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Abstract13

Numerous control problems in economics can be characterized as optimal switching prob-14

lems, including optimal stopping and entry/exit problems. With certain notable excep-15

tions, solutions to such problems must be computed numerically. This paper discusses16

an approach to obtaining a numerical solution in a fairly general setting and describes a17

user-friendly MATLAB implementation that simplifies that process.18

Keywords: stochastic control, optimal switching, real options, computational methods19

JEL classification codes: C61, C63, C8820

Many problems in stochastic control involve situations in which an agent can choose among21

a discrete set of states or regimes. The choice of a control can be thought of as the choice of22

the regime. In addition, a diffusion process drives one or more state variables that affect the23

returns associated with each of the regimes. The total returns to the agent are also affected by24

the existence of costs associated with switching among the regimes.25

Optimal switching models often arise in pricing so-called real options. The recent collec-26

tions of Brennan and Trigeorgis and Schwartz and Trigeorgis provide an introduction to this27

area and numerous examples. The widely read text by Dixit and Pindyck also contains numer-28

ous examples of optimal switching models. The real options literature recognizes and attempts29

to value such things as the flexibility to defer action, to change from one activity to another, to30

abandon an investment or to default on a project.31

The simplest optimal switching models are optimal stopping problems, where one of the32
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regimes represents continuation and other represents a permanent “stopped” state. The Amer-33

ican option pricing problem is a well known example. More complicated optimal switch-34

ing models allow for movement back and forth among regimes and may have more than two35

regimes. A well known example introduced in McDonald and Siegel, McDonald and Siegel,36

and Brennan and Schwartz, is that of firm entry/exit. In such problems, a firm can make an37

investment in an asset that produces an output with a stochastic price. When the price is high38

enough, it is worth activation though investment in the asset. When the price is low enough,39

however, the firm may abandon its investment and become inactive. In the basic entry/exit40

model there are two regimes, active and inactive. An extension of this model adds a third41

regime that allows for temporary suspension of production.42

Brekke and Oksendal have provided general solution conditions for optimal switching mod-43

els that can be expressed as a set of functional complementarity conditions. In most cases44

explicit solutions to these conditions cannot be obtained. This paper discusses how numer-45

ical solutions can be obtained using function approximation and collocation. The approach46

results in a type of problem known as an Extended Vertical Linear Complementarity Prob-47

lem (EVLCP) for which a number of solution algorithms exist. A user friendly interface for48

defining and solving optimal switching models using MATLAB is documented and illustrated.49

Problem Statement and Optimality Conditions50

The general optimal switching model applies to problems in which an agent must choose, at51

each moment, among m regimes, R ∈ {1, . . . ,m}. The agent can move from regime i to j at a52
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cost of Cij (which may be arbitrarily high, thereby ruling out such a movement). C represents53

a lump-sum switching cost with Cii = 0, i.e., there is no lump sum cost to remaining in the54

current regime. The agent also receives a flow of payments per unit time of f(S,R), which55

depends on both the active regime and on a continuous d-dimensional state process S that is56

described by57

dS = µ(S,R)dt+ σ(S,R)dW. (1)58

The agent desires to maximize over an infinite time horizon the discounted value, discounted59

at rate ρ(S), of the flow of payments received less any switching costs incurred.60

The solution of the control problem consists of a value function V (S,R) and a control61

function A(S,R). By Ito’s Lemma the expected rate of appreciation of the value function62

dE[V (S,R)]

dt
= LV (S,R) =

∑
i

µi
∂V (S,R)

∂Si

+
1

2

∑
i

∑
j

Σij
∂2V (S,R)

∂Si∂Sj

(2)63

where Σij =
∑

k σikσjk. Brekke and Oksendal (Theorem 3.4) have shown that the optimal64

value function V (S,R) satisfies65

ρ(S)V (S,R) ≥ f(S,R) + LV (S,R) (3)66

and the m− 1 conditions67

V (S,R) ≥ V (S, x)− CRx, ∀x 6= R (4)68

Furthermore, one of these m conditions must be satisfied with equality at each (S,R). Which69

one is satisfied with equality determines the optimal policy A(S,R). Thus, if V (S,R) =70

