Reflections on WOTUS: When is no number (\$B) better than some number?

Camp Resources XXVI, Asheville, NC, August 12, 2019.

Stephen C. Newbold, University of Wyoming, Dept. of Economics, snewbold@uwyo.edu

• CRS (2018):

https://fas.org/sgp/crs/misc/R45424.pdf

- "...the Clean Water Act, redefined 'navigable waters' to include 'the waters of the United States, including the territorial seas.' Disputes over that phrase have been ongoing ever since..."
- [Insert history of expanding and contracting scope of jurisdiction here.]
- "...observers disagree on whether the latest proposed definition correctly calibrates the scope of federal jurisdiction to regulate water pollution."
- In 'econ world:' $\max_{x} [B(x) C(x)]$, where x is point on gradient of connectivity.
- In the real world: disputes about this determination center on legislative intent, judicial review, and agency authority.

	studies/	$\mathrm{emrg}/\mathrm{fstd}$	market	state	total
year	obs	[\$/acre]	extent	resp.	$[\ \$10^6 / { m yr}]$
2015	10/22	.06/.005	blend	0	306
2017	0/0	B^*	NA	NA	B^*
2018	17/38	.03/.05	state	.0228	1.6 - 17

" \ast It should be noted that not all benefit categories are fully quantified. B is a stand-in for the unquantified benefits... "

B = no number

(Foregone benefits for "Step 1" only, 3% discount rate.)

Views from the outside and inside

- Boyle et al. (2017) "...discrepancy between the 2015 and 2017 RIAs from the same government agencies serves as a call to action for an agency-research community partnership..."
- Boyle and Kotchen (2018) "The agency should be calling for more—not less—external advice on economics..."
- Simpson (2018) "...important that economic analysis... be more than just 'policy-based evidence-making,' as I feared was becoming the case..."
- Sullivan et al. (2019) "In relying more upon case law than science, the proposed rule would remove protection for millions of stream miles and acres of wetlands..."

Views from the outside and inside

- Boyle et al. (2017) "...discrepancy between the 2015 and 2017 RIAs from the same government agencies serves as a call to action for an agency-research community partnership..."
- Boyle and Kotchen (2018) "The agency should be calling for more—not less—external advice on economics..."
- Simpson (2018) "...important that economic analysis... be more than just 'policy-based evidence-making,' as I feared was becoming the case..."
- Sullivan et al. (2019) "In relying more upon case law than science, the proposed rule would remove protection for millions of stream miles and acres of wetlands..."
- ⇒ My view: "Call to action" for more external independent RIAs + more research on evidence and prediction for policy. (But how to incentivize such work?)

Challenges for economic analysis posed by WOTUS

- 1. <u>Uncertain baseline</u>: Connectivity, risks, what would states do? USEPA (2018 p 35-46). https://www.eenews.net/stories/1060117957
- 2. <u>Environmental federalism</u>: Local versus centralized regulatory control. Oates and Schwab (1988), Oates (2001), Sigman (2003), Banzhaf and Chupp (2012)
- 3. <u>Standards of evidence for policy</u>: How to judge internal and external validity for applications to policy? (I.e., How good is 'good enough for government work?')
 - a. What is the half-life of non-market valuation studies? USEPA (2017) said 'short,' Boyle et al. (2017) said 'long.'
 - b. What is the half-distance of non-market valuation studies?

No number vs. some number

- Consider an unbiased estimator: $\widehat{MB} = MB + \sigma$ or $MB \sigma$, each with p = 0.5.
- Regulator will choose X such that $\widehat{MB} = MC(X)$.
- If σ is $\langle \rangle$ than σ_{crit} , then use of the estimator will $\downarrow (\uparrow) DWL$.
- A biased low estimator, if its σ is sufficiently small, can decrease *DWL*.
- If σ sufficiently high, then $\widehat{MB} = MC(X_0)$ —i.e., no number—may be optimal.
- Note that σ_{crit} depends on MB and MC curves, not a feature of the estimator. Statistical significance \neq economic significance.

- 1. Screen all available study estimates for internal and external validity.
- 2. Transfer study estimates to policy cases.

But how? Consider two extremes:

- <u>*Plan A:*</u> Transfer only to identical policy cases. May be very precise for covered cases, but many policy cases may be left uncovered.
- <u>*Plan B:*</u> Transfer to all policy cases. May be very imprecise for many cases due to long distance extrapolation, but all policy cases covered.

Proposition:

Along a vector between study case i and policy case j, there is some finite transfer distance beyond which the decrease in precision outweighs the increase in accuracy.

Re-frame "good enough for government work" as a well-defined optimization problem on a case-by-case basis:

 \Rightarrow

"Is this study good enough for government work?" "What is the optimal transfer distance for the available set of study cases given the set of policy cases?"

Illustration in two dimensions

• Study cases

○ Policy cases

- Standard approach is expert judgment. (BT step 1: screen studies...)
- Another possible approach: Merge BT steps 1 and 2 by using cross-validation to estimate optimal transfer distance.
 - Transfer each study estimate to all other study cases.
 - For each cross comparison measure the transfer error, e, and transfer distance in observed attribute space, d.
 - Use the e(d) association to determine optimal transfer distance (which may encompass only a subset of the policy cases) accounting for both precision and accuracy of the estimated total benefits.

- If our predictive models have high error rates, even if they are unbiased, then *no number* can be better than *some number*.
- WOTUS "serves as a call to action..." to
 - 1. "...produce relevant and credible information on benefit and cost measures for environmental policies." (Boyle et al. 2017)
 - 2. Develop a systematic approach for delineating the *no-some* boundary that can: (a) be applied on a case-by-case basis, and (b) help to prioritize new non-market valuation research (me, now).

- Even if they are unbiased, if our predictive models have high error rates then *no number* can be better than *some number*.
- WOTUS "serves as a call to action..." to
 - 1. "...produce relevant and credible information on benefit and cost measures for environmental policies." (Boyle et al. 2017)
 - 2. Develop a systematic approach for delineating the *no-some* boundary that can: (a) be applied on a case-by-case basis, and (b) help to prioritize new non-market valuation research (me, now).
- \Rightarrow These actions should help to make *no number* clearly inferior more often.