Spatial and Temporal Dimensions to the Value of Recreational Fishing

Alexandra "Sasha" Naumenko

NC State University

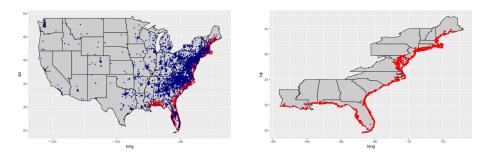
8-14-2018

Alexandra "Sasha" Naumenko

- The United States has seen considerable increase in time allocated towards leisure in general (Aguiar & Hurst, 2007)
- Pergams and Zaradic (2008) evaluated various forms of nature recreation (e.g., fishing, camping, backpacking) related to park visitation in the United States, Japan, and Spain and find a decline the majority of the categories, and thus diagnosed "a fundamental and pervasive shift away from nature-based recreation."
- Marine recreational fishing alone produced \$63.4 billion in spending and accounted for 61 million recreational trips in 2015 (NMFS 2015) as a whole (BEA 2018).

- Many studies make generalizations about nature-oriented recreation trends from data collected for a specific region over a narrow time window
- Often, benefit transfer applications are pulled from multiple studies where different methods and assumptions are used
- My study takes advantage of the very large and detailed fishing intercept data compiled by the Marine Recreation Information Program division of NOAA to execute a travel cost model that is disaggregated across time and space
- This allows for more meaningful comparisons across seasons and regions

- Create a data set of values over space and time
- evaluate Krutila's Conjecture
- Assess the bias that is introduced via temporal or spatial limitations in environmental valuation literature


- Data obtained for two month segments (wave) from 2004-2016
- Weights are provided for each site
- From this data, I know the origin (zip code) and site choice
- I merge American Community Survey data via zip code

wave	period represented
1	January-February
2	March-April
3	May-June
4	July-August
5	September-October
6	November-December

(人間) トイヨト イヨト

MRIP Data

- 2,475 shoreline sites are identified in the choice set (shown below)
- Below is an example of all anglers intercepted in 2015 (red denotes travel distance of <100 miles)

Summary Statistics for Anglers

Statistic	N	Mean	St. Dev.	Min	Max
Statistic	N	iviean	St. Dev.	IVIIN	iviax
catch	1,174,632	0.895	0.306	0	1
population	1,196,456	25,427	16,465.2	22	114,982
pop_density	1,196,456	48.332	63.880	0.009	3,911.405
median_age	1,196,456	40.299	6.469	7.900	79.500
avg_HH_size	1,196,452	2.558	0.304	1.090	4.920
avg_HH_inc	1,196,456	76,033.6	27,538.1	10,727.0	850,402.1
avg_commute_time	1,194,184	25.541	5.400	3	74
percent_white	1,196,456	77.469	18.706	0.000	100.000
HH_atleastone_child	1,196,456	0.317	0.083	0.000	0.944
percent_married	1,196,456	0.508	0.096	0.000	1.000
percent_HS_grad	1,196,456	0.302	0.082	0.000	1.000
percent_college_grad	1,196,456	0.174	0.077	0.000	0.651
employ_rate	1,196,444	91.070	3.684	15.254	100.000
mi_to_airport	1,196,456	20.1	14.9	0.1	131.1

・ロト ・四ト ・ヨト ・ヨト

- Travel distances, tolls, and times are collected via PC*Miler
- Bureau of Transportation Statistics data is used for Fuel Efficiency, AAA data is used for per-mile wear and tear costs, and finally Energy Information Administration data is used for state level gas price data
- DB1B data is used for flight prices, SABRE data is used for flight times, and OAG data is used for layover times
- The opportunity cost of time is derived using the travel cost literature standard of $\frac{1}{3}$ of the wage rate (Cesario 1976)

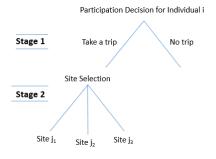
- 4 同 6 4 日 6 4 日 6

• The driving cost was calculated as a function of the driving distance (d_{ij}) , driving time (t_{ij}) , the opportunity cost of time (p_i) , hotel nights required (h_{ij}) , cost of tolls (f_{ij}) , and party size (n), as follows:

$$C_{ij}^{D} = \frac{p_d d_{ij} + p_h h_{ij} + f_{ij}}{n} + p_i t_{ij}$$

(日) (周) (三) (三)