V (S, x)− CRx, for some x, it is optimal at S to switch from R to x. Otherwise it is optimal to71

remain in regime R and the first condition is satisfied with equality.72
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There is a simple economic intuition behind these conditions. The value function can be73

thought of as the value of the assets that generate the payment flows. The total rate of return74

when regime R is active equals the current return flow f(S,R) plus the expected rate of capital75

appreciation dE[V (S,R)]/dt. Thus, the first condition states that the rate of return obtainable76

by investing V dollars must be at least as great as the total rate of return generated by the assets77

if one remains in regime R. The second condition states that the value function must be at least78

as great as the value that could be obtained by switching regimes.79

Anticipating the numerical approach discussed in the next section, the optimality conditions80

can be written in the following equivalent form81

0 = min
(
β(S,R)− f(S,R),min

x6=R
V (S,R)− V (S, x) + CRx

)
(5)82

where83

β(S,R) = ρ(S)V (S,R)− LV (S,R) (6)84

It should also be pointed out that this condition does not fully characterize the solution. In85

particular, additional regularity conditions are needed to uniquely define V . Essentially these86

amount to conditions that rule out explosive growth in the value function.87

To illustrate the framework, an example from Brekke and Oksendal is reviewed. Consider88

a mine currently containing Q units of ore. The mine is either idle (R = 1) or ore is extracted89

at rate hQ (R = 2) with a fixed cost of k incurred. The transition equation for Q is thus90

dQ =


0 if R = 1

−hQdt if R = 2

(7)91
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The current price at which ore can be sold evolves according to a geometric Brownian motion92

dP = µPdt+ σPdW (8)93

The flow of returns to the mine is94

f(Q,P,R) =


0 if R = 1

hQP − k if R = 2

(9)95

The firm incurs fixed startup and shutdown costs of C12 and C21 and uses a fixed discount rate96

of ρ.97

The solution conditions are98

0 = min
(
ρV (Q,P, 1)− µPVp(Q,P, 1)− 1

2
σ2P 2VPP (Q,P, 1),

V (Q,P, 1)− V (Q,P, 2) + C12

) (10)99

and100

0 = min
(
ρV (Q,P, 2)− µPVp(Q,P, 2)− 1

2
σ2P 2VPP (Q,P, 2)

+ hQVQ(Q,P, 2)− (hQP − k), V (Q,P, 2)− V (Q,P, 1) + C21

) (11)101

As Brekke and Oksendal point out, the problem can be simplified by defining y = QP and102

noting that103

dy =


µydt+ σydW if R = 1

(µ− h)ydt+ σydW if R = 2

(12)104

and105

f(Q,P,R) = f(y,R) =


0 if R = 1

hy − k if R = 2

(13)106
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Expressing the value function in terms of y and R, the optimality conditions are107

0 = min
(
ρV (y, 1)− µyVy(y, 1)− 1

2
σ2y2Vyy(y, 1), V (y, 1)− V (y, 2) + C12

)
(14)108

and109

0 = min
(
ρV (y, 2)− (µ− h)yVy(y, 2)− 1

2
σ2y2Vyy(y, 2)− (hy − k),

V (y, 2)− V (y, 1) + C21

) (15)110

∀y ∈ [0,∞).111

Numerical Solution Methods112

Optimal switching models generally require numerical approximations. In simple models the113

functional form of the solution may be known and numerical methods are required only to114

compute a limited set of parameter values. In particular, problems with a single geometric115

Brownian motion state, such as the one-dimensional formulation of the example given in the116

previous section, often can be solved in this way (see Dixit and Pindyck for more examples117

and nearly explicit solutions).118

For general problems, however, the functional form of the solution may not be known.119

Projection methods (Judd, Miranda and Fackler) using complete families of approximating120

functions represent a natural way to find approximate solutions to such models. Suppose that121

V (S, i) is approximated by φ(S)θi, where φ represents a set of n basis functions for a family of122

approximating functions and θi is an n-vector of coefficients for the value function associated123

with the ith regime. Define the approximate differential operator124

β(S, i) = ρ(S)φ(S)− µ(S, i)φ′(S) +
σ2(S, i)

2
φ′′(S) (16)125
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The inequality conditions can now be written as126

