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Abstract 

This paper estimates the demand for coastal recreational fishing in the Atlantic and Gulf Coast 

regions of the United States and evaluates the potential welfare implications resulting from 

climate change. Specifically, we use short-run variability in temperature and precipitation to 

estimate the effect of weather on participation in shoreline fishing in coastal waters. We then 

simulate how climate change may impact those choices over time. Parameter estimates are 

combined with predictions from five global climate models under three emissions scenarios to 

estimate welfare changes associated with climate change over multiple time horizons. Overall, 

our results suggest the effects of climate change on shoreline recreational fishing are positive and 

significant in the long run (2080-2099) with simulation results predicting annual gains of up to 
$6.83 per trip, or $304 million in the aggregate. The results are decomposed seasonally and 

regionally to reveal substantial heterogeneity. Welfare gains associated with increasing 

temperatures in the non-summer months outweigh modest losses in the summer months. The 

Gulf Coast region has the potential to realize welfare losses, while the Mid-Atlantic and New 

England are likely to experience welfare gains in all seasons. Of the nearly 45 million annual 

trips predicted by the model, climate change may increase participation by 0.2 to 2.2 percent in 

the aggregate. Given the modest negative demand responses in the Gulf and Southeast regions, 

evidence of adaptation is identified from a model of night fishing. Results suggest that 

recreational anglers may shift their activities to night as daily high temperatures increase rather 

than change their participation decision.  

JEL Codes: Q22, Q26, Q51, Q54, Q57 

Keywords: climate change, recreational demand, adaptation, fishing, nested logit 
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1  Introduction   

Outdoor recreation is a popular use of leisure time for many residents of the United States.  

Recreation opportunities generate substantial economic activity, with annual spending in the U.S. 

reaching nearly $646 billion (OIA 2012). Specific to this research, marine recreational fishing 

produced $24.6 billion in spending and accounted for 72 million user days in 2012 (NMFS 

2012)2. Outdoor recreation activities are highly dependent on natural resources and 

environmental conditions, making this sector of the economy sensitive to potential changes in 

climate that are predicted in both the near and long term. In this article we investigate how 

changes in weather may impact an angler’s decision to participate in coastal shoreline 

recreational fishing. We then use these results to assess the potential welfare implications 

associated with climate change by estimating changes in participation and willingness to pay for 

recreational fishing under simulated climate scenarios.  

Recently, incorporation of large data panels of weather variables into econometric models 

has emerged as an avenue for identifying the potential economic impacts of climate change. 

Exogenous fluctuations in observed weather are utilized as spatially and temporally explicit 

covariates to help explain effects on the outcome of interest. To date, this approach has been 

used to estimate the economic impacts of climate change in areas such as agricultural production 

(Deschênes and Greenstone 2007; Schlenker and Roberts 2009), labor productivity (Graff Zivin 

and Neidel 2014), and electricity demand (Auffhammer and Aroonruengsawat 2011).3 

The short-run relationship between weather, as measured by daily maximum temperature 

                                                 
2 The approximately 11 million saltwater anglers in the U.S. “spent $4.6 billion on fishing trips and $20 billion on 

durable fishing-related equipment. These expenditures contributed $58 billion in sales impacts to the U.S. economy, 

generated $30 billion in value added impacts, and supported over 381,000 jobs” (NMFS 2012, p. 8). 
3 See Dell, Jones, & Olken (2014) for an extensive review of research at the interface of economics and climate.  
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and precipitation, and outdoor recreation decisions can also be used to predict how climate 

change may impact those choices over time. This article advances an approach to model 

participation in shoreline recreational fishing as a function of weather conditions. A repeated 

discrete choice, random utility maximization (RUM) framework is implemented using a two-

level nested logit model to sequentially estimate participation and site choice. The empirical 

application exploits data obtained from two separate and independent surveys administered by 

the National Oceanic and Atmospheric Administration’s (NOAA) Marine Recreational 

Information Program (MRIP) – a point-of-access intercept survey and a random-digit-dial phone 

survey of coastal counties. Participation is modeled using the phone survey with data on both 

fishing and non-fishing households to avoid potential biases related to endogenous stratification 

and truncation present in the intercept data (see Alvarez et al. 2014). High resolution weather 

data enters into the participation model in order to estimate how these variables impact recreation 

decisions along the Atlantic and Gulf Coasts of the U.S.  

With structural parameters on the weather variables estimated over a seven-year baseline 

(2004-2010), we then use temperature and precipitation projections from five global climate 

models (GCMs)4 under three emission scenarios across three time horizons (2011-2030, 2040-

2065, and 2080-2099) to simulate counterfactual climates. The simulations produce a number of 

notable results. First, the Atlantic and Gulf Coasts of the U.S. are likely to experience welfare 

gains in the aggregate associated with shoreline recreational fishing due to climate change. 

Welfare gains range from $1.62 per trip, or $72.4 million, in the short-run (2011-2030) to $6.83 

per trip, or $304 million, in the long-run (2080-2099). Second, there is significant seasonal 

heterogeneity in the results. Welfare losses are predicted for nearly all emission scenarios in all 

                                                 
4 GCMs are numerical models that represent physical processes in the atmosphere, ocean, and land surface simulate 

the response of the global climate system to increasing greenhouse gas concentrations.  



4 

 

time horizons in summer simulations (May – August). In the short-run, these losses are 

negligible but then increase to significant estimates of approximately -$2.17 to -$4.59 per trip    

(-$60 to -$127 million total) over the medium and long term. For non-summer models (January – 

April and September – December), the welfare impacts are positive and significant in all 

scenarios, indicating that rising temperatures are likely to expand the time available for 

recreational fishing in desirable, mild weather across the non-summer months. The simulations 

predict a welfare gain between $3.49 per trip ($58.6 million total) in the short-run and $25.42 per 

trip ($427 million total) in the long-run. In sum, the magnitude of the welfare gains in response 

to climate change in the non-summer months is projected to outweigh the welfare losses 

predicted for the summer months.   

Third, the regional variation in the results is significant. Anglers in the Gulf Coast region 

face potential welfare losses in all seasons. Continuing on our current emissions trajectory (i.e. 

business-as-usual) is likely to result in welfare losses of nearly -$15.83 per trip ($300 million 

annually) in the long-run for the region. Reducing future greenhouse gas emissions to a best-case 

scenario has the potential to reduce those losses in the Gulf by $8.29 per trip ($157 million 

annually). Conversely, the Mid-Atlantic and New England experience welfare gains in all 

seasons. The gains are relatively modest in the summer months and increase dramatically in 

magnitude in the non-summer months. In non-summer months, average predicted welfare gains 

for the Mid-Atlantic and New England approach $39.74 per trip ($240 million) and $43.11 per 

trip ($303 million), respectively. 

Fourth, the demand responses inferred by the changes in climate are positive and 

significant in the aggregate yet relatively modest (0.2 to 2.2 percent). This result suggests that 

coastal recreational fishermen may be adapting instead of changing their participation in 
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response to a changing climate. Lastly, a potential adaptation is identified via intraday temporal 

substitution. A model of night fishing across all seasons suggests that coastal fisherman are 

likely already adapting, as increases in daily maximum temperature increase the probability of an 

angler choosing to recreate at night in both the Gulf and Southeast regions.  

To put the long-run welfare results above into perspective with previous research, a 

recent meta-analysis of 13 studies of saltwater anglers found the average willingness to pay to 

catch an additional small game fish per day was $9.74 in 2010 dollars (Johnston and Moeltner 

2014).5 Using this welfare measure and the average catch rate for small-game saltwater anglers 

in the same meta-analysis (2.19 fish/trip), the aggregate long-run increase in welfare due to 

climate change on participation ($6.83 increase/trip) would require a decline in catch rates of 

approximately 32 percent (0.70 fish/trip) to offset the gains. In the summer, a 22 percent (0.47 

fish/trip) increase in catch rates would need to occur to offset the estimated welfare losses          

(-$4.59/trip). Conversely, a 119 percent decrease in catch rates (2.61 fish/trip) would be needed 

to offset the gains in the non-summer months ($25.42/trip). As noted in the following section, 

there is substantial scientific uncertainty about how climate change will impact ecological factors 

such as catch rates, a limitation to our collective knowledge that represents an important 

challenge for future interdisciplinary research. However, the above calculations imply that these 

indirect effects would have to be substantial, and in some cases biologically infeasible, to offset 

the demand side effects of climate change on shoreline recreational fishing.  

This article proceeds as follows. The previous literature on climate change and outdoor 

recreation is summarized briefly in Section 2. Section 3 describes the modeling approach and 

Section 4 details the data and the empirical implementation of the model.  Section 5 discusses 

                                                 
5 This number is appropriate for this context as small game fish are the most likely targets for shoreline recreational 

anglers that are the focus of this research. 
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results from the site choice and participation models and Section 6 details the climate simulations 

and the resulting welfare implications. Section 7 discusses the potential of individuals’ adapting 

to higher temperatures by shifting to night fishing. Section 8 concludes and discusses some 

extensions of this research. 

 

2  Outdoor Recreation and Climate Change 

The potential impacts of climate change on outdoor recreation operate through multiple 

channels. First, the demand for a given activity may be directly affected by the direction and 

magnitude of changes in long-run weather conditions (i.e. climate). These effects are likely to 

vary seasonally, as deviations in climate from historical annual averages likely translate into 

different outcomes by season. For example, a 3°C increase in daily maximum temperature may 

reduce visits to a particular fishing site in the summer, yet increase visits in the spring and fall. 

Perhaps more difficult to quantify, changes in climate may also have indirect effects through 

impacts on the quality of the ecosystem services related to the recreation visit. For instance, 

Loomis and Crespi (1999) model climate-induced changes in the hydrology of streamflow to 

estimate the impact of climate on freshwater fishing.  

Despite the substantial annual economic activity generated by outdoor recreation, the 

literature is sparse when looking at the potential effects of climate change on recreation 

compared to other sectors of the economy. As noted by Shaw and Loomis (2008), “much of the 

existing economic literature related to climate change neglects to mention the losses or gains in 

benefits from non-market goods such as recreation outings” (p. 260).6 Mendelsohn and 

                                                 
6 See Hamilton and Tol (2006) for a review of how the tourism and leisure literature assesses tourism impacts 

related to climate change. 
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Markowski (1999) and Loomis and Crespi (1999) offer initial national assessments of climate 

change on outdoor recreation in the U.S., with both studies predicting a similar net increase in 

annual welfare of approximately $2.8 billion. The impacts vary by activity type, with gains 

predicted for boating, fishing, and golfing and losses for snow skiing, camping, and wildlife 

viewing in both studies. Mendelsohn and Markowski (1999) account for direct effects of weather 

on recreation demand in a state-by-state, cross-sectional travel cost analysis. Loomis and Crespi 

(1999) also account for indirect effects related to climate-induced alterations in ecosystem 

services and use response functions to determine changes in the number of visits and the 

economic value associated with each visit.  

