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Abstract 

Farmer control of agricultural pests raises the possibility of bioeconomic feedbacks and 

spillovers, whereby greater aggregate effort exerted on pest control lowers overall pest densities. 

This in turn decreases individual growers’ marginal incentives for pest control. While 

economists have written theoretically about such feedbacks or modeled it in simulations of bio-

invasions, they rarely measure it econometrically. Here we adapt an instrumental variables 

methodology developed for discrete choice endogenous sorting models in the environmental and 

urban economics literatures to study bioeconomic feedbacks in pest control. As a methodological 

innovation, we introduce use of censored regression methods to handle 0% or 100% market 

shares in hedonic second-stage analysis of fixed effects in discrete choice models. We apply 

these methods to study area-level adoption and potential feedbacks from individuals’ decisions to 

adopt transgenic Bt corn, using a panel dataset from the Philippines. In a conceptual model, we 

generate the hypothesis that greater areawide deployment of Bt crops should reduce individual 

farmers’ incentives to use this technology, ceteris paribus. Our econometric estimation supports 

the hypothesis that greater areawide use of Bt attenuates individual incentives to use these 

varieties. In terms of economic significance, this feedback effect implies a mean long-run price 

elasticity for the Bt trait 67% lower than that implied by an econometric model ignoring it. 

Examining whether this estimated feedback relates to areawide pest suppression, we find 

farmers’ expectations about infestation from the main pest targeted by Bt crops are significantly 

reduced by higher areawide Bt deployment. We conclude by discussing the welfare and yield 

implications for these areawide bioeconomic feedbacks.    

 

JEL codes: C33, C35, C36, D24, Q12, Q57 

Keywords: bioeconomic feedbacks, area-level pest suppression, crop choice, discrete choice 

econometrics, endogenous sorting 
 

1 Department of Agricultural & Resource Economics, North Carolina State University 
2 Genetic Engineering & Society Center, North Carolina State University 
3 Department of Agricultural Economics and Agribusiness, Louisiana State University     
4 University of the Philippines at Los Baños 

* Corresponding author: zack_brown@ncsu.edu, 4310 Nelson Hall, 2801 Founders Drive, Raleigh, NC 27607, Tel: +1 919 515 5969   

Acknowledgements 

Funding for data collection was provided by the International Food Policy Research Institute (IFPRI). This work was also supported by the 

USDA National Institute of Food and Agriculture HATCH project #NC02520, the NCSU Genetic Engineering & Society Center, and the NCSU 

Center for Environmental and Natural Resource Economics and Policy.  

 

  

mailto:zack_brown@ncsu.edu


2 

 

1 Introduction 

Agricultural systems are rife with feedbacks between farmer decisions, their ecological 

consequences, and economic reactions to these consequences (Janssen and van Ittersum 2007). 

The control of crop pests provides a particularly salient example of these feedbacks. Credible 

estimates put global crop losses due to pests at roughly a quarter (Oerke 2006; Culliney 2014), 

and fast pest population dynamics make feedbacks between farmers’ control efforts and pest 

population manifest on relatively short timescales (Lee et al. 2012). Pest control feedbacks also 

relate to technology adoption. New agricultural technologies often focus on pest control, 

including all of the widely adopted genetically modified (GM) crops. The decisions of individual 

farmers about which pest control measures to deploy, for example whether to adopt a given 

genetically engineered crop, likely have spillover effects on pest pressure over the entire 

landscape, potentially affecting the incentives for pest control facing other growers in the area 

(Ayer 1997; Hutchison et al. 2010; Grogan and Goodhue 2012).  

Most econometric analysis of spillovers in the context of agricultural technology 

adoption has focused on behavioral spillovers and peer effects (Songsermsawas et al. 2016; 

Maertens and Barrett 2013; Foster and Rosenzweig 1995). Less empirical research analyzes how 

growers respond to bioeconomic spillovers from pest control.1 This is in spite of the 

demonstrable economic significance of bioeconomic spillovers. Hutchison et al. (2010) study 

corn Bt corn adoption in the Mistwestern US, and investigate the areawide effects of the 

technology on European corn borer (ECB, scientific name Ostrinia nubilalis), historically a 

major corn pest in this region. They show that widespread adoption of Bt corn caused areawide 