β(S, i)θi − f(S, i) ≥ 0 (17)127

and128

φ(S)θi − φ(S)θj + Cij(S) ≥ 0, ∀j 6= i (18)129

Values of the θi can be obtained by collocation, which solves the optimality conditions at a130

set of n nodal state values {sk}. Define the n× n matrices Φ and Bi as the functions φ(S) and131

β(S, i) evaluated at the nodal values. Similarly, define fi to be the n-vector of values of f(S, i)132

evaluated at the n nodal state values.133

The problem can now be stated as an extended vertical linear complementarity problem134

(EVLCP),1 which seeks a solution z to135

0 = min(M1z + q1,M2z + q2, . . . ,Mmz + qm). (19)136

where the Mi are each N ×N and the qi are each N × 1 and where the min operator is applied137

element-wise. The EVLCP could also be written as wi = Miz + qi ≥ 0 for i = 1, . . . ,m and138

m∏
i=1

wi = 0 (20)139

where the product is taken element-wise. The solution to an EVLCP problem thus requires140

that each of the wi be nonnegative and that for each of the N elements, at least one of the m wi141

values is exactly zero. Unlike more common complementarity conditions (such as the Karush-142

Kuhn-Tucker conditions) the complementarity here extends over m variables rather than only143

over two and hence cannot be written as a vector orthogonality condition.144

1This generalization of the standard linear complementarity problem has a number of names in the literature
including the extended generalized order LCP (Gowda and Sznajder).
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In the general form z represents the m column vectors θi stacked vertically. The Mi are145

given by146

Mi = eiei
> ⊗Bi + (Im − 1mei

>)⊗ Φ (21)147

and the qi are given by148

qi =

 C1i1n

· · ·
Cmi1n

− [ei ⊗ fi] (22)149

where 1m is a column vector composed ofm ones and ei is the ith column of anm×m identity150

matrix. Thus151

M1 =


B1 0 · · · 0
−Φ Φ · · · 0
· · · · · · · · · · · ·
−Φ 0 · · · Φ

 , q1 =


−f1
C211n

· · ·
Cm11n

 (23)152

M2 =


Φ −Φ · · · 0
0 B2 · · · 0
· · · · · · · · · · · ·
0 −Φ · · · Φ

 , q2 =


C121n

−f2
· · ·

Cm21n

 (24)153

etc.154

A number of solution approaches for solving EVLCPs have been proposed, each based on155

solution approaches that have proven useful for related problems. Cottle and Dantzig proposed156

a pivoting strategy for a related problem that is based on Lemke’s algorithm for solving or-157

dinary LCPs (Lemke).2 Details on modifications to the Lemke-based algorithm for EVLCPs158

are available from the author. In the first discussion of the application of EVLCPs to con-159

trol theory, Sun proposed an iterative algorithm similar in spirit to the Projected Successive160

2Cottle and Dantzig proposed this algorithm for what they termed the generalized LCP, which has since be-
come known as the vertical LCP. This is a special case of the EVLCP in which one of the Mi is an identity matrix
and the associated qi is a vector of zeros.
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Over-Relaxation (PSOR) method for solving LCPs. This method, however, can be unstable for161

solving the kind of problems considered here. Recently, a smoothing Newton method using a162

so-called aggregation function (also known as an entropy function) has been proposed by Qi163

and Liao. In numerical trials for the kind of problems considered here, the smoothing Newton164

method has the best performance characteristics.165

Another approach is to reformulate the problem using alternative semi-smooth functions.166

The Fischer-Burmeister function167

Φ−(x, y) = x+ y −
√
x2 + y2 (25)168

has the same roots as min(x, y) and has been found in practice to work well with Newton type169

methods for solving root-finding problems. Thus, the problem of solving170

0 = min(M1z + q1,M2z + q2) (26)171

is equivalent to that of solving172

0 = Φ−(M1z + q1,M2z + q2) (27)173

This function can be extended recursively by defining174

Fi(z) = Φ−(Miz + qi, Fi+1(z)) (28)175
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for i = 1, . . . ,m− 1, with Fm(z) = Mmz + qm.3 The problem of solving176