Previous work on the climate impacts on recreational fishing have focused on freshwater 

locations. In a cross-sectional analysis, Pendleton and Mendelsohn (1998) model the indirect 

ecological effects on catch rate in freshwater sport fishing in the northeastern U.S. Their results 

suggest the annual welfare impacts of a changing climate range from a $4.6 million loss to $20.5 

million gain and highlight two major areas of concern in this line of research. First is the 

potential issue of identification of climate effects with cross-sectional data. Weather in a 

particular year may not be representative of climate, which may create difficulty in 

differentiating the effect of climate from other correlated variables. Second, the tremendous 

uncertainty surrounding climate change and GCM output compel researchers to test multiple 

models and emissions scenarios when estimating projected impacts (see Burke et al. 2015). In 

this case, Pendleton and Mendelsohn (1998) use two GCMs that generate welfare predications 

with opposite signs, providing a mixed and ambiguous signal to policy makers.  

Other freshwater fisheries research places emphasis on the indirect effects of climate 

change. Ahn et al. (2000) use a RUM framework and estimate the effect of loss of trout habitat in 
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North Carolina under different warming scenarios. Their results indicate a 2 to 20 percent loss in 

angler consumer surplus per trip with data limits preventing aggregation of estimates. More 

recently, Jones et al. (2013) conduct a national accounting of freshwater fishing in the U.S. and 

show a remarkable range of potential indirect annual losses driven by habitat loss from $81 

million to $6.4 billion.  

Our research contributes to and extends this literature in a number of dimensions. To our 

knowledge, it is the first study to investigate how individuals who participate in coastal (i.e. 

marine) fishing respond to climate change. By combining rich data on individual site choices, 

participation, and weather over time, it also extends the recent trend in economics of using high 

resolution panels of weather data to causally identify outcomes of interest to an outdoor 

recreation activity (Dell et al. 2014). The temporal and spatial size and scope of our data allow us 

to identify seasonal and regional heterogeneity in the effect of weather on participation which 

translate to welfare effects that vary significantly in sign and magnitude between seasons and 

across regions. Lastly, we use five GCMs over three emissions scenarios in the climate 

simulations to illustrate the potential climate uncertainties.7    

This approach provides a rigorous assessment of the direct effects of climate change on 

outdoor recreation and a starting point to begin to answer much broader questions about the 

overall impacts of climate change. The primary limitation in this research is assuming no 

changes in indirect ecosystem effects as the climate changes. The implications of this assumption 

are unclear. Mendelsohn and Markowski (1999) and Loomis and Crespi (1999) find nearly 

                                                 
7 We use ensemble forecasts for temperature and precipitation in the welfare simulations. It is important to note that 

these ensemble forecasts smooth over the variation across individual climate model runs. A more rigorous approach 

to assessing the economic impacts of climate change may be to assess welfare changes for each individual climate 

model run to generate a distribution of welfare impacts. This remains an area for potential collaborative efforts 

between economists and climate scientists. 
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identical welfare effects in their national accounts of climate impacts despite the former only 

estimating direct effects. Evidence from freshwater fishing studies (Ahn et al. 2000; Jones et al. 

2013) suggests negative indirect welfare implications from climate-induced ecosystem changes. 

Intuitively, one may expect that effects in the marine environment may by less than the 

freshwater loss predictions due to the ability of fish stocks to migrate and of anglers to adapt to 

changing conditions. However, the magnitude of the potential indirect effects in a marine fishing 

environment is still an open empirical question.  

Moreover, credible forecasting of future marine fish stocks is a substantial challenge. 

Scientific understanding of the impacts on marine fish stocks in response to climate change (i.e. 

mortality, shifts in species distribution, and responses to changing acidity) is evolving but yet to 

provide a clear path forward.8 When projecting future stocks, policy matters as well. For 

example, policy reforms such as individual transferable quota (ITQ) systems or the establishment 

of marine reserves could significantly impact future marine fish stocks. Given the potential for 

increased knowledge in these areas, future work may incorporate dynamic bio-economic models 

of fish stocks and policy impacts into the assessment of the direct effects modeled here that could 

provide a more complete understanding of the effects of climate change on shoreline recreational 

fishing. 9 

 

 

                                                 
8 Initial work on fish stock response to climate change has been conducted in the East China Sea (Chueng et al. 

2008), Canada (Chueng et al. 2009), the Baltic Sea (Nieminen et al. 2012) and Greenland/Iceland (Arnasen 2007). 
9 An additional missing element to this shoreline fishing analysis is the costs to adapt to climate change in terms of 

built infrastructure supporting the recreation activity (i.e., piers, jetties). As the impacts of climate change, such as 

sea level rise, increase, the usefulness of current infrastructure will be reduced or eliminated, necessitating the need 

to build new infrastructure. 



10 

 

3  Modeling Approach 

Our approach utilizes the RUM discrete choice framework introduced by McFadden (1974) and 

first applied to recreation demand models by Hanemann (1978). The RUM model is the 

dominant method for recreation demand analysis due to its ability yield consistent welfare 

measures and allow for meaningful substitution among recreation sites.10 To deal with 

participation, i.e., the possibility that different individuals take different quantities of trips, we 

employ a repeated discrete choice framework (Morey et al. 1993), whereby individuals 

repeatedly make discrete choice participation and site choice decisions across a series of choice 

occasions, with the sum of these choices representing their demand over a fixed time horizon.11  

The key assumption with RUM models is that individuals choose the alternative that 

maximizes their utility. Not all factors that influence utility are observed by the analyst, so utility 

and choice can be interpreted as random from her perspective. Individual i’s conditional indirect 

utility from choosing site j on choice occasion t can be specified in general terms as: 

( , , )ijt it ij j ijtV U m c   X    (1)  

where mit is income, cij is travel cost, Xj is a vector of site characteristics, and 
ijt  captures 

idiosyncratic, random factors. A rational, utility-maximizing individual selects the site that 

generates the highest utility, i.e., site j is chosen if ,ijt iktV V k j   . Assuming a probability 

density function for 
ijt , the probability of selecting site j at time t is given as: 

                                                 
10 For examples, see Hausmann et al. (1995), Parsons and Hauber (1998), Parsons and Needleman (1992), Parsons 

and Kealy (1992), Hauber and Parsons (2000), Parsons et al. (2000), Whitehead and Haab (2000), Murdock (2006), 

and Carson et al. (2009). 
11 It is important to note that we do not observe a true panel of choices from each individual in the MRIP data set 

and the resulting repeated cross-section structure of the data precludes modeling unobserved preference 

heterogeneity and state dependence (i.e. Smith 2005).  
 



11 

 

Pr ( ) Pr[ ]it ijt iktj V V k j    .   (2)  

As described in the next section, a distinctive characteristic of our data is that information 

about recreation participation and site choice are collected by independent samples. Therefore, 

when choosing an econometric model, we need a specification that allows for decomposition and 

separate estimation of these two dimensions of choice. We therefore employ a two-level nested 

logit model (Morey 1999) and estimate the site choice and participation decisions sequentially.  

The two-level nested logit model (see Figure 1 for a schematic of its implied structure) 

generalizes the traditional logit model by allowing for a common random factor to enter the site-

specific errors, thus inducing a correlation among site utilities and more reasonable substitution 

patterns. Sequential estimation allows us to leverage and integrate all of the data into a consistent 

behavior model. Although there is some efficiency loss relative to full-information maximum 

likelihood estimation, the large size of our data suggests that this is relatively small price to pay. 

Assuming that utility is linear and additive in 
ijt  (i.e.

ijt ijt ijtV v    ), the probability of choosing 

site j on choice occasion t is: 
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where   is the dissimilarity coefficient and bounded by theory between 0 and 1 (Herriges and 

Kling 1997).  The probability of not taking a trip is then: 
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As described elsewhere (e.g., Ben-Akiva and Lerman 1985) and summarized below, all 

parameters of this model can be estimated by first estimating the site choice model and then 

conditionally estimating the participation model using standard logit estimation techniques. 

 

3.1  Empirical Specification 

In the empirical analysis, we assume the conditional indirect utility from visiting site j can be 

specified as follows:  

    ijt ij j ijtV c        (5)   

where 
j is an alternative specific constant (ASC) for site j. To account for time-varying site 

attributes, we allow the ASCs to vary by year and season, where seasons are either summer (May 

to August) or non-summer.12 These ASCs capture all site specific characteristics that vary across 

years and seasons but are common across individuals (e.g., catch rates). We note that our model 

assumes a constant marginal utility of income (as is common in the literature) that does not vary 

by season. 

To model participation, we specify the indirect utility function associated with not taking 

a trip (alternative 0) in the following way: 

0 0 0i t i i i tV       W D     (6)  

where Wi and 𝑫𝑖 are vectors of individual/year/wave specific weather variables (e.g., 

temperature, precipitation) and demographics, respectively.13 Although we leave the details for 

how these variables are constructed until the next section, we note here that weather is assumed 

                                                 
12 Data limitations prevent us from using more refined seasonal categories (e.g., winter, spring, summer, and fall), as 

the intensity of sampling in the MRIP is reduced in the winter and shoulder seasons relative to the summer months. 
13 This participation model differs from previous efforts using the MRIP data (i.e. Whitehead et al. 2009) as it avoids 

issues with on-site sampling and the strong parametric assumptions (i.e. negative binomial model) needed to correct 

for this. 
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to influence recreation participation but not recreation site choice. Our rationale for this 

specification is driven by data limitations requiring that the empirical analysis focus on localized 

recreation where individuals travel not more than 300 miles. For these trips, climate variables 

over a two month period are not likely to vary substantively across sites within a 300 mile drive 

of one’s home.   

 

4 Data and Empirical Application  

We obtain the data for this analysis from the NOAA National Marine Fisheries Service (NMFS) 

Marine Recreation Information Program (MRIP), formerly the Marine Recreational Fishery 

Statistics Survey (MRFSS). The data include a point-of-access Angler Intercept Survey 

(intercept data) and the Coastal Household Telephone Survey (phone data). Our analysis utilizes 

the intercept data to estimate site choice and the phone data to estimate participation.14 The data 

are restricted to shoreline intercepts for individuals participating in localized recreation where the 

primary mode of transportation is driving, the angler’s county of residence is included in the 

sampling frame for the phone survey and the vast majority of trips are likely to be contained 

within a single day. The data are compiled in two-month intervals, resulting in six waves per 

year.15  

 

                                                 
14 Other researchers using MRIP data (e.g., Alvarez et al. 2014) have modeled participation using the self-reported 

2-month and 12-month total trip information contained in the intercept survey. Because this information is collected 

on-site, it suffers from both truncation and endogenous stratification (Hindsley et al. 2011), and although several 

authors have developed methods to account for these data features, the methods require strong parametric 

distribution assumptions.  Moreover, in our application, it is important to model the participation decisions for the 

full population (as opposed to just current anglers), as climate change may induce individuals who do not currently 

fish in coastal waters to do so. 
15 Waves: 1 = Jan/Feb, 2 =Mar/Apr, 3=May/Jun, 4 = Jul/Aug, 5 = Sep/Aug, & 6 = Nov/Dec. 