                                                 
1 In their 2010 review paper, Foster and Rosenzweig do briefly discuss the potential for bioeconomic 

spillovers in agricultural technology adoption, but argue such spillovers are likely to be more relevant for health-

related technologies, particularly for infectious disease prevention. 
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reductions in ECB densities, providing an estimated $4.3 billion worth of pest suppression 

benefits to non-adopters of the Bt varieties, approximately 60% of the overall pest reduction 

benefits provided by these varieties. A natural conjecture – one that Hutchison et al. (2010) do 

not analyze – is that individual incentives to adopt the Bt varieties decrease with greater 

areawide adoption. Given these potentially large spillovers from individual pest suppression 

decisions, an obvious question for econometric analysis is whether (and how) they feed back into 

pest control decisions?  

This paper introduces an econometric method from the environmental, resource and 

urban economics literatures used to estimate the feedbacks of spillover effects in endogenous 

sorting models (Bayer and Timmins 2007; Timmins and Murdock 2007; Klaiber and Phaneuf 

2010; Hicks, Horrace and Schnier 2012). Whereas this literature has applied these models to 

study endogeneity in housing location or recreation site choice, the choice we analyze here is 

whether to plant Bt crops. In the sorting literature, negative feedbacks between area-level and 

individual-level decisions are usually referred to as ‘congestion’ spillovers, whereas positive 

feedbacks are referred to as ‘agglomeration’ spillovers. In the context of pest control practices, 

we demonstrate in a conceptual model that bioeconomic pest suppression feedbacks should 

manifest like a congestion-like effect.   

Of course, the endogeneity created by these feedbacks requires an econometric 

identification strategy. In the absence of largescale, multilevel randomized controlled 

experiments, the dominant method for identifying congestion and agglomeration feedbacks is an 

instrumental variables (IV) technique developed by Bayer and Timmins (2007). This technique 

utilizes between-area variation in exogenous characteristics and choice sets to instrument for 

areawide adoption shares, and then uses these instrumented adoption shares as inputs to a 
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random utility model (RUM) of individual adoption choice. Formally, the method consists of a 

two-stage regression approach. The first stage consists of estimating a discrete choice model with 

area-alternative fixed effects by, for example, using the contraction mapping algorithm 

introduced by Berry et al. (1995). The second stage consists of an IV regression of these 

estimated area-alternative fixed effects on area-level characteristics, including area-level 

adoption for which an instrument is constructed as described by Bayer and Timmins (2007).  

We apply this framework to a two-year panel of corn farmers in the Philippines, across 

11 villages, who chose between planting two corn varieties in the first year of data collection and 

three corn varieties in the second year. As we argue below, this variation in product availability 

and heterogeneous benefits of these products over time and space help us to identify endogenous 

spillovers. An additional econometric challenge we face is that in some villages and years, some 

of the available varieties were never observed to be used by the sampled farmers, which poses 

complications for the fixed effects discrete choice models we employ. In addition to following 

the IV quantile regression approach introduced by Timmins and Murdock (2007) for handling 

this same difficulty, we also introduce the use of an IV Tobit, which we believe more efficiently 

handles the issue (albeit with additional econometric assumptions, which we test).   

The estimation results across regression approaches shows consistent evidence that 

greater areawide use of GM corn in the Philippines appears to feed back into decreased 

individual farmer incentives to elect these varieties. Motivated by theory, prior research and 

additional statistical analysis of farmer perceptions, we hypothesize this effect is most likely due 

to areawide pest suppression from the Bt traits, which were present in all GM varieties available 

at the time data were collected. One way to quantify this effect is as an attenuation on the long-

run price elasticity of demand on Bt varieties. By ‘long-run’ we mean, for example, that if the 
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price of Bt varieties decreased, this would have the immediate effect of increasing demand for 

these products, which could in turn lead to greater areawide pest suppression, feeding back into 

reduced individual incentives to use these varieties. In our preferred models, we estimate this 

attenuation effect reduces the average long-run price elasticity by 67%, compared to a naïve 

econometric model ignoring this feedback.  The pest suppression explanation for the feedback 

we identify supported by our additional econometric finding that, when areawide use of GM corn 

was high, farmers perceived a significantly lower risk of insect pest infestation, controlling for 

farmers’ own seed choices and other factors.   