0 = min(M1z + q1, . . . ,Mmz + qm) (31)177

is equivalent to solving 0 = F (z) = F1(z).178

The derivative of F can be found recursively179

dFi(z)

dz
= diag

(
dΦ−(Miz + qi, Fi+1(z))

dx

)
Mi+diag

(
d

Φ−(Miz + qi, Fi+1(z))

dy

)
dFi+1

dz
(32)180

Letting ci = dΦ−(Miz + qi, Fi+1(z))/dx and di = dΦ−(Miz + qi, Fi+1(z))/dy the deriva-181

tive of F can be written as182

dF (z)

dz
=

m−1∑
i=1

diag

(
ci

i−1∏
j=1

dj

)
Mi + diag

(
m−1∏
j=1

dj

)
Mm (33)183

This is convenient because it maintains the sparsity structure of the Mi.184

An alternative to the Fischer-Burmeister function is a function proposed by Qi, referred to185

here as Qi’s Ψ function:4
186

Ψ(x, y) = x+ y − |y|
(

1 + 1
3

(
x
y

)2)
if |y| ≥ |x|

= x+ y − |x|
(

1 + 1
3

(
y
x

)2) if |x| > |y|
(35)187

3This version could be called a backwards version. One can also define a forwards version:

Gi(z) = Φ−(Gi−1(z),Miz + qi) (29)

for i = 2, . . . ,m, with G1(z) = M1z + q1. One then solves 0 = G(z) = Gm(z). The derivative is

dG(z)

dz
= diag

 m∏
j=2

cj

M1 +

m∑
i=2

diag

di

m∏
j=i+1

cj

Mi (30)

4The Qi Ψ function and its derivatives can be evaluated efficiently using

Ψ(x, y) Ψx(x, y) Ψy(x, y)

|x| > |y| and x > 0 y
(
1− 1

3
y
x

)
1
3

(
y
x

)2
1− 2

3
y
x

|x| > |y| and x < 0 2x + y
(
1 + 1

3
y
x

)
2− 1

3

(
y
x

)2
1 + 2

3
y
x

|y| ≥ |x| and y > 0 x
(

1− 1
3
x
y

)
1− 2

3
x
y

1
3

(
x
y

)2
|y| ≥ |x| and y < 0 2y + x

(
1 + 1

3
x
y

)
1 + 2

3
x
y 2− 1

3

(
x
y

)2
(34)

10



To date theoretical results on the solvability of EVLCPs are mostly limited to the case in188

which all row-representative matrices associated with theMi are nonsingular with determinants189

of the same sign, the so-called W property (see Gowda and Sznajder). Unfortunately, in the190

present case, singularity of a row representative matrix can result, and hence these results do191

not apply. It also means that it is possible for the Lemke-based and smoothing Newton based192

methods to fail. In practice, however, this does not seem to be a problem.193

The quality of the approximate solution depends on both the choice of the family of approx-194

imating functions and the set of nodal values used to obtain the collocation solution. In general195

V (S,R) is not smooth, but exhibits discontinuity in the second derivative at points for which196

it is optimal to switch from R to another regime.5 For this reason polynomial approximations197

generally perform poorly. A better alternative is to use either piecewise linear functions (using198

finite differences to approximate φ′ and φ′′) or cubic spline functions because these functions199

are not as adversely affected by the derivative discontinuities.200

5If Cij = Cji = 0 at a point S for which is it optimal to switch between i and j, then the value function will
exhibit discontinuity in the third derivative (see the related discussion of super-contact conditions in Dumas)
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A MATLAB Implementation201

To specify an optimal switching model, an analyst must define the functions f(S,R), ρ(S),202

µ(S,R) and σ(S,R) and assign values to any parameters that these function use as well as to203

the cost parameter matrix C. To solve the model using the function approximation approach204

described in the previous section also requires that the analyst specify the family of approxi-205

mating functions to be used and the nodal values of S at which to evaluate the complementarity206

conditions.207

This section describes an implementation in MATLAB that makes the solution process rela-208

tively simple (the code described here can be downloaded from the author’s website). The first209

step is to code a model function file according to the following template:210

function out=func(flag,S,R,additional parameters)211

switch flag212

case ’f’213

out = reward function f(S,R);214

case ’mu’215

out = drift function mu(S,R);216

case ’sigma’217

out = diffusion function sigma(S,R);218

case ’rho’219

out = discount rate rho(S);220

end221

The procedure will be passed a string variable flag, an nm × d matrix of values of the222

continuous state S, a scalar value of the regime R and any additional parameters needed to223

evaluate the model functions. When the flag variable is f the procedure should return an224

nm× 1 vector, when flag is mu it should return an nm× d matrix, when flag is sigma it225

should return an nm× d× d array and when flag is rho it should return an nm× 1 vector226