14 

 

4.1  Intercept Survey Data 

The intercept survey collects trip data from interviewed individuals on their catch and fishing 

mode. The variables of particular interest for this work include the intercept location and a zip 

code of residence identifier for each survey respondent. There are 2,473 intercept sites along the 

Atlantic and Gulf Coast and nearly 14,000 origin zip codes that have been geocoded for 

inclusion in our analysis. The restriction of the analysis to localized recreation and shoreline 

fishing yield a sample size of 161,218 trips across 40 waves. 

The survey is stratified by site, state, mode, year and wave. This survey design may lead 

to biased inferences in estimation of recreation demand if the sample selection process is 

stratified on an endogenous variable. There is also the potential for avidity bias if more avid 

fishermen are likely overrepresented in the data. Econometric approaches have been proposed to 

address these biases (see Hindsley et al. 2011). However, in 2012, the NMFS published design-

based sampling weights and variance adjustments to the intercept data and applied these weights 

to the survey results dating back to 2004. These weights are constructed to generate unbiased 

estimates of angler effort and reflect the proper proportion of trips from coastal and non-coastal 

origins (Breidt et al. 2012; Lovell and Carter 2014). This research uses data from 2004-2010 in 

order to utilize these weights in site choice estimation to minimize the potential biases associated 

with using stratified survey data collected through on-site sampling.  

The program PC*Miler calculates the round-trip distance traveled, travel time, and tolls 

from the centroid of each origin zip code to all sites in each choice set.  We assume that any site 

within 300 miles (roughly a 6 hour drive one-way) of each origin zip is in the choice set. This 
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assumption is based on the idea that 300 miles represents the furthest an individual would likely 

be able to travel on a single day for localized recreation, which is the focus of our analysis.16 

We collect additional data to calculate travel costs on average fleet fuel economy (fe) 

from the U.S. Department of Transportation, gas prices by state (gas) from the U.S. Energy 

Information Administration, automobile per-mile operation costs (cpm) including tires, 

depreciation and maintenance from AAA, and zip code level household income from the U.S. 

Census Bureau. The opportunity cost of time (oppc) is then derived using the common 

assumption that it is 1/3 of the wage rate (Cesario 1976), where the wage rate is estimated as 

annual household income divided by 2080 hours.  Costs that can be shared by all persons on a 

given trip (e.g. tolls, gas, and mileage) are divided by the average number of individuals in each 

party from the intercept data ( n ).17 Round trip travel costs (2010 dollars) for individual i to site j 

at time t are then calculated as follows: 

*( )

2* ( / )* / *

ij t

ijt ij t t it ij

ij

dist cpm

c dist fe gas n oppc time

toll

  
  

   
     

    (7) 

Table 1 provides a concise summary of all variables used in each stage of the analysis. 

 

 

4.2  Phone Survey and Weather Data 

Using county stratified, random-digit-dialing (RDD) from households in coastal counties, the 

phone survey collects data on the frequency of fishing trips in the preceding two months. The 

data compiled from this survey include the state and county where the trip occurred and, 

importantly, the number of anglers who had taken trips and the number of trips taken by each 

                                                 
16  Similar assumptions are typical in recreation demand analysis (e.g. Parson and Hauber 1998). 
17  The intercept data contains a variable for the number of people per fishing party. The average is 2.73. 
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angler in the previous two months. For the geographic areas in this study, the phone survey pulls 

from 328 counties with six-digit phone exchanges as the spatial unit of analysis (see Figure 2).  

We utilize data on both fishing and non-fishing households from 12,075 unique phone 

exchanges from 2004-2010, resulting in 483,000 possible phone exchange/year/wave 

combinations. Of these combinations, 72,476 represent fishing households that characterize 

participation in the model. However, the non-fishing households contacted by the phone survey 

are only spatially identified at the county level. Since the survey is conducted using RDD within 

counties, the county level non-fishing data are disaggregated to the phone exchange level to 

facilitate analysis in the following manner. Each six-digit phone exchange is assigned a 

population weighted proportion of the count of non-anglers in the county where the exchange is 

located. For example, assume a county has three phone exchanges, each with a population of 

10,000 people. If the survey contacted 300 non-anglers in the county, randomization implies we 

can assign 100 non-anglers to each phone exchange in that given two-month period. The full 

model includes 410,524 phone exchange/year/wave combinations characterizing non-

participation in shoreline recreational fishing activities. 

Demographic variables, temperature and precipitation are included in the second-level of 

model estimation as covariates affecting the participation decision. The demographic data are not 

collected in the phone survey, so we employ data from the U.S. Census Bureau’s American 

Community Survey at the zip code level. Variables of interest include average household income 

(2010 dollars), race (percent white), and education (percent with Bachelor’s degree or higher). A 

proprietary data set obtained from Melissa Data links phone exchanges to the zip code(s) located 
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in each exchange.18 Phone exchange level demographics are obtained by taking a population-

weighted average of each zip code-level variable located in the exchange.  

Temperature and precipitation data are generated from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM 2009). The PRISM model divides the 

contiguous U.S. into 2.5 x 2.5 mile grids and uses daily weather station data, while also 

accounting for factors such as elevation and wind direction, to interpolate approximate weather 

measures for each grid location. For each bi-monthly wave, daily maximum temperature (°C) 

and daily precipitation (in millimeters, mm) are averaged from the ten PRISM grid locations in 

the coastal area nearest to each  origin zip code (covering ~ 25 mi2) to represent weather 

conditions at the time of the participation decision. Table 2 provides summary statistics by 

region for weather variables used in the second-stage estimation.  

 

4.3  Empirical Implementation of the Model 

Estimation proceeds in three steps. The first step utilizes the intercept data to generate estimates 

of the normalized travel cost coefficients. To achieve this, a conditional logit site choice model 

with a full set of ASCs is estimated separately for every year of data. Regional heterogeneity in 

travel costs is accommodated by allowing the travel cost coefficient to vary across four regions 

of origin (i.e., New England, Mid-Atlantic, Southeast and Gulf).19 Recall from equation (3) the 

site choice probabilities take the form:  

                                                 
18 Dataset description available here: http://www.melissadata.com/reference-data/fonedata.htm  
19 The Gulf region is defined as all site choices and phone responses in Louisiana, Alabama, Mississippi, Florida, 

and Georgia while the Southeast includes Virginia, North Carolina, and South Carolina. The Mid-Atlantic includes 

New York, New Jersey, Delaware, and Maryland and New England is defined as Connecticut, Rhode Island, 

Massachusetts, New Hampshire, and Maine. 

http://www.melissadata.com/reference-data/fonedata.htm
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Although the first step generates consistent estimates for travel cost, it does not generate 

consistent estimates for the ASCs because the MRIP only samples a fraction of shoreline fishing 

sites in every year/wave. For unsampled sites, the ASCs are not identified. We therefore employ 

the following procedures to recover ASC estimates for all sites in the second step. We first 

construct aggregate trip estimates by year/wave using the fishing pressure data in the site registry 

files that NOAA maintains and uses to determine which sites to sample (see Appendix A for 

details). Importantly, these trips are positive for sampled and unsampled sites in the MRIP 

intercept data. Using estimates of the share of trips originating from coastal/noncoastal counties 

in the intercept data, we adjust these aggregate estimates to reflect predicted trips originating 

from coastal counties. We then turn these estimates into shares of total trips and construct 

calibrated estimates of the ASCs using the contraction mapping proposed by Berry (1994). These 

calibrated ASCs are then used to construct the following inclusive value index: 
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where /   is estimated in step one and   is estimated in step two.  IVi can loosely be 

interpreted as the expected utility of a trip (Hausman et al. 1995) and is used in the third and final 

step where we estimate participation. The participation model is a discrete choice logit model as 

a function of IVi, demographics and weather variables. dddThe coefficient on IVi  is the 

dissimilarity coefficient ( ) and is allowed to vary across the four regions.  

 

 



19 

 

5 Results 

 
First-stage estimation of the conditional site choice model yields results that conform to prior 

expectations for travel cost. As shown in Table 3, the coefficients are negative and robust across 

all years and regions. The precision of the estimates is evident from the large t-statistics. 

Individuals in the Gulf are more responsive to travel costs associated with a shoreline fishing trip 

than those in other regions. The parameter estimates on the ASCs are used to characterize 

unobserved site characteristics at the 2,473 potential sites in the data. As noted in the previous 

section and Appendix A, these estimates are calibrated using site registry data to account for the 

lack of sampling at all sites. The first-stage parameters for travel cost and the calibrated ASCs 

are then used to construct inclusive value terms (equation 9) to link the stages of the sequential 

nested logit estimation.  

The second-stage model exploits seasonal differences in the participation decision by 

estimating separate models for summer months (May - August) and non-summer months 

(January - April & September - December). The precision of the travel cost estimates in the first-

stage imply that the covariance matrix of the second-stage estimator should not contain 

significant noise induced by the first-stage estimates. Therefore, we do not correct the second-

stage standard errors as is typically done with sequential estimators (Ben-Akiva and Lerman 

1985), as doing so would involve considerable computational effort given the size of our data. 

Results from summer models are displayed in Table 4. For comparison, a simple all-season 

model (Model 1) using a common inclusive value, temperature, precipitation, and indicator 

variables for year and wave suggest a positive and significant effect of temperature on 

participation. Model 2 shows results using the same specification but restricting the observations 

to summer waves only. The effect of temperature is again significant but smaller in magnitude 
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and precipitation is now significant and negative. However, the results from these models mask 

regional heterogeneity in the data that is uncovered in Model 3 using region-specific covariates. 

The impact of temperature is positive and significant in the Mid-Atlantic and New England and 

negative in the Gulf and Southeast (but only significant in the Gulf). These results are intuitive as 

the Gulf and Southeast are located in the humid subtropical climate zone and already experience 

hot, humid summers. Any further increases in temperature in these regions are likely to reduce 

participation in shoreline fishing activities. The Mid-Atlantic and New England are located in the 

milder humid continental climate zone and are likely to experience small increases in 

participation if temperatures increase. Only anglers in the Gulf region are significantly impacted 

by precipitation as the model predicts declines in participation for increases in precipitation.  