The general lesson from our findings is the importance of accounting for feedback effects 

in modeling crop choices, which may have areawide effects when aggregated. Excluding – or 

naïvely including – spillovers may lead to biased estimation of the economic value of the GM 

varieties when using revealed preference data. As we discuss at the end of this paper, recognition 

of this potential bias could be used to better understand discrepancies between micro-level and 

aggregated econometric analyses of the yield and profit effects of GM crops.  

After reviewing the literature, we present a conceptual model of pest suppression 

spillovers and feedbacks in the context of seed choice, followed by a description of our 

econometric approach. We then provide a description of the dataset and empirical context, before 

discussing some econometric considerations vis-a-vis our data and presenting estimation results. 

We then interpret these results and conclude.  

2 Literature review 

There have been many studies that have attempted to estimate the benefits of adopting 

pesticidal crops for farmers and the broader economy (Qaim, Subramanian and Zilberman 2006, 

Yorobe and Quicoy 2006, Qaim 2010, Barrows, Sexton and Zilberman 2012). These studies 
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have primarily focused on the direct benefits to adopters and financial benefits that result directly 

from the activities of the farm. However, various pest management practices have been found to 

be linked to (sometimes negative) bioeconomic externalities. Ayer (1997) in his work on the 

desirability of internal coordination among stakeholders in agricultural systems points out the 

existence of unintended insect losses (bees and predators of pests) due to indiscriminate 

application of global pesticides. Grogan and Goodhue (2012) discuss negative effects of 

excessive pesticide usage where farmers eventually become more reliant on pesticides as pest 

predator numbers are also increasingly reduced areawide by application of these pesticides. 

Recently, economists have also suggested that usefulness of areawide pest management 

strategies for managing citrus greening (Singerman, Lence and Useche 2017). 

Most relevant for our study, Hutchison et. al. (2010) indicate that similar areawide 

spillovers exist with Bt adoption. In this context though, the population of the target pest itself 

(instead of non-target predators) is reduced for Bt adopters as well as non-adopters. Hutchison et 

al. (2010) show benefits of this reduction in pest numbers are experienced to a greater extent by 

non-adopters who avoid paying the cost of pest management  (since Bt seeds are significantly 

more expensive than non-Bt ones). This reduces incentives to further adopt Bt corn as a means of 

pest management, creating the potential for endogenous sorting in choice of seed. Subsequent 

research has shown that areawide pest suppression from Bt maize can spill over to benefit 

growers of other crops such as vegetables, and can affect farmers’ pest control decisions for 

these crops (Dively et al. 2018).  

Estimation of discrete choice models with endogenous sorting has comprised a major 

research topic in the hedonic valuation literature within environmental and urban economics 

(Kuminoff, Smith and Timmins 2013). Schelling (1969; 1971) established theoretical 
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foundations for modeling endogenous interactions in discrete choices, illustrating in particular 

how endogenous segregation in urban housing patterns can emerge from residents’ preferences 

for locating in areas with neighbors similar to themselves. In the parlance of urban economics, 

this theoretical framework explains congestion phenomena, in which the relative utility and 

consequent demand for a particular alternative (housing location, recreational site, etc.) decreases 

as others use that alternative, and agglomeration, in which the utility of and demand for an 

alternative is enhanced with others’ use of it. Brito et al. (1991) are the first to show how 

Schelling’s theoretical framework can be applied to bioeconomic feedbacks: They show how 

vaccination against infectious diseases can give rise to congestion-like effects, whereby the 

incentive to vaccinate decreases as others vaccinate.  

Research beginning in the 1990s attempted to apply Schelling’s theoretical framework in 

econometric models. Brock and Durlauf (2001) develop an econometric model of endogenous 

binary choices, in which identification is provided by functional form assumptions in a random 

utility model (RUM). Bayer and Timmins (2005; 2007) first analyze equilibrium properties of 

these models with more than two alternatives and then propose an instrumental variables (IV) 

strategy for identifying endogenous feedbacks; this is the approach we use here. Bayer and 

Timmins show in Monte Carlo simulations that their IV method performs well, regardless of 

distributional assumptions and functional form assumptions, as long as sufficient variation exists 

in the “effective choice set,” which we explain below.  Subsequent applications of their IV 

method in urban and environmental economics have estimated, for example, the value of open 

space amenities accounting for congestion externalities (Klaiber and Phaneuf, 2010), amenity 

costs of climate change (Timmins 2007), pollution-induced migration (Banzhaf and Walsh 