12



(or a scalar if ρ is a constant).227

The model specification is completed by defining a structure variable model with the fol-228

lowing three fields:6
229

func the name of the model function file
params a cell array with the parameters to pass to the model function file
cost the m×m switching cost matrix C

230

The family of approximating functions is specified by using the procedures in the Comp-231

Econ Toolbox described in Miranda and Fackler which is available from Fackler’s website.232

The toolbox procedures can be used to create a structure variable called fspace containing233

all the information needed to define the necessary basis matrices.234

The main solution procedure is a procedure called ossolve which has the following syn-235

tax:236

[cv,snodes,x,xindex]=ossolve(model,fspace,snodes,cv);237

The first two inputs have already been described and are the only ones needed. The third input,238

if passed, is a set of nodal values of S. If S is one-dimensional, this should be a simple column239

vector. If S is d-dimensional, snodes should be passed as a cell array of column vectors.240

These will be expanded by ossolve into a grid of values, the size of which, n, will equal the241

product of the lengths of the vectors. The fourth input, if passed, is an n×m matrix of initial242

values for the coefficients of the value function approximations.243

The first output returned by the procedure is an n ×m matrix of coefficients of the value244

function approximations. The value function can now be evaluated at arbitrary values of (S,R)245

using the CompEcon Toolbox function call246

6Structure variables in MATLAB are user defined data type with named fields. The data in a field is accessed us-
ing the syntax variablename.fieldname. Cell arrays are data types with fields accessed by index number,
e.g., variablename{i,j}.
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V=funeval(cv(:,R),fspace,S);247

The marginal value (shadow price) function can be obtained in a similar fashion using248

dV=funeval(cv(:,R),fspace,S,1);249

The second and third outputs provide the nodal values used in finding the solution (nm×d)250

and the optimal regime choice at the nodal values (nm×m). This provides a representation of251

optimal decision rule. This representation, of course, is only as accurate the mesh size of the252

grid of nodal points.253

The fourth output xindex (m × 6) is useful for characterizing on the optimal decision254

rule in one dimensional problems. For each of the m regimes it contains information about the255

lower and upper boundaries of the no-switch region. The first column contains the approximate256

location of the lower bound, the second column contains the regime number that it is optimal to257

switch to at that point and the third column contains the difference in the derivatives of the value258

functions for the two regimes at the approximate switch point (this difference should be zero259

and thus provides a check on the solution). Columns 4 through 6 provides similar information260

at the upper bound of the no-switch region. xindex is returned as an empty matrix when261

d > 1.262

A separate utility is also provided to evaluate the optimal decision rule and the value func-263

tion at arbitrary points and works for any value of d. It is called with the following syntax:264

[regime,V,dV]=osoptimum(S,R,cv,model,fspace);265

The first input is a k × d matrix of arbitrary values of S. The second input R is either scalar or266

a k × 1 vector of values of the regime number. The remaining inputs are the coefficient matrix267

returned from ossolve and the model definition and function definition structures passed to268

ossolve.269
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The utility returns a best guess of the optimal decision rule, the value function and the270

marginal value (shadow price) function at the points (S,R) (the sizes of the outputs are k × 1,271

k × 1 and k × d, respectively). The optimal decision rule is determined by calculating the272

value function at (S,R) as well as the value function at S for the other regimes less the cost of273

switching to them from R. The best switch is computed and then compared to the no-switch274

strategy.275

It is, however, impossible to determine with complete satisfaction the location of no-switch276

boundary due to the approximations inherent in the solution approach. The value function for277

any given regime should be exactly equal to the value of the best switch strategy outside the no-278

switch region and should be strictly greater everywhere within the region. As a compromise,279

