℎ. Since this uses less information than with 

variable bounds, this estimator is still consistent but less efficient than IV Tobit with the highest 

                                                 
2 In theory, for maximal efficiency with the Tobit, the upper and lower censoring bounds should vary by 

area-level sample sizes 𝑛ℎ
−1. However, in practice this makes the censoring bounds not only variable but also 

dependent on the first-stage estimates �̂�′𝒙𝑗𝑖 in (5). So we instead manually specify the lower and upper bounds for 

the �̂�𝑗ℎ. Since this uses less information than with variable bounds, this estimator is still consistent but less efficient 

than IV Tobit with the highest or lowest known variable bounds. 
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or lowest known variable bounds. As compared to a simple linear IV regression or IVQR, the IV 

Tobit adds these censoring assumptions, and an assumption that the error terms 𝜉𝑗ℎ in (4) are 

normally distributed and homoscedastic. Because of these strict assumptions, we perform a 

conditional moments test on the generalized residual of the Tobit model (Cameron and Trivedi 

2005; Pagan and Vella 1989). Retrieving a p-value = 0.35 from this test, we cannot reject the null 

that the model is correctly specified.3 We also use jackknife standard errors clustered at the area 

level for the second stage estimates, resampling and jointly reestimating both estimation stages. 

Testing for a relationship between area-level seed prices and market size 

The sampling methodology for our survey data provides a convenient measure of market size: 

the number of sampled maize growers in each village-year (Table 1), which by design was 

proportional to the number of maize growers in each village’s records. Table S2 shows OLS 

results regression 𝑝𝑗ℎ on dummies for seed variety 𝑗 and area-level sample size 𝑛ℎ, with 

interactions. These regressions show no systematic relationship between market size, and 

variety-specific prices, either in absolute terms or in terms of the Bt and Stacked trait premiums. 

In the model with full interactions between 𝑛ℎ and variety-specific dummy variables, the F-

statistic testing the joint significance of the 𝑛ℎ regressors has a p-value = 0.516. While this does 

not completely rule out price endogeneity in the discrete choice model, these results – coupled 

with the properties of RUMs and the fact as we see below that the price variable performs as 

                                                 
3 The formula used for the generalized residual 𝜖𝑗ℎ from the left- and right-censored Tobit model can be 

found in the replication materials for this paper (available from the authors upon request). The conditional moments 

test of Pagan and Vella (1989) specifies the null hypothesis 𝔼[𝜖𝑗ℎ𝒛𝑗ℎ] = 𝟎 for any vector 𝒛𝑗ℎ of exogenous variables. 

We set 𝒛ℎ to include all of the exogenous variables used to estimate the second-stage regressions in Table 5, as well 

as squares and exponential of the continuous variables and all interactions. We implement the test using generalized 

method of moments (GMM) with an iteratively computed optimal weighting matrix. Details are in the online 

replication materials.  
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expected in regression results – suggest that price endogeneity if present is at least not 

contaminating the main qualitative results of this paper concerning pest suppression feedbacks.   

 

 

Table S2. Ordinary least squares regression of seed prices on village-level sample size (𝒏𝒗). 

Dependent: Log(seed price) (1) (2) (3) 

Bt 0.362*** 0.362*** 0.205 

 (0.0737) (0.0744) (0.148) 

Stacked 0.633*** 0.632*** 0.427** 

 (0.0903) (0.0912) (0.185) 

Village-level sample size (𝑛𝑣)  -0.000192 -0.00155 

  (0.000775) (0.00120) 

Bt x 𝑛𝑣   0.00210 

   (0.00170) 

Stacked x 𝑛𝑣   0.00279 

   (0.00220) 

Constant 5.438*** 5.453*** 5.554*** 

 (0.0521) (0.0784) (0.104) 

Observations 55 55 55 

Degrees of freedom 3 4 6 

R2 0.510 0.511 0.532 

P-value of F-test on 𝑛𝑣 regressors  0.806 0.516 

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 

 

Estimating the long-run price elasticity of demand with endogenous sorting  

Because the probability of planting either of the Bt crops is one minus the probability of 

planting the hybrid variety, it easiest to derive marginal effects in terms of the predicted 

probability of planting the hybrid variety. Moreover, we consider the effect of a common price 

change to both Bt crop varieties, which in the RUM specified in (3) and (4) is equivalent to an 

opposing change in the price of the hybrid variety 𝑝𝐻ℎ. Combining (3) – (5), and noting that 

𝑏𝐻 = 0 in (4), the predicted probability of adopting the hybrid is: 
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𝑃𝐻𝑖ℎ(𝑝𝐻ℎ, 𝐶ℎ) =
exp{𝜷′𝒙𝑯𝒊 + 𝛿�̅� − 𝜂𝑝𝐻ℎ + 𝜉𝐻ℎ}

∑ exp{𝜷′𝒙𝒌𝒊 + 𝛿�̅� − 𝜂𝑝𝑘ℎ + 𝛼𝑏𝑘𝐶ℎ + 𝜉𝑗ℎ}𝑘∈ℎ

 

Here, we express 𝑃𝐻𝑖ℎ as a function of 𝑝𝐻ℎ and 𝐶ℎ, as these are the focal arguments required to 

derive the net price elasticity.  

