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Climate change and defensive actions

• How will individuals and society respond to climate change?

• As climate changes, so will behavior

• Could be large public good projects provided by governments or

smaller scale private actions

Figure 1: Maeslantkering outside of Rotterdam
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Climate change and defensive actions

Figure 2: Wine grapes in Champagne
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Climate change and defensive actions

“This heat is a killer. It’s going to be like a blast furnace

tomorrow and you need to adjust what you do. You need to

take care. So put off the sporting events, put off the outside

events, stay inside.”

Paul Holman, state ambulance commander

Victoria, Australia (January 5, 2018)
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Small private defensive actions

• Could include dietary choices (Beatty et al 2017), clothing choice

(Zhang et al 2017), activity choices (Zivin & Neidall 2014),

medications (Deschenes et al 2017), etc.

• May or may not be linked to markets

• Even if the effect of an individual choice is small, the cumulative

effect of many small actions could be large
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Using expectations to measure adaptation

“Climate is what you expect; weather is what you get.”

• Variation in expectations can be used to estimate adaptation

• Recent applications to fishing revenue (Shrader 2017) and land

markets (Severen et al 2017)

• Central idea: expectations affect outcomes solely through agent

actions
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Model of Forecasts (1/3)

• Every temperature observation (td) consists of its forecast (fd) and

an unforecasted shock (sd):

td = fd + sd (1)

• T ∼ N(µ,σ2
T )

• S ∼ N(0, σ2
S)

• F ∼ N(µ,σ2
F )

• Thus, temperature is distributed:

T ∼ N(µ,σ2
F ) +N(0, σ2

S) (2)
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Model of Forecasts

• Two key insights:

Implication 1: E [st ∣td = µ] = 0 (3)

Implication 2:
∂E [sd ∣td]
∂td

> 0 (4)

• Hot temperatures are likely to be underforecasted, cold temperatures

overforecasted

• Are extreme temperatures intrinsically damaging or are we just

poorly prepared for them?
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Research questions

• Do individuals take defensive action in response to forecasts of

temperature?

• Do these actions affect mortality?

• I will use variation in the foreknowledge of temperature events

caused by errors in publicly available weather forecasts to estimate

the magnitude of these defensive actions
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Data

• Mortality data comes from the CDC and is available at the

county-month level

• Daily maximum temperature is provided by the CDC and originally

comes from the North America Land Data Assimilation System

(NLDAS)

• Forecast data comes from NOAA and comes from a gridded product

that is fit to actual NWS station forecasts

• Since forecasts of a given observation are highly collinear across

time, I take the average of the one through five-day forecasts as a

single metric of the forecast

• I use 43,129 observations from June-September from years 2005 to

2011
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Relationship between temperature and unforecasted shocks

Figure 3: Forecast shock and observed temperature
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Constructing temperature variables

• Need to aggregate daily observations to monthly level

• I use counts of days where maximum temperature falls within a

given interval: below 75, 75-85, 85-95, and above 95

• Thus, each temperature variable takes a value between 0 and 31 for

each county-month
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Constructing forecast variables

• Again need to aggregate daily observations to monthly level

• I classify days with observed temperature above 95F as warm days

• I interact the monthly mean forecast shock on warm days with the

count of warm days

• This forecast shock can be negative or positive

• If positive, we’d expect individuals to have taken less defensive

actions and experience more mortality

• If negative, we’d expect individuals to have taken excessive defensive

actions and experience less mortality
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Empirical Specification

The model is:

yit = ∑
j

βjC j
it + θC

>95
it ∗ s>95it + φstateMOY + αi + εit (5)

• yit is the logarithm of county-month mortality

• C j
it is the count of days in temperature interval j

• s>95it is the average shock on warm days
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Results

100*β<75
○

-0.046

(0.040)

100*β85−95○ 0.024

(0.025)

100*β>95
○

0.063

(0.041)

100*θ 0.009*

(0.005)

Table 1: Full-sample Results

• Since above average temperature days have higher shocks, the

average value of s>95id is 5.2

• The total effect of an average warm day is β>95+5.2*θ

• Therefore, a warm day that is forecasted with average error increases

monthly mortality by 0.1%, with underinvestment in defensive action

due to forecast error representing 43% of the overall effect 15



Results for individuals >65 years old

100*β<75
○

-0.084*

(0.041)

100*β85−95○ 0.026

(0.024)

100*β>95
○

0.140*

(0.050)

100*θ 0.018*

(0.004)

Table 2: >65 Results

• More sensitive to temperature and larger information effects

• Information effect represents 42% of the total effect of a hot day
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Implications for Climate Change Impacts

• Warm days will occur more frequently under climate change

• However, warm days will also be forecasted more accurately

• For example, suppose climate change is a uniform 3 degree shift

• This will result in an average of 2.6 more 95+ days per month

• But forecasts of these days will underestimate the temperature by an

average of 3.9 degrees, rather than the current 5.2 degrees

• If estimates don’t account for this, impact estimates could be

meaningfully different.
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How different? Comparison of forecast model to ‘naive’ model

Figure 4: Climate change impact comparison
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Conclusions

• Climate change will affect both temperature and expectations of

temperature

• Seeing how agents have reacted to shifting expectations in the past,

may help us understand how they’ll react in the future

• Preliminary evidence that even small adaptations may play a big role

in reducing heat-related mortality

• Thank you!

Matthew Gammans

mgammans@ucdavis.edu
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