the utility assumes that a switch should occur unless280

V (S,R)−max
x6=R

(V (S, x)− Crx) > ε|V (S,R)| (36)281

where ε is set to the default value of 10−5 (this value can be set by the user with the call282

optset(’osoptimum’,’tol’,epsilon), where epsilon is any desired value). A283

useful check on the accuracy of this utility is to compare the output of the call284

regime=osoptimum(snodes,i,cv,model,fspace);285

to the values of x(:,i) returned by ossolve (they should be identical).286

Practicalities and Extensions287

There are three choices an analyst must make in using ossolve: the family of approximating288

functions, the nodal values at which to solve the complementarity conditions and the initial289
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coefficient values to use. As already mentioned, the use of smooth families of functions, like290

polynomials, is not recommended for switching models because of the discontinuities that291

occur in the second derivatives of the value function at the optimal switching points. Instead292

either cubic splines or piecewise linear functions with finite difference derivatives are better293

choices. These families can be defined using the CompEcon toolbox calls294

fspace=fundefn(’spli’,n,a,b);295

or296

fspace=fundefn(’lin’,n,a,b);297

In either case n is the number of basis functions needed to define the family and a and b are298

the lower and upper bounds of the approximation interval. When S is d-dimensional, n, a and299

b should all be 1× d vectors and tensor product basis functions will be formed from the basis300

functions for each dimension (see Miranda and Fackler, chapter 6, for more details).301

The syntax above defines cubic spline or piecewise linear functions with evenly spaced302

breakpoints on the interval [a, b]. The choice of the approximation interval is very important303

for the accuracy of the solution. If the interval is too wide, a large number of nodal points304

will be needed to obtain accurate solutions. If the interval is too small, endpoint problems may305

corrupt the solution. A general rule of thumb is that the interval should wide enough to include306

values to which the ergodic distribution of S (if it exists) assigns non-trivial probability. If no307

ergodic distribution exists (as with the widely used geometric Brownian motion), the interval308

should be large enough relative to the discount rate. Essentially this means that if the process309

starts near a switch point, the probability that it reaches the approximation boundary within310

short period of time is small. How short a period of time is appropriate in this calculation311
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is determined by how fast the future is discounted. From a practical point of view, one can312

experiment with alternative values of a and b. These should be made extreme enough that the313

results of interest (generally the values of the switching points and the value function near these314

points) are relatively unaffected by the choice.315

The CompEcon toolbox also allows one to specify spline or piecewise linear functions with316

unevenly spaced breakpoints. This may be useful if more accuracy is required. Putting more317

breakpoints in regions of non-smooth behavior, especially around the switch points, can result318

in much greater accuracy for the same order of approximation.319

Some choice of nodal values must also be made. It is probably best to use the default320

values provided by the CompEcon Toolbox unless one has strong reasons for another choice.321

For splines and piecewise linear functions, the default nodal values are the breakpoints (with322

an extra point added near each end for cubic splines). Evaluation at the breakpoints ensures323

that the resulting basis matrices are well conditioned. The default nodal values used can be324

obtained prior to calling ossolve with the call7
325

snodes=funnode(fspace);326

Starting values for the function coefficients can also be passed to the complementarity327

solver. If initial values are not passed, ossolve will compute default values by solving for328

the function coefficients that approximate a suboptimal value function with a decision rule that329

never switches the currently active regime. This may be a reasonable choice for starting values330

if nothing is known about the solution. If comparative static exercises are being performed331

by solving a model multiple times at a set of alternative model parameters, a good choice of332

7For multidimensional state variables (d > 1), snodes is returned as a 1 × d cell array of columns vectors.
This can be transformed into a d-column matrix of points using S=gridmanke(snodes).
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starting values will generally be the values obtained from a previous call to ossolve.333