2008), and agglomeration economies in firm location decisions (Koster et al.2014). 
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There has also been some application of these methods to study bioeconomic spillovers 

associated with renewable resource use. Timmins and Murdock (2007) use this method to 

estimate congestion spillovers in recreational freshwater angling trips to different lakes, using 

arguably exogenous variation in lake-level average travel costs and other attributes to construct 

an instrument for site-level congestion. Using a similar approach, Hicks, Horrace and Schnier 

(2012) apply this method to identify the effects of overcrowding on fishing site choice in the 

Alaskan commercial flatfish fishery. Both of these papers find that naïve estimation of 

bioeconomic spillover effects without accounting for endogeneity implies a strong agglomeration 

effect, whereas their IV models suggest significant congestion effects.   

3 Model 

We first present a conceptual model of how we can expect area-level adoption of a 

pesticidal crop to determine pest densities (the bioeconomic spillover) and in turn determine 

individual grower choices about whether to adopt GM varieties. While our model makes a 

number of simplifications, in the following section describing the study area, we argue that it 

well-characterizes the typical insect pest control environment facing a Philippine corn farmer 

over the time period in our data.  With this model, we demonstrate how the bioeconomic 

spillover could be expected to manifest as a congestion-like effect, which can under some 

circumstances attenuate demand for Bt crops. We then translate this conceptual model into an 

econometric approach, and describe the estimation procedure. 

3.1 Conceptual model 

To show how areawide pest suppression should result in a negative feedback on demand 

for pest control, consider a farmer facing the ex ante binary choice of whether to plant one of two 

varieties of a crop: a conventional variety fully susceptible to pest damage or a pesticidal variety 
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that protects the plant from damage and also kills the pest (as is the case with Bt corn). To fix 

ideas with respect to our application to Bt corn, we refer to the conventional variety as the hybrid 

(𝐻) and the pesticidal variety as the Bt variety.  

In the model, farmers do not observe pest densities in the coming season, but have 

expectations about future pest pressure (e.g. based on previous years and on forecasts of 

environmental conditions). For simplicity, our conceptual model focuses only on uncertainty 

with respect to pest densities in the upcoming season. Let 𝜋𝐻(𝑑) be the ex post profit from the 

non-Bt hybrid given a pest density of 𝑑, and 𝜋𝐵𝑡 the ex post profit from adopting the pesticidal 

variety, apart from the price premium for the Bt variety. Assume that 𝜕𝜋𝐻/𝜕𝑑 < 0, i.e. that ex 

post profit from the hybrid variety is decreasing in pest density, and that the pesticidal crop is 

fully protected against pest damage so that 𝜋𝐵𝑡 is independent of pest density. Also, suppose that 

given an areawide Bt adoption level of 𝐶 ∈ [0,1] the ex ante cumulative distribution function 

(CDF) for 𝑑 is 𝐹(𝑑|𝐶), which defines farmer expectations about pest densities 𝑑 in the 

upcoming season, conditional on areawide adoption 𝐶 of the Bt variety. Finally, let 𝑤 denote the 

price premium for the Bt variety. Then ex ante expected profits for the hybrid and Bt varieties 

are:   

Π𝐻(𝐶) ≔ 𝔼𝑑[𝜋𝐻(𝑑)|𝐶]        (1) 

Π𝐵𝑡 ≔ 𝔼𝑑[𝜋𝐵𝑡 − 𝑤|𝐶] = 𝜋𝐵𝑡 − 𝑤       (2) 

where the operator 𝔼𝑑[⋅ |𝐶] emphasizes that we are focusing on uncertainty with regard to pest 

densities conditional on areawide Bt adoption. The farmer will therefore adopt the Bt variety if 

𝜋𝐵𝑡 − 𝑤 − Π𝐻(𝐶) > 0 and will plant the conventional variety if 𝜋𝐵𝑡 − 𝑤 − Π𝐻(𝐶) < 0. That is, 

the farmer will base the decision on the ex ante expected profit differential 𝜌(𝐶) ≔ 𝜋𝐵𝑡 − 𝑤 −

Π𝐻(𝐶). 
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A generic way to model a pest suppression effect of areawide adoption in the above 

framework is to assume that 𝐹𝐶(𝑑|𝐶) > 𝐹𝐶(𝑑|𝐶′) for all 𝐶 > 𝐶′, i.e. the CDF conditional on 𝐶′ 

first-order stochastically dominates any CDF conditional on a higher 𝐶.2 Under this assumption, 

and because 𝜋𝐻(𝑑) is assumed to be strictly decreasing in 𝑑, then 𝜕Π𝐻/𝜕𝐶 > 0 (a basic 

implication of first-order stochastic dominance). Consequently, the expected profit gain from the 

Bt variety relative to the hybrid variety is decreasing in areawide adoption, i.e. 𝜕𝜌/𝜕𝐶 < 0. 