In our preferred specification (Model 4), we include region-specific maximum 

temperature thresholds and temperature-precipitation interaction terms. The threshold variables 

are constructed by interacting maximum daily temperature with an indicator variable for when 

average daily maximum temperature is at least one standard deviation above the mean for a 

particular season in each region. The temperature-precipitation interaction terms are added to test 

whether the relationship between participation and temperature vary significantly for different 

values of precipitation (and vice versa). The results in Model 4 of the effect on participation from 

daily maximum temperature are of similar sign to the results in Model 3 but the magnitudes of 

the effects are larger. A significant negative threshold effect is observed in the Mid-Atlantic 

region, indicating that participation is likely to increase at a slower rate above the threshold.20  

                                                 
20 Other specifications, including quadratics and number of days per wave exceeding a threshold, were explored and 

the effect of temperature on participation only appeared to be non-linear in the Mid-Atlantic in the summer model 

and the Gulf in the non-summer models. 
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The main effect of precipitation is positive and significant in the Mid-Atlantic and New 

England. These results are intuitively appealing, as precipitation is highly correlated with cloud 

cover and overcast days are anecdotally believed to increase fishing success. Yet, the interaction 

of two continuous variables (temperature and precipitation) included in the model has the 

potential to alter the net effect of precipitation conditional on daily maximum temperature. The 

parameter on the interaction term is negative and significant in the Mid-Atlantic, indicating the 

positive effect of precipitation on participation is attenuated by higher temperatures. For 

instance, at the mean for daily maximum temperature, the net effect of precipitation in the Mid-

Atlantic is negative due to the interaction effect.21  

Results of the non-summer models are displayed in Table 5. Results from Model 2 show 

that restricting the observations to non-summer waves increase the magnitude of the significant 

and positive impact of temperature. Model 3 again reveals regional heterogeneity in the 

parameter estimates with the effects of temperature positive and significant in New England, the 

Mid-Atlantic and the Southeast. The results are again intuitive, as warmer temperatures in non-

summer months are likely to expand the available time for fishing activities and therefore 

increase participation. A negative and significant effect of temperature is found in the Gulf, 

suggesting that warmer temperatures in the shoulder seasons discourage participation more so 

than warmer winter temperatures stimulate participation in the humid subtropical region. The 

preferred model (Model 4) suggests significant and positive effects of temperature in the Mid-

Atlantic and New England, albeit slightly smaller in magnitude than Model 3. The effect is 

strongest in New England where warmer weather in non-summer months has the greatest 

                                                 
21 The net effect of precipitation on participation is calculated using the following: 

int( * )precip eractionprecip temp precip  . Using the summer Mid-Atlantic mean daily maximum temperature 

(27.3°C) and the estimated parameters on precipitation (4.88) and the interaction (-0.19), the net effect is 

(4.88*precip + (-0.19(27.3)*precip), or -0.309*precip.  
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potential to increase participation. The threshold effects in the Gulf region suggest participation 

is likely to increase at a slower rate above the threshold. Precipitation is shown to have positive 

and significant effects in the Gulf on its own. Yet, the parameter on the interaction term is 

negative and significant as well, establishing that the relationship between participation and 

temperature is conditional on precipitation in that region during the non-summer months.  

Lastly, the parameter estimates for the dissimilarity coefficients warrant discussion. 

While all estimates fall within the unit interval, a sufficient condition for consistency with the 

RUM model (Herriges and Kling 1997), the values are quite small. This suggests a very strong 

correlation in the unobserved portions of utility for alternatives in each nest. It also implies that 

site closures will result in small reductions in trips and thus large and possibly unrealistic trip 

values. For instance, the dissimilarity coefficient for the summer model in the Gulf implies a 

large value of a trip equal to nearly $370 dollars.22 We suspect that this finding is driven by the 

imprecise nature of the trip origin information in the phone survey data.  In particular, the phone 

data only includes the respondent’s phone exchange or county of residence, not a more 

geographically precise origin such as a zip code. As a result, measurement error is introduced 

into inclusive values which in turn likely generates attenuation bias with the estimated 

dissimilarity coefficient.23 As discussed in the next section, we develop a calibration procedure 

to address this issue with the policy scenarios.  Here, however, it is important to note that the key 

parameters of interest from the participation model – daily maximum temperature and 

precipitation – are unlikely to be contaminated because weather is not as spatially sensitive to 

                                                 
22 This estimate is constructed using the formula 1


 for a value of trip, where  is estimated by taking the product of 

the mean value of the first-stage normalized travel cost estimate (-0.159) and the estimated dissimilarity coefficient 

(0.017) for the Gulf in the summer models. See Haab and McConnell (2002) for a derivation of this result. 
23 Moreover, the fact that the ASCs that feed into the inclusive values are calibrated with fishing pressure data in the 

site registry and not precisely estimated with choice data may introduce additional measurement error. 
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measurement error in the origin. Stated differently, temperature and weather variables are likely 

to be highly correlated across zip code and six-digit exchange origin specifications, so their 

parameter estimates are likely to be robust. 

 

6  Counterfactual Climate Simulations 

 
6.1  Global Climate Models 

To investigate the range of potential impacts of climate change on coastal recreational fishing, 

counterfactual climate scenarios are generated using a variety of GCMs, emissions scenarios, and 

time horizons for the impacts to occur. A subset of GCMs used by the Intergovernmental Panel 

on Climate Change (IPCC) is selected based on data availability of ensemble forecasts in 

predicting changes for daily maximum temperature and precipitation under similar emissions 

scenarios and time horizons.24 The five models examined here include the Bjerknes Centre for 

Climate Research’s BCM2 model (Norway), the Commonwealth Scientific and Industrial 

Research Organization’s MK3 model (Australia), the Center for Climate System Research’s 

MIROC3_2_MED model (Japan), the Institute for Numerical Mathematics’ CM3 model 

(Russia), and the NASA Goddard Institute for Space Studies’ AOM model (U.S.).  

In 2000, the IPCC issued a Special Report on Emissions Scenarios (SRES) that 

established multiple scenarios of future global development with a focus on greenhouse gas 

emissions.25 Figure 3 displays the projected emissions associated with the three scenarios – A2, 

A1B, and B1 – and the three time horizons – short-run (2011-2030) medium-run (2040-2065) 

                                                 
24 An ensemble contains a number of model simulations with small perturbations in the initial conditions. According 

to the IPCC, the mean of an ensemble should outperform individual ensemble members and provide a best estimate 

forecast. Data for the separate ensemble forecasts on the predicted changes in temperature and precipitation are 

available here: http://www.ipcc-data.org/cgi-bin/ddc_nav/dataset=ar4_gcm 
25 In the IPCC Fourth Assessment Report (2007), new emissions scenarios were found to change little in overall 

emission levels compared to the SRES. As of 2014 (outside the scope of the baseline in this analysis), SRES was 

replaced by Representative Concentration Pathways. 

http://www.ipcc-data.org/cgi-bin/ddc_nav/dataset=ar4_gcm
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and long-run (2080-2099) – examined here. The A2 storyline characterizes the world as 

experiencing continued population growth, regional economic development, and lack of 

international unity. Atmospheric CO2 concentrations are projected to reach 856 ppm by 2100 

under this scenario.26 The A1B storyline reflects a more integrated world with rapid economic 

growth, continued population growth, widespread technological innovation and adoption, and 

focus on a balanced energy portfolio. CO2 concentrations will reach 717 ppm by 2100 under this 

scenario. Lastly, the B1 storyline describes a world focused on global solutions to environmental 

problems, development of clean and efficient technologies, and a transition to a service and 

information economy. Under the B1 scenario, atmospheric CO2 are projected to reach 549 ppm 

by 2100. For the purposes of this exercise, consider A2 as a business-as-usual scenario, A1B as a 

scenario with modest mitigation, and B1 as a best-case scenario.  

Weather variables in the data are averaged seasonally (i.e. summer and non-summer) 

over phone exchange and wave from 2004 – 2010 to establish the baseline climate. The predicted 

changes in daily maximum temperature and precipitation are estimated by the GCMs at a geo-

coordinate representative of each region.27 In general, all model/scenario combinations predict 

temperature increases for all regions while precipitation declines are predicted for the Gulf and 

Southeast and gains are expected in the Mid-Atlantic and New England. The changes driving the 

simulations are displayed in the six figures in Appendix B. Predictions from the GCMs are 

monthly and are aggregated to bi-monthly wave to match the baseline climate data.  For each 

six-digit exchange and season, the predicted changes in temperature and precipitation are added 

to the baseline to arrive at the estimated climate conditions under each scenario. The change in 

                                                 
26 For reference, 2014 levels of atmospheric CO2 were estimated to be around 399 ppm. 
27 Note that BCM2 and AOM models did not have A2 scenario projections for maximum temperature and 

precipitation changes available so the averages are across 13 possible combinations: (3 models x 3 scenarios) + (2 

models x 2 scenarios) = 13 model/scenario combinations. 
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WTP for shoreline recreational fishing in each future time horizon is estimated using the 

following equation (Haab and McConnell 2002): 

      
1 0
0 0

1
ln exp( ) ln exp( ) x ChoiceOccasionsi iv v

i i iWTP e IV e IV
 



 
       (10) 

where 1

0v represents indirect utility in future time horizons and 0

0v is indirect utility in the baseline 

period 2004-2010. In equation (3.10), the differences in indirect utility from the baseline to each 

climate scenario are driven by predicted variation in daily maximum temperature and 

precipitation.  

 

6.2  Parameter Estimates for the Simulations 

Two adjustments are made to the parameter estimates from the preferred participation model in 

order to improve the precision and credibility of the simulation results. First, as shown in Tables 

4 and 5, the effect of precipitation was not significantly different from zero in three of the four 

regions in both seasonal models and the large standard errors introduced substantial noise to test 

runs of the simulations.28 In order to improve the precision of the welfare estimates, the preferred 

participation model (i.e. Model 4) is estimated without the insignificant precipitation variables in 

each seasonal specification. These new parameter estimates are used in the simulations and are 

reported in Table 6. 

Second, as discussed in the previous section, the dissimilarity coefficient is likely 

estimated with bias due to measurement error in travel costs. In order to correct for this in the 

simulations, the dissimilarity coefficient and constant term predicted by the participation model 

are calibrated to maintain consistent in-sample predictions under the assumption that the value of 

                                                 
28 The test simulations predicted larger losses in the summer models but without statistical significance. Results of 

these simulations are available upon request. 
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a trip is $30. This value is chosen as it best approximates the value of a marine fishing trip as 

shown by two recent meta-analyses of numerous valuation studies (Moeltner and Rosenberger 

2014; Johnston and Moeltner 2014). Moeltner and Rosenberger (2014) report the average 

WTP/day for a saltwater fishing trip in the Northeast is $39.39 (2010 dollars) from five relevant 

valuation studies. In Johnston and Moeltner (2014), the authors show that the mean Hicksian 

WTP/day from 14 different studies for saltwater fishing of big-game species is approximately 

$33.06. They also report the average WTP/day for small-game saltwater fishing across 13 studies 

as $21.33.29 Since neither meta-analysis contains a directly equivalent value for this research (i.e. 

all shoreline fishing from New England to Louisiana), the average of the meta-analysis WTP/day 

means from the two studies (~$30) is used here as the value of a trip.30   

The calibrated model is then used to predict the marginal WTP (MWTP) for temperature 

and precipitation (Table 7). The marginal changes measured by these estimates are a 1°C 

increase in daily maximum temperature and a 1mm increase in daily precipitation. In the 

aggregate, MWTP is significant for temperature ($1.07) and precipitation ($5.75) in the non-

summer model only. Again, the results also show significant regional variation. MWTP in the 

Gulf is negative and significant for temperature across both seasonal models. In the Mid-Atlantic 

and New England, MWTP for increased temperature is positive and significant in both models 

but larger in magnitude in the non-summer waves. MWTP for precipitation is negative and 

significant in the Gulf in the summer (-S13.83) and positive and significant in the Southeast in 

the non-summer ($9.35).    