Several extensions are of the basic model increase the flexibility with which it can be ap-334

plied. First, suppose that, in addition to the decision maker choosing which regime is active, it335

is also possible that random exogenous shifts of regime occur. This possibility is described in336

greater detail in another paper, but suffice is to say here that a model of this type can be spec-337

ified by defining two additional m × m matrices. The first of these, Λ, contains the Poisson338

jump intensities associated with an exogenous switch from regime i to regime j. The second339

matrix, Q, contains the costs imposed if such a jump occurs. Both matrices should have zeros340

on the diagonal.341

To specify a model of this type, the model structure variable should contain two additional342

fields, L and Q, which contain the two matrices (if either L or Q is missing or empty, it is343

assumed to imply an m × m matrix of zeros). The only change in the algorithm is that the344

definitions of the Mi and qi need to be appropriately modified.345

Another extension that is straightforward is to allow the switching costs C, the Poisson346

intensities Λ and the costs due to exogenous switching Q to all be functions of S. Again, the347

solution approach is essentially unchanged except that the specific values of theMi and qi need348

to be adjusted appropriately. If the cost field is a string containing the word ’variable’ the349

solver calls the model function file with the flag C. The model function file should return an350

n×m matrix containing the cost of switching from regime x to the other regimes (this should351

contain a vector of zeros in column x). A similar syntax applies to Λ and Q, with the flag352

variable set to L and Q, respectively.353

A third extension handles the situation in which the value function is known at some speci-354
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fied point or points. In such a case the complementary conditions (17) and (18) associated with355

the point (S,R) could be replaced by356

φ(S)θR − V (S,R) ≥ 0 (37)357

To implement this feature, the model variable should include a field named values con-358

taining a d+ 2 column matrix. Columns 1 through d are the values of S, column d+ 1 contains359

the regime number R and the last column contains the value of V (S,R). For example suppose360

S is two-dimensional, with V ([S1 S2], R). Setting361

model.values=[0 0 1 5;0 0 2 5]362

will force V ([0 0], 1) = V ([0 0], 2) = 5. If all values in a specific dimension are involved, a363

NaN can be used in the associated column. For example, setting364

model.values=[0 nan 0 1;nan 0 1 2]365

will set V ([0 S2], 1) = 0, ∀S2 and V ([S1 0], 2) = 1, ∀S1. A value of NaN can also be used for366

the regime number, so367

model.values=[0 0 nan 5]368

produces the same result as369

model.values=[0 0 1 5;0 0 2 5]370

To force the numerical procedure to produce an approximate solution with known values, the371

optimality conditions (17) and (18) are replaced by condition (37) at the nodal points closest372

to each of the (S,R) values.373

Finally, it may be desirable to allow for resetting of S when a regime switch occurs. For374

example, one of the states might measure the time spent in the current regime since the last375

19



regime change (so dS = dt). This state would be reset to 0 every time the regime changes.376

In general, if switching from regime i to regime j causes S to be reset to Sij , condition (4) is377

modified to378

V (S, i) ≥ V (Sij, j)− Cij (38)379

and condition (18) to380

φ(S, i)θi − φ(Sij)θj + Cij ≥ 0 (39)381

To implement this feature, the model variable should include a field named reset con-382

taining a 2 + d column matrix. The first d columns contain the target value of the state after383

resetting. Column d+ 1 contains the regime before the switch and columns d+ 2 is the regime384

after the switch. For example, if, on switching from regime i = 2 to regime j = 3, the state is385

reset to Sij = [0 1], use386

model.reset=[0 1 2 3]387

If some of the variables are not reset upon switching, set the value of the state for these di-388

mensions to NaN. For example, if only the first state variable is reset to 0 when switching from389

regime 1 to 2, use390

model.reset=[0 nan 1 2]391

20



A Worked Example392

This section demonstrates the application of the MATLAB procedures to the mine operation393

example discussed earlier (the demonstration files are included with the solver). The example394

first solves the model with a two dimensional state space (Q,P ) and then solves the same395

model with the one-dimensional state space y = QP .396

The first requirement is the model function file:397

function out=minemodel2(flag,s,R,mu,sigma,rho,h,k)398

switch flag399

case ’f’400

out=(h*s(:,1).*s(:,2)-k).*(R==2);401

case ’mu’402

out=[-h*s(:,1).*(R==2) mu*s(:,2)];403

case ’sigma’404

out=[zeros(size(s,1),3) sigma*s(:,2)];405

case ’rho’406

out=rho;407

end408

In addition to the required first three inputs, this function is defined in terms of five of the model409

parameters µ, σ, ρ, h and k (there are two additional model parameters C12 and C21).410