This provides an intuitive model of a negative, pest suppression feedback from pesticidal 

crop adoption. As areawide use of Bt increases, farmers expect decreased pest pressure on their 

own farms. Equilibrium properties are straightforward to derive, and mirror those found with 

respect to congestion externalities (Bayer and Timmins 2005): If any solution 𝐶∗ to the equation 

𝜌(𝐶∗) = 0 exists on the interval [0,1], then it is the unique equilibrium of the model, the point at 

which the marginal farmer is indifferent between adopting Bt or the conventional variety. This 

equilibrium is stable in the sense that there is an individual incentive to adopt Bt if areawide 

adoption is below equilibrium, and disincentive to adopt if areawide adoption is above 

equilibrium. That is, 𝜌(𝐶) > 0 for all 𝐶 < 𝐶∗ and 𝜌(𝐶) < 0 for all 𝐶 > 𝐶∗. Figure 1 illustrates 

such an equilibrium, where ΔΠ(𝐶) ≔ Π𝐻(𝐶) − 𝜋𝐵𝑡 is the expected profit differential between 

the Bt and hybrid varieties excluding the Bt seed price premium. If no solution to this equation 

exists, then 𝜌(⋅) is either strictly positive on the unit interval, in which case full adoption of Bt is 

                                                 
2 Alternatively, a pest control method could feasibly result in repelling – rather than suppressing – pests 

from areas where the method is adopted to areas where the method was not yet adopted. In this case CDFs 

conditional on lower adoption could first-order stochastically dominate those with higher adoption, ultimately 

flipping the polarity of the modeled feedback from negative to positive. This would be analogous to an 

agglomeration externality (Bayer and Timmins 2005). However, the Bt varieties available in the Philippines over the 

timeframe analyzed are well known to suppress (rather than repel) ACB larvae, much in the same way that Bt crops 

in the US were clearly observed to suppress ECB densities at areawide scales (Hutchison et al. 2010). In general, for 

Lepidopteran pests like ECB and ACB, Bt crops have a suppressing as opposed to repelling effect because they act 

on the caterpillar larvae, which have limited ability to avoid exposure to the Bt toxins. 
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the equilibrium, or 𝜌(⋅) is strictly negative on the unit interval, in which case the unique 

equilibrium is full adoption of the hybrid variety.    

 

 

 

 

 

Figure 1: Illustration of a negative economic feedback from a pest suppression 

spillover.  
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3.2 Econometric approach  

To empirically evaluate the presence of endogenous feedbacks from Bt seed use, we use 

an IV method developed by Bayer and Timmins (2007) to estimate discrete choice econometric 

RUMs with endogenous sorting. We apply this method to model farmers’ crop variety choices. 

Here, ex ante utility can be interpreted as implicitly containing the expected profit from selecting 

seed variety 𝑗, but may also be related to other factors directly affecting utility, such as farmer 

preferences specifically regarding genetically modified crops (Useche, Barham and Foltz 2009; 

Birol, Villalba and Smale 2008).  

We describe our approach here using the standard conditional logit model of discrete 

choice with fixed effects, as adopted by Bayer and Timmins. However, their two-stage approach 

extends to a mixed logit model allowing for farmer heterogeneity in their seed preferences, 

which we use in specification tests.  