                                                 
29 Note these WTP estimates are author calculations using data reported in tables in Johnston and Moeltner (2014). 

To get from the estimates in their tables, we multiply WTP per fish by mean base catch for each category and then 

convert from 2003 to 2010 dollars. 
30 Note that our welfare results are proportional to the value of a trip.  This implies that if we employed a different 

value of a trip that was X% higher (lower), our welfare results reported below would also be X% higher (lower). 
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6.3  Simulation Results 

Simulations are run for each separate ensemble forecast to generate a distribution of welfare 

outcomes. The WTP estimates are multiplied by the population in the coastal areas (as defined 

by MRIP phone survey) to arrive at the numbers presented. Population numbers are adjusted in 

future time horizons by U.S. Census Bureau predictions of population growth.31 The following 

discusses the results in terms of the uncertainty of the climate model output and the precision of 

the welfare predicted by the participation model simulations. 

To demonstrate potential climate uncertainty, the range of outcomes under the three 

emissions scenarios – business-as-usual (A2), modest mitigation (A1B), and best-case (B1) – are 

displayed in the aggregate and seasonally in Figure 4. The solid lines represent mean welfare 

change and the dotted lines show the range of estimates from the different model forecasts (i.e. 

maximum and minimum predictions). Mean welfare predictions in the aggregate (Panel A) 

suggest an increase reaching nearly $300 million annually in the long-run under all emissions 

scenarios. As demonstrated in the figure, the range of the sign of the welfare change is uncertain 

in the short and medium term but consistently positive in the long-run. The decomposition of the 

effects seasonally in Panels B and C suggest stable signs for the welfare changes across a 

majority of the ensemble forecasts. In Panel B, the welfare effects of climate change are 

consistently negative with the steepest decline predicting nearly $127 million in the long-run. 

Conversely, the welfare changes in the non-summer months are uniformly positive with 

increases ranging from $349 million to $427 million in the long-run. Both results are intuitive as 

higher predicted temperatures in the summer can lead to oppressively hot and uncomfortable 

                                                 
31 http://www.census.gov/population/projections/files/summary/NP2014-T1.csv 

http://www.census.gov/population/projections/files/summary/NP2014-T1.csv
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conditions for outdoor activities while an analogous change in non-summer months can create 

more opportunities for outdoor recreation.  

 These results are also displayed in Table 8. Standard errors for the welfare estimates are 

generated with a parametric bootstrap (Krinsky and Robb 1986) and 50 draws from the 

asymptotic variance-covariance matrix.32 T-statistics calculated from the bootstrapped standard 

errors are presented to show the precision of the welfare estimates. All emissions scenarios have 

the potential to significantly increase aggregate annual welfare in the long-run. Again, there is 

seasonal heterogeneity in these results as shown in Panels B and C of Table 8. In the medium-

run, significant summer welfare losses are predicted under both moderate mitigation ($2.61/trip 

or -$99 million) and best-case (-$2.29/trip or -$63 million) emissions scenarios. Aggregate 

summer losses in the long-run exceed $120 million but are not statistically significant at the 95% 

confidence level. Conversely, nearly all welfare predictions in the non-summer models are 

positive and highly significant. Gains are predicted in all time horizons, ranging from $3.16/trip 

($53 million) in the short run to $25.42/trip ($427 million) in the long-run. In sum, potential 

welfare gains in non-summer months are likely to exceed losses experienced in the non-summer 

months across the Atlantic and Gulf coasts.  

The results are then decomposed seasonally by region to highlight the spatial variability 

masked by the aggregate results. The climate uncertainty is displayed in Figure 5 for summer 

months and in Figure 6 for non-summer months. In the summer scenarios, negative welfare 

changes are predicted in the Gulf with the range of the sign of the change stable across a majority 

of the emissions scenarios in the medium and long-run. Small welfare losses are also predicted 

for the Southeast region for the summer months. Conversely, welfare gains are predicted in both 

                                                 
32 The complexity of the simulations and available computing resources limited the reasonable number of draws for 

the parametric bootstrap to 50. Running the simulations with 50 draws required > 24 hours of computing time. 
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the Mid-Atlantic and New England across all time horizons, with slight uncertainty demonstrated 

by the range of the impacts in the long-run in the Mid-Atlantic. In the non-summer scenarios, the 

change in welfare is unambiguously positive in the Mid-Atlantic and New England. Negative 

welfare is predicted in the Gulf under the business-as-usual scenario with the range of values 

tending toward negative impacts in the other two scenarios. Lastly, the climate model uncertainty 

precludes making a definitive claim either way in the Southeast region in the non-summer 

months.  

The region-specific simulation results are also reported in Table 9 (Summer) and Table 

10 (Non-Summer). In the summer months, negative and significant impacts are found in the Gulf 

and Southeast regions in the long-run. Substantial reductions in potential welfare losses from 

adopting greenhouse gas mitigation strategies are also found in the Gulf ($86 million annually). 

In the more temperate Mid-Atlantic and New England regions during the summer, mitigation 

efforts would result in declines in the potential welfare gains. In non-summer months, best-case 

mitigation would generate an annual decline in welfare compared to business-as-usual in the 

long-run in New England of nearly $166 million. The potential effects of mitigation in other 

regions are more moderate with the Gulf and Southeast seeing small improvements and the Mid-

Atlantic experiencing a small decline. Overall, adopting efforts to mitigate greenhouse gas 

emissions in the near-term has the potential to prevent future welfare losses of nearly $157 

million associated with recreational fishing in the Gulf region. Yet, the same reduction in 

emissions could also reduce the potential gains in New England in excess of $220 million. 

 The demand responses initiated by the changing climate are displayed in the aggregate 

(Table 11) and regionally (Table 12 Summer; Table 13 Non-Summer). In the aggregate, the 

simulations predict approximately 44.5 million trips originating from coastal counties in the 
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Atlantic and Gulf Coast regions. Maintaining a business-as-usual approach to greenhouse gas 

mitigation would result in a 0.7 to 2.2 percent increase in shoreline recreational trips, although 

there is substantial heterogeneity across summer and non-summer months. In particular, trips are 

predicted to decline significantly in the summer months under all mitigation scenarios, up to 4.6 

percent in the long-run with business-as-usual. In the non-summer months, increasing 

temperatures provide more recreation opportunities and increase participation by up to 13.4 

percent in the long-run with business-as-usual. In the regional summer table (Table 12), 

significant reductions in the long-run are predicted for the Gulf of nearly 2 million trips lost 

(17.6 percent) and the Southeast of 0.5 million trips lost (8.6 percent). Substantial percentage 

gains are predicted in both the Mid-Atlantic (62.7 percent) and New England (24.2 percent). In 

the regional non-summer table (Table 13), the result of note is the near doubling of participation 

in New England in the long-run under business-as-usual mitigation. More modest gains are 

predicted across all time horizons and emissions scenarios in the Mid-Atlantic and the Southeast. 

The Gulf region experiences declines across the board as climate change is likely to extend the 

hot and humid summer conditions into the shoulder seasons thereby reducing participation 

upwards of 7 percent in the long term.33 

 

7  Adaptation in Recreation Choice 

The results above suggest that long-run climate change will affect demand for shoreline fishing 

activities. Declines in the number of trips taken were predicted for the Gulf and Southeast 

                                                 
33 The changes in participation rates may potentially have impacts on fish stocks that, in turn, may influence catch 

rates. For instance, an increase in participation may result in a small decline in catch rates, potentially offsetting 

some of the benefits from climate change identified here. Assessing this potential feedback loop is an area for future 

research and is not addressed in this paper. 
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regions in summer models in all future time horizons. However, these declines are relatively 

small given the magnitude of the simulated changes in climate, indicating that coastal 

recreational fishermen may adapt to a shifting climate. The focus on individuals participating in 

localized recreation in this research allows for the potential to identify a mechanism for an 

intensive margin adaptation – intraday substitution (i.e. shifting coastal fishing activities from 

day to night). Consider an individual taking a trip to a specific site on a particularly warm day 

(i.e. > 95°F). The ability to substitute to a different site within the individual’s choice set with 

significantly more amenable weather conditions is unlikely. However, the individual has the 

ability to make an intraday temporal substitution of the timing of the activity to avoid the 

extreme daytime heat.   

 Since the change in the number of trips predicted for the Gulf and Southeast is relatively 

small and may suggest adaptation is already occurring, this analysis is restricted to those regions. 

Data from the phone survey are utilized to estimate the probability of an individual choosing to 

fish during nighttime hours. An observation is designated night fishing if the self-reported time 

that fishing activities were completed occurs between sunset and sunrise in that particular 

wave.34  A simple logit model is estimated utilizing weather and demographic variables similar 

to the previous analysis and fixed effects for time (wave and year). Recognizing the ambiguity in 

the definition of a night trip, we conducted sensitivity analyses where we vary the definition of 

nighttime fishing to gauge the sensitivity of our results.  Although not reported here, our main 

results are robust to these perturbations.   

Results are presented in Table 14. They provide suggestive evidence that anglers may 

already be adapting to high temperatures in both the Gulf and Southeast. If maximum daily 

                                                 
34 For example, in wave 1 (Jan/Feb), night fishing is defined as any observation in the 6 PM to 7 AM window. Night 

fishing in wave 4 (May/June) is defined using the interval 9 PM to 6 AM.  
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temperature increases by 1°C, the probability of night fishing increases 1.4 percent in the Gulf 

and 2.1 percent in the Southeast. This evidence could have substantial implications with a 

changing climate. For instance, a 3°C to 5°C increase in daily maximum temperature in the long-

run as predicted by a majority of the GCMs for the Southeast implies a 6.3 to 10.5 percent 

increase in the probability of night fishing. 

 

8 Conclusion 

In this article, we extend the literature on quantifying the potential impacts of climate change to 

marine recreational fishing. Our results imply that temperature and precipitation significantly 

influence anglers’ decisions to participate in coastal shoreline recreational fishing. Using a 

number of IPCC climate models and emissions scenarios, we then simulate counterfactual 

climate scenarios that suggest positive aggregate welfare impacts from climate change. This 

finding is broadly consistent with past research by Mendelsohn and Markowski (1999) and 

Loomis and Crespi (1999), although we also find impacts that vary substantially both seasonally 

and regionally. In general, our results imply relatively small welfare losses in the summer 

months and large welfare gains in non-summer months. Continuing on our current trajectory 

with limited greenhouse gas mitigation policies is predicted to result in welfare losses to 

shoreline recreational fishing in the Gulf region in all seasons. These losses could be reduced 

with more aggressive mitigation policies, although these same policies may reduce the potential 

welfare gains from climate change in New England and the Mid-Atlantic. Similar to our welfare 

estimates, predicted demand responses in the aggregate are relatively small but vary substantially 

both seasonally and regionally. Lastly, suggestive evidence of intraday temporal substitution to 

night fishing is identified as a potential adaptation to climate change. 
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Our results are subject to a number of important caveats. First, the MRIP data structure 

imposed several limitations on our analysis. The fact that participation and site choice 

information are collected with independent surveys, the phone survey samples only coastal 

counties, and the intercept and phone surveys collect information on the location of respondents’ 

residences at different spatial scales significantly limited our statistical analysis. Although we 

believe our modeling decisions are defensible given these data constraints, they are certainly 

restrictive and should be considered when interpreting our results. Second, our use of expected 

temperature and precipitation changes from ensemble forecasts masks a great deal of uncertainty 

associated with these climate model predictions. A more complete analysis would combine the 

full distribution of climate model predictions with our estimated models to predict the full 

distribution of welfare impacts for coastal recreational fishing. Although we believe this would 

represent a significant advance over our chosen approach, it would also be computationally 

demanding, and so we leave it for future research. 