To solve the model, we also write a MATLAB script file that is called from the MATLAB411

command line. This file begins by defining the model parameters:412

mu = 0.01;413

sigma = 0.02;414

rho = 0.04;415

h = 1;416

k = 2;417

C12 = 5;418

C21 = 2;419

(the specific values are for demonstration purposes only). Next the model structure variable is420

defined:421
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clear model422

model.func = ’minemodel2’;423

model.params = {mu,sigma,rho,h,k};424

model.cost = [0 C12;C21 0];425

Then the family of approximating functions is defined:426

fspace=fundefn(’lin’,[51 51],[0 0],[100 10]);427

Here a piecewise linear function with 51 evenly spaced breakpoints for Q on [0,100] and 51428

evenly spaced breakpoints for P on [0,10] are used (this family of approximating functions429

uses finite difference derivatives). The solver is now called:430

[cv,snodes,x]=ossolve(model,fspace);431

Using the output, a plot of the optimal switch boundaries can be computed, as is shown in432

the solid lines in Figure 1. The lower line represents the points for which it is optimal to switch433

from active to inactive, the upper line represents the points for which it is optimal to switch434

from inactive to active. The jaggedness in an inevitable consequence of the discreteness of the435

nodal values. Although it might be useful to smooth these curves, no attempt has been made to436

do so here.437

The model can also be solved using the one dimensional reformulation. In this case the438

model function file would be written439

function out=minemodel1(flag,s,R,mu,sigma,rho,h,k)440

switch flag441

case ’f’442

out=(h*s-k).*(R==2);443

case ’mu’444

out=(mu-h*(R==2))*s;445

case ’sigma’446

out=sigma*s;447

case ’rho’448

out=rho;449

end450
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Figure 1: Optimal Switch Boundaries for the Mine Example
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The model variable func field would be changed to the name of this procedure451

model.func = ’minemodel1’;452

Also the fspace variable would be altered453

fspace=fundefn(’lin’,501,0,50);454

This defines a family of piecewise linear functions with 501 breakpoints on [0 50]. When455

calling the solver, it will be useful now to obtain the fourth output xindex:456

[cv,snodes,x,xindex]=ossolve(model,fspace);457

Elements (1,4) and (2,1) of xindex contain the approximate locations of the switch points458

for the inactive and active regimes, respectively. For the parameter values given above, these459

points are computed to be 17.3 and 1.9. The optimal switchpoints are therefore approximately460

points satisfying QP = 17.3 and QP = 1.9, which are shown in the dashed lines in Figure 1.461
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The one-dimensional mine example has an almost explicit solution, which can be used to462

obtain highly accurate optimal switching boundaries and value functions (see, e.g., Dixit and463

Pindyck for discussion of this approach). To four decimal places, the switching boundaries are464

17.2522 and 1.9233. For practical purposes, this is indistinguishable from the one-dimensional465

numerical solution. Furthermore, the value function approximation was accurate to approxi-466

mately four significant digits.467

Summary468

This paper describes a general numerical approach to solving optimal switching problems and469

documents a MATLAB based implementation of the approach. The basic framework consists470

of a model for a stochastic process S that characterized by its drift and diffusion functions471

µ and σ, by a stream of rewards described by the function f , by a discount rate ρ (possibly472

state contingent) and by a switching cost matrix C. The solution approach requires that these473

parameters be specified along with a family of approximating functions. The solution algorithm474

can then set up and solve a set of complementarity conditions that are satisfied at the problem475

solution.476

The solution approach described and implemented here has a number of important advan-477

tages over previously described solution approaches. First, it is generic and hence the code478

required to solve specific models is mainly limited to specifying the functions and parameter479

values that define the model, along with code to call the solver and interpret the solver output.480

Second, it can solve models with general multidimensional diffusion processes. This makes it481

easy to solve models without the restriction to one-dimensional geometric Brownian motion482
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found in much of the existing literature. Third, unlike the generic one-dimensional solver de-483

scribed in Miranda and Fackler (chap. 11), the solution approach used here does not require484

that the analyst guess at the qualitative nature of the optimal solution. In particular, it is not485

necessary to know to which regime it is optimal to switch at the boundaries of the no-switch486

regions.487
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