In our endogenous sorting model, the area-level average probability of planting Bt crops 

therefore satisfies the following equilibrium equation:  

𝐶ℎ = 𝐹ℎ[𝑝𝐻ℎ, 𝐶ℎ] ≔ 𝑛ℎ
−1 ∑[1 − 𝑃𝐻𝑖ℎ(𝑝𝐻ℎ, 𝐶ℎ)]

𝑖∈ℎ

 

This equation provides an implicit function �̂�ℎ(𝑝𝐻ℎ) for the predicted area-level average Bt 

probability, in terms of the hybrid variety’s price 𝑝𝐻ℎ (though any exogenous factor determining 

seed variety choice could be substituted here for 𝑝𝐻ℎ). The Implicit Function Theorem implies 

the net marginal effect of 𝑝𝐻ℎ is: 

𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
=

𝜕𝐹ℎ
𝜕𝑝𝐻ℎ

(1−
𝜕𝐹ℎ
𝜕𝐶ℎ

)
=

−𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ
𝜕𝑝𝐻ℎ

𝑖∈ℎ

(1+𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ
𝜕𝐶ℎ

𝑖∈ℎ )
  (S1) 

Because 𝑝𝐻ℎ is the logarithm of price throughout the manuscript, (S1) is a semi-elasticity, i.e. the 

net effect of a marginal percentage change in the price of the hybrid variety (or, conversely, an 

opposing common marginal percentage change in the prices of the Bt varieties) on the area-level 

average probability of planting either of the Bt varieties. Dividing (S1) through by 𝐶ℎ gives the 

full elasticity. 

The partial derivatives 
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
 and 

𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
 follow from the standard marginal effects formulas 

for the conditional logit model:  

𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
= −𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝜂 
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𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
= −𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝛼 

When there is no feedback effect, then 𝛼 = 0 and the area-level marginal effect of prices is 

simply the area-level mean of the partial derivatives, 
𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
= −𝑛ℎ

−1 ∑
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
𝑖∈ℎ . As such, the 

divisor (1 + 𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
𝑖∈ℎ ) in (A1) embodies the areawide feedback effect. If 𝛼 < 0 (as 

hypothesized with areawide pest-suppression), then because 𝑃𝐻𝑖ℎ ∈ (0,1) this effect is 

attenuating, with |
𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
| < |

𝜕𝐹ℎ

𝜕𝑝𝐻ℎ
| = |𝑛ℎ

−1 ∑
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
𝑖∈ℎ | when  𝛼 < 0 because: 

𝑛ℎ
−1 ∑ 𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝛼

𝑖∈ℎ

< 0        if  and only if        𝛼 < 0  

We compute marginal price effects for the naïve OLS model in column (1) of table 5, where 𝛼 =

0 and the price coefficient estimate is 𝜂 = −10.30, comparing this to the IV model in column (5) 

with estimates of 𝛼 = −24.19  and 𝜂 = −14.06. (Note that the predicted probabilities 𝑃𝐻𝑖ℎ for 

the marginal effects computation are the same between both the naïve and IV models, as these 

are estimated in the fixed effects conditional logit first-stage, i.e. table 4)   

Table S3 presents the results of this computation. Results imply that a 1% increase in the 

price of all Bt varieties (or equivalently a 1% decrease in the price of the hybrid variety), yields 

on average a long-run 0.58% decrease in the average grower’s demand for these varieties in the 

IV model accounting for areawide feedbacks, compared to an estimated 1.77% decrease in the 

naïve model ignoring this equilibrium feedback. Due to the complex nonlinear formula in 

equation (S1) and the fact that our estimation method does not produce covariance estimates 

between the first- and second-stage coefficients, we do not compute standard errors of the mean 

price elasticities to account for estimation error in the regression coefficients. Instead, given the 

point estimates of the coefficients, we report summary statistics for the estimated price 
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elasticities over the sample of 22 areas in the data. As with other parts of our analysis, we see 

significant heterogeneity in the estimated area-level price responses, with some areas with price 

elasticities in excess of 7% and others with virtually no estimated response to price. The latter 

tend to correspond to areas where the Bt single-trait and stacked varieties are fully deployed.  

 

 

Table S3. Estimated Price Elasticities of Demand. 

 
Model 

Areas 

(villages x years) 
Mean Std. Dev. Min Max 

       

Semi-elasticity OLS 22 -0.89 1.02 -0.77 > -0.0001 

𝑑�̂�𝐵𝑡/𝑑𝑝 IV Tobit 22 -0.29 0.89 -0.21 > -0.0001 

       

Elasticity OLS 22 -1.77 1.75 -9.76 > -0.0001 

(𝑑�̂�𝐵𝑡/𝑑𝑝)/�̂�𝐵𝑡 IV Tobit 22 -0.58 0.54 -7.96 > -0.0001 

Table S3 notes: 𝑑𝑝 refers to the differential with respect to a constant logarithmic change to all 

Bt varieties’ prices, equivalent in the RUM to the opposing differential with respect to the 

logarithm of the hybrid variety’s price. OLS and IV Tobit estimates correspond respectively to 

regression results in columns (1) and (5) of table 5. 
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