Lastly, and perhaps most consequentially, the welfare impacts discussed here are limited 

in that they ignore indirect ecological changes associated with the climate scenarios. The 

implications of this assumption are uncertain (see Mendelsohn and Markowski 1999 and Loomis 

and Crespi 1999). It is plausible that climate effects on fish stocks and their resulting impacts on 

behavior through changes in catch rates may be significant. For instance, a reduction in catch 

rates would likely increase the losses predicted in the summer models and reduce the gains 

reported in the non-summer models. However, the magnitude and sign of the indirect effects 

remains an open empirical question. Progress in our understanding of dynamic responses of fish 

stocks to climate change will help advance this research agenda forward. As such, a full 
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accounting of both direct and indirect effects of climate change remains an important avenue for 

future research.   
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Table 1: Definition of Variables   

 
Description 

Variables Enter Site Choice Model 

Site-Specific Travel Cost (TC)  From zip code of origin to specific site choice 

Alternative Specific Constants 

(ASCs)  

ASCs for each site choice captures all site 

characteristics that are the same across individuals, 

both observed and unobserved 

Variable Entering Participation Model 

Weather  

     Temperature  Maximum daily temperature (°C) 

     Precipitation  Daily precipitation (mm) 

Demographics  

     Income Average annual real household income (2010 dollars) 

     Population Density People per square mile 

     White % of population that is white 

     Male % of population that is male 

     Education % of population completing bachelor’s degree or higher  

No Trip ASC  Alternative specific constant for no trip alternative 

Source: Weather variables are obtained from PRISM (2009) and are authors’ calculations representing the weather 

in the nearest coastal county to each phone survey respondent are averaged over each bi-monthly MRIP wave for 

analysis. Demographic variables are at the phone exchange level and represent a population weighted average of the 

U.S. Census American Community Survey zip code demographic data contained in each exchange. 
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Table 2: Summary Statistics for Temperature & Precipitation Variables  

Note: Max temperature threshold is indicator variable for when average daily high temperature is at least 1 standard 

deviation above the mean in a given wave interacted with daily maximum temperature.  

 

 

 

 
Table 3: Travel Cost Estimates from Conditional Site Choice Model  

 
Gulf Region 

Mid-Atlantic 

Region 
New England Southeast Region 

Year Parameter T-stat Parameter T-stat Parameter T-stat Parameter T-stat 

2004 -0.172 -30.87 -0.092 -15.81 -0.110 -5.73 -0.072 -19.99 

2005 -0.161 -26.76 -0.079 -16.53 -0.085 -12.87 -0.070 -16.99 

2006 -0.170 -32.20 -0.082 -15.85 -0.085 -14.06 -0.067 -19.03 

2007 -0.157 -31.36 -0.087 -15.96 -0.094 -10.87 -0.081 -24.52 

2008 -0.136 -29.39 -0.084 -16.55 -0.092 -11.20 -0.069 -19.51 

2009 -0.160 -30.41 -0.069 -11.40 -0.086 -9.99 -0.070 -18.88 

2010 -0.154 -24.54 -0.091 -19.45 -0.100 -12.40 -0.079 -23.22 

Source: Authors’ estimates from site choice model run in GAUSS.

 Summer Non-Summer 

Variables Mean SD Min Max Mean SD Min Max 

Daily Maximum Temperature (°C)         

    Gulf 31.7 1.13 27.8 34.3 24.6 3.98 13.2 32.8 

    Mid-Atlantic 27.3 2.66 20.0 33.0 15.2 5.52 2.4 27.0 

    New England 24.8 3.02 16.8 30.3 14.3 4.95 0.7 23.8 

    Southeast 29.9 2.07 23.7 34.2 19.8 5.15 5.4 29.3 

Max Temperature Threshold          

    Gulf 1.98 7.86 0 34.3 2.13 7.72 0 32.8 

    Mid-Atlantic 2.00 7.59 0 33.0 1.60 5.73 0 27.0 

    New England 0.97 5.18 0 30.3 0.80 3.91 0 23.8 

    Southeast 0.90 5.33 0 34.2 1.60 5.73 0 29.3 

Precipitation (mm)         

    Gulf 0.53 0.21 0.0 1.40 0.31 0.19 0.01 1.43 

    Mid-Atlantic 0.33 0.12 0.10 0.75 0.36 0.12 0.10 0.93 

    New England 0.35 0.17 0.11 1.18 0.41 0.15 0.12 0.86 

    Southeast 0.39 0.14 0.12 0.89 0.32 0.15 0.08 1.14 
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Table 4: Participation Model Results: Summer Specifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Models are estimated conservatively with robust standard errors clustered by phone exchange. Demographics (income, race, sex, population density, and 

education) and year & wave fixed effects also included as regressors but not displayed. Max temperature threshold is indicator variable for when daily high 

temperature is at least 1 standard deviation above the mean in a given wave.  

*** Significant at the 1 percent level.  ** Significant at the 5 percent level.  * Significant at the 10 percent level. 

 

 Model 1 (All Seasons) Model 2 Model 3 Model 4 (Preferred) 

Variables Parameter Std. Err. Parameter Std. Err. Parameter Std. Err. Parameter Std. Err. 

Daily Max Temperature (°C)  0.066*** 0.003  0.038*** 0.009 - - - - 

    Gulf - - - - -0.093*** 0.025 -0.098** 0.045 

    Mid-Atlantic - - - -  0.035*** 0.012  0.109*** 0.028 

    New England - - - -  0.039*** 0.012  0.069*** 0.026 

    Southeast - - - - -0.023 0.017 -0.067 0.045 

Precipitation (mm) -0.051 0.046 -0.188*** 0.068 - - - - 

    Gulf - - - - -0.457*** 0.084  -0.694 2.357 

    Mid-Atlantic - - - - -0.197 0.182  4.878*** 1.845 

    New England - - - -  0.255 0.177  2.328* 1.363 

    Southeast - - - -  0.024 0.164  -3.433 3.283 

Max Temperature Threshold          

    Gulf - - - - - - -0.0000 0.002 

    Mid-Atlantic - - - - - - -0.0046*** 0.002 

    New England - - - - - - -0.0002 0.003 

    Southeast - - - - - - -0.0014 0.002 

Temperature*Precipitation         

    Gulf - - - - - -  0.074 0.075 

    Mid-Atlantic - - - - - - -0.190*** 0.067 

    New England - - - - - - -0.090 0.059 

    Southeast - - - - - -  0.114 0.109 

Dissimilarity Coefficient  0.003*** 0.0005  0.000 0.001 - - - - 

    Gulf - - - -  0.017*** 0.003  0.017*** 0.003 

    Mid-Atlantic - - - -  0.030*** 0.004  0.031*** 0.004 

    New England - - - -  0.035*** 0.004  0.035*** 0.005 

    Southeast - - - -  0.010 0.005  0.008 0.006 

Observations 488,694  205,116  205,116  205,116  

Model Fit (Log pseudo-likelihood ) -1.854e+10  -9.556e+09  -9.533e+09  -9.532e+09  
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Table 5: Participation Model Results: Non-Summer Specifications  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Models are estimated conservatively with robust standard errors clustered by phone exchange. Demographics (income, race, sex, population density, and 

education) and year & wave fixed effects also included as regressors but not displayed. Max temperature threshold is indicator variable for when daily high 

temperature is at least 1 standard deviation above the mean in a given wave.  

*** Significant at the 1 percent level.  ** Significant at the 5 percent level.  * Significant at the 10 percent level.

 Model 1 (All Seasons) Model 2 Model 3 Model 4 (Preferred) 

Variables Parameter Std. Err. Parameter Std. Err. Parameter Std. Err. Parameter Std. Err. 

Daily Max Temperature (°C)  0.066*** 0.003 0.081*** 0.004 - - - - 

    Gulf - - - - -0.029*** 0.011 -0.005 0.014 

    Mid-Atlantic - - - -  0.080*** 0.008  0.047** 0.022 

    New England - - - -  0.131*** 0.011  0.118*** 0.035 

    Southeast - - - -  0.027*** 0.009  0.013 0.015 

Precipitation (mm) -0.051 0.046 0.013 0.074 - - - - 

    Gulf - - - - -0.077 0.089  1.301** 0.515 

    Mid-Atlantic - - - -  0.520** 0.219 -0.004 1.110 

    New England - - - -  0.245 0.230 -0.029 1.381 

    Southeast - - - -  0.464*** 0.167  0.285 0.728 

Max Temperature Threshold          

    Gulf - - - - - - -0.005*** 0.002 

    Mid-Atlantic - - - - - -  0.010 0.005 

    New England - - - - - - -0.0003 0.009 

    Southeast - - - - - -  0.003 0.003 

Temperature*Precipitation         

    Gulf - - - - - - -0.051** 0.020 

    Mid-Atlantic - - - - - -  0.021 0.054 

    New England - - - - - -  0.015 0.069 

    Southeast - - - - - -  0.005 0.033 

Dissimilarity Coefficient  0.003*** 0.0005 -0.004*** 0.002 - - - - 

    Gulf - - - -  0.003 0.002  0.004** 0.020 

    Mid-Atlantic - - - -  0.027*** 0.006  0.028*** 0.007 

    New England - - - -  0.056*** 0.012  0.059*** 0.012 

    Southeast - - - -  0.010 0.006  0.011 0.006 

Observations 488,694  283,578  283,578  283,578  

Model Fit (Log pseudo-likelihood) -1.854e+10  -8.969e+09  -8.926e+09  -8.924e+09  
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Table 6: Parameters for Climate Simulations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Note: Models are estimated conservatively with robust standard errors clustered by phone exchange. Demographics 

(income, race, sex, population density, and education) and year & wave fixed effects also  

included as regressors but not displayed. Max temperature threshold is indicator variable for when daily high 

temperature is at least 1 standard deviation above the mean in a given wave.  