- The flying cost was estimated using an algorithm that found the four nearest airports to each origin and destination and determined the lowest cost option
- Each individual is assumed to have 1) driven to the matched airports 2) paid parking costs 3) acquired a rental car 4) paid a \$50 baggage fee for airlines other than JetBlue and Southwest
- Opportunity cost is computed for total driving time, time spent in the airport, and flight time
- the 30th percentile for flight fares were used in effort to identify a typical non-business fare


• The probability of flying is modeled as a function of distance using data from English et al. 2018 • Probability Table

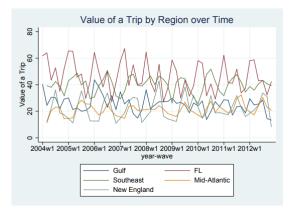
$$C_{ij} = (1 - p_{ij})C^D_{ij} + p_{ij}C^F_{ij}$$

where C_{ij}^D is the cost of driving from origin i to destination j and C_{ij}^F denotes the corresponding flying cost.

Methodology

- I estimate a repeated discrete choice model of participation and site choice
- I use a two-stage nested logit framework to decompose the participation decision into two nests

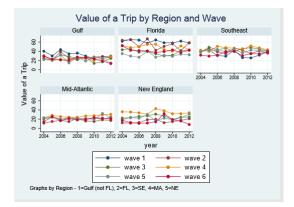
< 3 > < 3 >


Empirical Implementation

$$V_{ij} = egin{cases} \delta imes Z_{it}, & ext{no trip} \ ASC_{jt} + eta imes C_{ijt}, & ext{trip to site j} \end{cases}$$

- Z_{it} : vector of demographics
- ASC_{it}: Alternative Specific Constants
- C_{ij} : Round trip travel cost from origin i to destination j
 - The coefficient of interest is β , and $\frac{1}{\beta}$ estimates the value of a trip (VOT)

A B A A B A


Results

★ ■ ▶ ■ つへで 8-14-2018 14 / 21

<ロ> (日) (日) (日) (日) (日)

Results

▲ 書 ▶ 書 つへで 8-14-2018 15 / 21

<ロ> (日) (日) (日) (日) (日)

Value	of a	Trip	by	Year	and	Region	(\$2012	Dollars)	

Year		Gulf	Florida	Southeast	Mid-Atlantic	New England	Overall Average
	2004	29	52	38	18	21	32
	2005	23	49	42	24	21	32
	2006	32	45	40	20	21	32
	2007	24	50	40	20	24	32
	2008	27	44	43	21	25	32
	2009	25	42	37	21	26	30
	2010	23	43	40	22	21	30
	2011	23	45	40	25	22	31
	2012	23	46	40	23	23	31
Overall /	Average	25	46	40	22	23	31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Dose-Response Regression of Value of Trip on Distance Share

	(1) vot
dis100	-0.474*** (-5.39)
dis200	0.0522 (0.24)
dis500	1.040*** (7.63)
average_HH_inc	-0.000133 (-1.07)
Ν	251

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Using my consistent methodology and assumptions, I find strong seasonal effects
- I find the distribution of distance traveled to be an important indicator of value
- Often, due to computational constraints or scope of study, researchers will force a distance threshold, which could introduce a lot of bias in the WTP measurements.
- My research serves as a platform for benefits transfer analysis and experimentation

- Future work will focus on the role of income in fishing recreation trends
- I would appreciate suggestions for how to econometrically test for recession/other macroeconomic effects
- Evaluate data for Krutila's Conjecture

Thank you!

avnaumen@ncsu.edu

< ロ > < 同 > < 三 > < 三

Probability of Flying

One-way driving distance	HH Inc \leq \$70k, Family Size \leq 2	HH Inc $>$ \$70k, Family Size \leq 2	HH Inc \leq \$70k, Family Size > 2	HH Inc > \$70k, Family size > 2
\leq 250 Miles	0	0	0	0
$>$ 250 Miles & \leq 500 Miles	0	0.03	0	0
$>$ 500 Miles & \leq 1000 Miles	0.168	0.338	0.056	0.201
$>$ 1000 Miles & \leq 1500 Miles	0.736	0.788	0.443	0.784
> 1500 Miles	0.842	0.88	0.842	0.88

HH Inc = household income; Family Size = total number of adults and children in the household.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・