*** Significant at the 1 percent level.  ** Significant at the 5 percent level.  * Significant at the 10 percent level. 

 

 Estimate Std. Err. 95 % Confidence Interval 

Summer Model     

Daily Max Temperature (°C)      

    Gulf -0.084*** 0.037 -0.136 -0.031 

    Mid-Atlantic  0.110*** 0.028 0.055 0.164 

    New England  0.032** 0.014 0.004 0.059 

    Southeast -0.022 0.018 -0.057 0.013 

Precipitation (mm)      

    Mid-Atlantic  4.952*** 1.845 1.336 8.568 

Max Temperature Threshold     

    Gulf -0.0002 0.002 -0.003  0.003 

    Mid-Atlantic -0.005** 0.002 -0.009 -0.001 

    New England  0.001 0.003 -0.004 0.007 

    Southeast -0.015 0.002 -0.006 0.003 

Temperature*Precipitation      

    Gulf -0.015*** 0.003 -0.020 -0.009 

    Mid-Atlantic -0.192*** 0.067 -0.323 -0.061 

    New England  0.011 0.008 -0.004 0.026 

    Southeast  0.001 0.005 -0.010 0.012 

Non-Summer Model     

Daily Max Temperature (°C)      

    Gulf -0.005 0.014 -0.032 0.022 

    Mid-Atlantic  0.047*** 0.012 0.023 0.071 

    New England  0.118*** 0.022 0.075 0.161 

    Southeast  0.009 0.011 -0.012 0.031 

Precipitation (mm)      

    Gulf  1.299** 0.515 0.289 2.301 

Max Temperature Threshold     

    Gulf -0.005*** 0.002 -0.009 -0.002 

    Mid-Atlantic  0.010* 0.005 -0.000 0.021 

    New England -0.0003 0.009 -0.019 0.018 

    Southeast  0.003 0.003 -0.003 0.009 

Temperature*Precipitation      

    Gulf -0.051** 0.020 -0.091 -0.011 

    Mid-Atlantic  0.021* 0.011 -0.001 0.043 

    New England  0.013 0.012 -0.009 0.036 

    Southeast  0.017** 0.007  0.003 0.032 
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Table 7: Marginal Willingness to Pay for Weather Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: a – Marginal change defined as 1°C increase in temperature. b – Marginal change defined as 1mm  

increase in daily average precipitation. 

 MWTP Std. Err. T-Stat 
95 % Confidence 

Interval 

Summer Model      

Daily Max Temperature (°C) a  -$0.59 0.53 -1.12 -$1.65 $0.42 

    Gulf -$2.76 0.79 -3.49 -$4.19 -$1.25 

    Mid-Atlantic  $1.33 0.42 3.15 $0.64 $2.34 

    New England  $1.05 0.45 2.34 -$0.10 $1.71 

    Southeast -$0.65 0.61 -1.07 -$1.98 $0.20 

Precipitation (mm) b -$4.66 2.84 -1.64 -$9.14 $0.92 

    Gulf -$13.83 2.82 -4.90 -$19.13 -$7.63 

    Mid-Atlantic -$4.74 6.28 -0.76 -$17.64 $8.71 

    New England  $8.03 5.30 1.51 -$5.38  $15.30 

    Southeast  $0.78 4.96 0.15 -$11.48 $8.80 

Non-Summer Model      

Daily Max Temperature (°C)   $1.07 0.25 4.31 $0.53 $1.61 

    Gulf -$0.68 0.32 -2.12 -$1.42 -$0.08 

    Mid-Atlantic  $1.69 0.35 4.83 $1.08 $2.40 

    New England  $3.71 0.57 6.54 $2.48 $4.88 

    Southeast  $0.44 0.32 1.39 -$0.15 $1.02 

Precipitation (mm)   $5.75 3.11 1.85 $0.39 $12.67 

    Gulf  $0.47 2.21 0.21 -$3.47  $5.34 

    Mid-Atlantic  $8.37 5.65 1.48 -$1.47 $20.95 

    New England  $4.98 4.26 1.16 -$4.39 $12.94 

    Southeast  $9.35 4.12 2.27   -$0.41 $16.21 
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Table 8: Annual WTP under Different IPCC Emissions Scenarios  

Time Horizon 2011-2030          2040-2065 2080-2099 

 

WTP 

(millions) T-stat WTP/trip  
WTP 

(millions) T-stat WTP/trip 

WTP 

(millions) T-stat WTP/trip 

Panel A: Aggregate            

A2: Business-as-Usual  $51.3 1.94  $1.15  $84.2 1.52  $1.89 $304  2.55  $6.83 

A1B: Moderate Mitigation  $48.6 1.67  $1.09  $83.4 1.32  $1.88 $285  2.54  $6.41 

B1: Best-Case Scenario  $72.4 3.27  $1.63  $61.4 1.37  $1.38 $260  2.87  $5.85 

Panel B: Summer            

A2: Business-as-Usual -$7.3 -0.24 -$0.26 -$72.4 -1.32 -$3.58 -$123 -1.18 -$4.44 

A1B: Moderate Mitigation -$4.5 -0.16 -$0.16 -$99.1 -2.18 -$2.61 -$127 -1.88 -$4.59 

B1: Best-Case Scenario  $8.9  0.49  $0.32 -$63.4 -2.79 -$2.29 -$89.4 -1.39 -$3.23 

Panel C: Non-Summer            

A2: Business-as-Usual $58.6 4.60  $3.49 $156 7.51   $9.28 $427 7.74  $25.42 

A1B: Moderate Mitigation $53.1 2.82  $3.16 $182 8.24   $10.83 $412 6.42  $25.53 

B1: Best-Case Scenario $63.6 1.81  $3.79 $125 2.18   $7.44 $349 4.09  $20.78 
Note: WTP is averaged across 5 climate models (BCM2, MK3, AOM, CM3, & MIROC3) for A1B and B1 and 3 climate models (MK3, CM3, &  

MIROC3) for A2.  
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Table 9: Annual WTP under Different IPCC Emissions Scenarios: Summer Models  

Time Horizon 2011-2030 2040-2065 2080-2099 

 
WTP 

(millions) T-stat WTP/trip  
WTP 
(millions) T-stat WTP/trip 

WTP 
(millions) T-stat WTP/trip 

Panel A: Gulf            

A2: Business-as-Usual -$3.53 -0.24 -$0.19 -$61.9 -1.75 -$3.27 -$182 -2.70 -$9.60 

A1B: Moderate Mitigation  $1.09  0.05  $0.06 -$91.1 -3.58 -$4.81 -$143 -3.04 -$7.55 

B1: Best-Case Scenario  $13.4  2.04  $0.71 -$58.2 -3.99 -$3.07 -$95.7 -4.48 -$5.05 

Panel B: Southeast             

A2: Business-as-Usual -$11.8 -1.30 -$1.25 -$25.6 -1.79 -$2.72 -$46.9 -1.97 -$4.98 

A1B: Moderate Mitigation -$10.7 -1.32 -$1.14 -$22.2 -1.78 -$2.36 -$35.7 -2.10 -$3.79 

B1: Best-Case Scenario -$10.2 -3.90 -$1.08 -$16.9 -0.77 -$1.79 -$23.6 -0.82 -$2.50 

Panel C: Mid-Atlantic              

A2: Business-as-Usual  $9.52 1.48  $1.58  $15.1 2.96  $2.50  $113 3.02  $18.71 

A1B: Moderate Mitigation  $6.89 1.39  $1.14  $4.57 0.38  $0.76  $46.6 2.39  $7.72 

B1: Best-Case Scenario  $12.2 0.94  $2.02  $28.3 1.65  $4.69  $25.0 0.82  $4.14 

Panel D: New England              

A2: Business-as-Usual  $26.5 4.08  $3.77  $45.0 1.70  $6.40  $120 2.74  $17.07    

A1B: Moderate Mitigation  $23.1 2.33  $3.29  $46.0 4.25  $6.54  $94.8 4.13  $13.49    

B1: Best-Case Scenario  $16.7 2.93  $2.38  $38.8 4.20  $5.52  $62.1 1.98  $8.84    
Note: WTP is averaged across 5 climate models (BCM2, MK3, AOM, CM3, & MIROC3) for A1B and B1 and 3 climate models (MK3, CM3, & MIROC3)  

for A2.  
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Table 10: Annual WTP under Different IPCC Emissions Scenarios: Non-Summer Models  

Time Horizon 2011-2030 2040-2065 2080-2099 

 
WTP 

(millions) T-stat WTP/trip  
WTP 
(millions) T-stat WTP/trip 

WTP 
(millions) T-stat WTP/trip 

Panel A: Gulf            

A2: Business-as-Usual -$26.5 -4.99 -$1.40 -$71.8 -5.77 -$3.79 -$110 -7.66 -$5.80 

A1B: Moderate Mitigation -$25.4 -1.90 -$1.34 -$38.2 -2.85 -$2.02 -$102 -4.33 -$5.38 

B1: Best-Case Scenario -$13.9 -0.45 -$0.73 -$36.3 -0.91 -$1.92 -$38.7 -0.68 -$2.04 

Panel B: Southeast             

A2: Business-as-Usual  $15.3 1.85  $1.62   $36.8  2.32  $3.91  $27.6 1.23  $2.93 

A1B: Moderate Mitigation  $25.0 1.53  $2.65   $33.5  1.59  $3.55  $67.5 1.47  $7.16 

B1: Best-Case Scenario  $2.91 0.33  $0.31  -$0.7  -0.05 -$0.07  $44.1 2.29  $4.68 

Panel C: Mid-Atlantic              

A2: Business-as-Usual  $29.7 2.26  $4.92  $87.7 9.10 $14.52    $227 6.50  $37.59 

A1B: Moderate Mitigation  $25.3 3.12  $4.19  $89.4 10.8 $14.80  $240 7.29  $39.74 

B1: Best-Case Scenario  $36.4 5.99  $6.03  $77.3 4.99 $12.80  $197 6.08  $32.62 

Panel D: New England              

A2: Business-as-Usual  $52.5 10.0  $7.47  $111 11.1 $15.79  $303 16.1  $43.11    

A1B: Moderate Mitigation  $35.3 9.82  $5.02  $106 10.3 $15.08  $230 9.01  $32.72    

B1: Best-Case Scenario  $39.0 4.05  $5.55  $85.4 5.88 $12.15  $137 4.28  $19.49    
Note: WTP is averaged across 5 climate models (BCM2, MK3, AOM, CM3, & MIROC3) for A1B and B1 and 3 climate models (MK3, CM3, &  

MIROC3)  for A2.  
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Table 11: Demand Responses (in millions of trips) for Counterfactual Climate Scenarios 

Time Horizon 2011-2030 2040-2065 2080-2099 

 Trips a T-stat Change b Trips  T-stat Change Trips T-stat Change  

Panel A: Aggregate  

(Baseline: 44.5 million trips)          

A2: Business-as-Usual  44.8 10.2  0.7 % 44.6 9.16  0.2 %  45.4 7.26  2.2 % 

A1B: Moderate Mitigation  44.8 9.59  0.7 % 44.4 8.83 -0.2 %  45.3 7.82  1.9 % 

B1: Best-Case Scenario  45.1 10.2  1.4 % 44.5 9.47 -0.1 %  45.3 7.65  2.0 % 

Panel B: Summer  

(Baseline: 27.7 million trips)          

A2: Business-as-Usual  27.6 12.6 -0.4 %  26.8 11.0 -3.2 %   26.4 8.44  -4.6 % 

A1B: Moderate Mitigation  27.6 11.8 -0.2 %  26.5 10.5 -4.4 %   26.3 9.09  -4.8 % 

B1: Best-Case Scenario  27.8 12.6  0.5 %  26.9 11.5 -2.8 %   26.7 9.01  -3.4 % 

Panel C: Non-Summer  

(Baseline: 16.8 million trips)          

A2: Business-as-Usual   17.2 7.88  2.6 %   17.8 7.30  5.8 %   19.0 6.09  13.4 % 

A1B: Moderate Mitigation   17.2 7.36  2.3  %   17.9 7.13  6.7 %   19.0 6.55  13.0 % 

B1: Best-Case Scenario   17.3 7.84  2.8 %   17.6 7.49  4.6 %   18.6 6.28  11.0 % 
Note: a – Number of trips taken under each scenario.  b – Percentage gain or loss relative to baseline estimated in model for 2004-2010.     
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Table 12: Demand Responses (in millions of trips) for Counterfactual Climate Scenarios: Summer 

Time Horizon 2011-2030 2040-2065 2080-2099 

 Trips a T-stat Change b Trips  T-stat Change Trips T-stat Change 

Panel A: Gulf  

(Baseline: 11.0 million trips) 
 

 
  

 
  

 
 

A2: Business-as-Usual  10.9 15.6 -1.3 %  10.2 11.0 -7.0 %   9.07 6.20 -17.6 % 

A1B: Moderate Mitigation  11.0 11.5 -0.9 %  9.87 9.56 -10.2 %   9.47 7.58 -13.9 % 

B1: Best-Case Scenario  11.2 17.5  1.4%  10.3 14.9 -6.6 %   9.98 9.57 -9.3 % 

Panel B: Southeast 

(Baseline 5.73 million trips) 
         

A2: Business-as-Usual  5.56 15.7 -4.1  %  5.42 13.7 -5.5 %   5.24 12.1  -8.6 % 

A1B: Moderate Mitigation  5.58 15.4 -2.5 %  5.46 13.4 -4.8 %   5.36 15.2  -6.5 % 

B1: Best-Case Scenario  5.59 15.5 -1.5 %  5.53 14.2 -3.6 %   5.49 11.8  -4.3 % 

Panel C: Mid-Atlantic  

(Baseline 1.95 million trips) 
         

A2: Business-as-Usual  2.10 2.27  7.3 %  2.31 2.13  18.4 %  3.18 2.23   62.7 % 

A1B: Moderate Mitigation  2.06 2.32  5.3  %  2.14 2.14  9.9 %  2.46 1.99   25.9 % 

B1: Best-Case Scenario  2.13 2.31  9.4 %  2.01 2.30  3.1 %  2.22 2.14   13.9 % 

Panel D: New England  

(Baseline 5.28 million trips) 
         

A2: Business-as-Usual  5.67 11.7  7.5 %  5.76 13.1  9.2 %  6.55 6.06   24.2 % 

A1B: Moderate Mitigation  5.62 10.8  6.5 %  5.84 10.5  10.7 %  6.29 7.28   19.2 % 

B1: Best-Case Scenario  5.52 11.2  4.7 %  5.85 7.19  10.9 %  5.94 8.85   12.6 % 
Note: a – Number of trips taken under each scenario.  b – Percentage gain or loss relative to baseline estimated in model for 2004-2010.     
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Table 13: Demand Responses (in millions of trips) for Counterfactual Climate Scenarios: Non-Summer 

Time Horizon 2011-2030 2040-2065 2080-2099 

 Trips a T-stat Change b Trips  T-stat Change Trips T-stat Change 

Panel A: Gulf  

(Baseline: 7.96 million trips) 
 

 
  

 
  

 
 

A2: Business-as-Usual  7.74 34.7 -2.5 %  7.51 19.8 -5.6 %   7.37 16.0 -7.4 % 

A1B: Moderate Mitigation  7.76 18.8 -2.4 %  7.72 22.2 -3.0 %   7.41 14.5 -6.9 % 

B1: Best-Case Scenario  7.85 39.7 -1.3 %  7.73 23.4 -2.9 %   7.75 24.0 -2.6 % 

Panel B: Southeast 

(Baseline 3.35 million trips) 
         

A2: Business-as-Usual  3.80 5.12  3.1  %  3.91 4.10  6.1 %   3.83 2.23   3.9 % 

A1B: Moderate Mitigation  3.87 4.20  4.9 %  3.89 4.15  5.6 %   4.04 1.93   9.6 % 

B1: Best-Case Scenario  3.71 4.95  0.6 %  3.68 4.65 -0.1 %   3.92 2.24   6.3 % 

Panel C: Mid-Atlantic  

(Baseline 4.35 million trips) 
         

A2: Business-as-Usual  4.27 5.53  4.7  %  4.63 5.71  13.5 %  5.28 4.85   29.4 % 

A1B: Moderate Mitigation  4.26 5.92  4.2 %  4.64 5.89  13.6 %  5.36 4.47   31.2 % 

B1: Best-Case Scenario  4.35 5.77  6.5 %  4.56 5.72  11.8 %  5.13 4.21   25.6 % 

Panel D: New England  

(Baseline 1.74 million trips) 
         

A2: Business-as-Usual  2.14 4.53  21.9 %  2.44 4.63  39.3 %  3.35 3.68   91.0 % 

A1B: Moderate Mitigation  2.01 5.06  14.8 %  2.40 4.57  27.3 %  2.82 3.92   61.2 % 

B1: Best-Case Scenario  2.04 4.75  16.3 %  2.28 4.32  30.1%  2.48 3.90   41.4 % 
Notes: a – Number of trips taken under each scenario.  b – Percentage gain or loss relative to baseline estimated in model for 2004-2010.     

.     
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Table 14: Average Marginal Effects of Temperature & Precipitation on Night Fishing  

 Observations Daily Maximum Temperature (°C) Precipitation (mm) 

Logit Model 1  Parameter Std. Err.2 Parameter Std. Err. 

     Gulf 87,381 0.014*** 0.004 0.070 0.047 

     Southeast 36,291 0.021*** 0.007 0.083 0.065 
Note: Logit model on night fishing is estimated with robust standard errors clustered by phone exchange. Standard 

errors are calculated by Delta-Method. 

*** Significant at the 1 percent level.  ** Significant at the 5 percent level.  * Significant at the 10 percent level 
 
 

 

 

 

 

 

 

Figure 1: Schematic for Two-level Nested Logit Model   
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Figure 2: Coastal Counties in MRIP Phone Survey Data 

 

 
Note: 328 coastal counties included in phone survey data shaded in dark grey. 
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Figure 3: Atmospheric CO2 Concentrations under SRES Emissions Scenarios 
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Figure 4: Predicted Welfare Change under Different Emissions Scenarios 

 

 
 
Note: Black lines represent emissions scenario SRES A2 (business as usual), red lines are SRES A1B, and green 

lines are SRES B1 (best-case scenario). Solid lines represent average welfare across different GCMs while dashed 

lines represent minimum and maximum welfare changes under each emissions scenario. 
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Figure 5: Predicted Regional Welfare Change under Different Emissions Scenarios: Summer 

 

 

 
 

 
 

 
Note: Black lines represent emissions scenario SRES A2 (business as usual), red lines are SRES A1B, and green lines are SRES B1 (best-case scenario). Solid 

lines represent average welfare across different GCMs while dashed lines represent minimum and maximum welfare changes under each emissions scenario.  
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Figure 6: Predicted Regional Welfare Change under Different Emissions Scenarios: Non-Summer  

 

 

 
 

 

 
 
Note: Black lines represent emissions scenario SRES A2 (business as usual), red lines are SRES A1B, and green lines are SRES B1 (best-case scenario). Solid 

lines represent average welfare across different GCMs while dashed lines represent minimum and maximum welfare changes under each emissions scenario.
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APPENDIX (For Online Publication) 
 

Appendix A:  Site Registry Data    

   
This appendix describes the steps used to transform the trip frequency information contained in 

the MRIP site registries into aggregate trip estimates for each of the 2,473 shoreline fishing sites 

along the East and Gulf coasts. Every two months, NOAA updates its master list of public access 

shoreline fishing sites, or site registry. Each site has weekday and weekend trip frequency or 

“fishing pressure” estimates associated with it, which are also updated bimonthly. These 

estimates represent NOAA’s best estimate of the number of trips occurring at a site in a normal 

8-hour period, and this information informs whether and how intensely to sample at each site in 

each wave. Bimonthly updates are based on feedback from NOAA field staff as well as auxiliary 

sources (e.g., published newspaper reports about pier closures). 

To construct estimates of aggregate trips for each MRIP site/wave/year combination, we 

employ the following steps. First, weekday and weekend trip estimates are constructed for each 

site and wave from the contemporaneous site registry. We assume that the average fishing day is 

16 hours at manmade sites (e.g., piers) which are generally lighted and 12 hours for all other 

sites. These daily estimates are then aggregated to the bimonthly period. Finally, a regression-

based adjustment is made to these estimates to account for the fact that not all trips at a site 

originate from coastal counties. Data from the MRIP intercept survey is used for this task. 

Specifically, intercepted respondents report their home zip code, which allows us to determine if 

they live in a costal or noncoastal county. For every sampled site, the share of trips originating 

from coastal counties can be constructed, and because sampling is by design simple random 

sampling at the site level, this constructed share is an unbiased estimate of the population share 

at that site. A weighted linear regression is then used to predict the share of coastal trips as a 

function of observable site characteristics. The weights employed in the regression analysis are 

inversely proportional to the intensity of sampling at the sites. These predicted shares are then 

combined with the bimonthly trip estimates to generate total trip predictions from coastal 

counties for all 2,473 MRIP sites. 
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Appendix B:  Climate Counterfactuals   

 

Figure B.1: Change in Average Daily Maximum Temperature (°C) under Scenario SRES B1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES B1 scenario operates on the key assumptions that a convergent world with low population growth but with rapid changes in economic 

structures toward a service and information economy, with reductions in materials intensity, and the introduction of clean and resource-efficient technologies. 
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Figure B.2: Change in Average Daily Maximum Temperature (°C) under Scenario SRES A1B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES A1B scenario operates on the key assumptions of a future world of very rapid economic growth, low population growth and rapid 

introduction of new and more efficient technology. Major underlying themes are economic and cultural convergence and capacity building, with a substantial 

reduction in regional differences in per capita income. In this world, people pursue personal wealth rather than environmental quality. 
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Figure B.3: Change in Average Daily Maximum Temperature (°C) under Scenario SRES A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES A2 scenario operates on the key assumptions of a future world of strengthening regional cultural identities, with an emphasis on family 

values and local traditions, high population growth, and less concern for rapid economic development. 
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Figure B.4: Change in Average Daily Precipitation (mm) under Scenario SRES B1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES B1 scenario operates on the key assumptions that a convergent world with low population growth but with rapid changes in economic 

structures toward a service and information economy, with reductions in materials intensity, and the introduction of clean and resource-efficient technologies. 
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Figure B.5: Change in Average Daily Precipitation (mm) under Scenario SRES A1B 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES A1B scenario operates on the key assumptions of a future world of very rapid economic growth, low population growth and rapid 

introduction of new and more efficient technology. Major underlying themes are economic and cultural convergence and capacity building, with a substantial 

reduction in regional differences in per capita income. In this world, people pursue personal wealth rather than environmental quality. 
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Figure B.6: Change in Average Daily Precipitation (mm) under Scenario SRES A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The IPPC SNES A2 scenario operates on the key assumptions of a future world of strengthening regional cultural identities, with an emphasis on family 

values and local traditions, high population growth, and less concern for rapid economic development. 
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