In the context of our application, we specify the ex ante utility 𝑈𝑗𝑖ℎ to the farmer of crop 

variety 𝑗 for grower 𝑖 in area ℎ by partitioning farmer and area-level utility components: 

𝑈𝑗𝑖ℎ = 𝛿𝑗ℎ + 𝜷′𝒙𝑗𝑖 + 𝜖𝑗𝑖ℎ (3) 

Where 𝛿𝑗ℎ is the area-level effect of variety 𝑗 on utility, 𝒙𝑗𝑖 is a vector of farmer-level covariates 

varying across varieties, 𝜷 is an associated vector of regression coefficients, and 𝜖𝑗𝑖ℎ is a random 

utility component. The area-level effect is decomposed as: 

𝛿𝑗ℎ = 𝛿�̅� − 𝜂𝑝𝑗ℎ + 𝛼𝑏𝑗𝐶ℎ + 𝜉𝑗ℎ (4) 

where 𝛿�̅� is a variety-specific constant, 𝑝𝑗ℎ is the price of variety 𝑗 in area ℎ with associated 

marginal utility 𝜂, 𝐶ℎ is the fraction of growers in area ℎ employing varieties with the Bt trait, 𝑏𝑗 

is a dummy variable indicating whether variety 𝑗 possesses the Bt trait, and 𝜉𝑗ℎ is an area-level 

residual. We aim to estimate the utility parameters 𝛼, 𝜷, 𝜂 and, 𝛿�̅�.  
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In this paper, the parameter of particular interest is the spillover effect, 𝛼, of areawide Bt 

use, 𝐶ℎ. Note that areawide Bt use 𝐶ℎ is interacted with 𝑏𝑗 in equation (4) for both theoretical and 

mechanical reasons. The simple theory in Section 3.1 implies that greater areawide use of Bt 

decreases the relative utility (𝜕𝑈𝑗𝑖ℎ  /𝜕𝐶ℎ < 0) only for those 𝑗 with the Bt trait (𝑏𝑗 = 1), yielding 

the hypothesis that 𝛼 < 0. Mechanically, 𝐶ℎ cannot enter alone as a covariate in (4) because this 

variable does not vary over alternatives 𝑗, and it is only differences between alternatives that 

identify preferences in a RUM (Train 2009).3 Interacting 𝐶ℎ with 𝑏𝑗 produces necessary variation 

over 𝑗. 

Assuming the farm-level random utility component 𝜖𝑗𝑖ℎ in (3) is iid extreme value, we 

obtain the fixed effects conditional logit model for the probability 𝑃𝑗𝑖ℎ of grower 𝑖 selecting 

variety 𝑗 in area ℎ: 

𝑃𝑗𝑖ℎ(𝜷, 𝜹ℎ) =
exp{𝜷′𝒙𝒋𝒊 + 𝛿𝑗ℎ}

∑ exp{𝜷′𝒙𝒌𝒊 + 𝛿𝑘ℎ}𝑘∈ℎ
 (5) 

Note that “𝑘 ∈ ℎ” is short-hand to indicate the denominator in (5) sums over all the varieties 

𝑘 available in area (in our application, village×year) ℎ. The standard approach to estimating this 

model is via a two-stage procedure. In the first stage, estimates �̂� and �̂�ℎ ≔ (𝛿𝑗ℎ)
𝑗=1,…,𝐽

 are 

obtained from maximum-likelihood estimation (MLE) combined with a contraction mapping 

algorithm from Berry et al. (1995). This algorithm uses the empirical area-level, variety-specific 

shares 𝜎𝑗ℎ and an initial guesses of 𝛿𝑗ℎ, estimating �̂� via MLE conditional on the guess for 𝛿𝑗ℎ, 

computing the predicted area-level, variety-specific shares �̂�𝑗ℎ ≔ 𝑛ℎ
−1 ∑ 𝑃𝑗𝑖ℎ(�̂�, �̂�ℎ)𝑖∈ℎ , then 

                                                 
3 It is possible for there to exist nonlinear spillover effects, as has been investigated in other contexts (Hicks 

et al. 2012). However, our empirical application does not permit enough statistical power to estimate such 

nonlinearities.  
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recomputing new area-level fixed effects 𝛿𝑗ℎ
′ ≔ 𝛿𝑗ℎ + ln 𝜎𝑗ℎ − ln �̂�𝑗ℎ, and repeating until 

convergence. Because this algorithm is a contraction mapping, it converges to 𝜎𝑗ℎ = �̂�𝑗ℎ, i.e. the 

estimated fixed effects 𝛿𝑗ℎ equate the predicted and observed area-level shares.   

In the second stage, the estimated 𝛿𝑗ℎ serve as dependent variables in a linear regression 

on observable variety-specific factors varying at the area level, using the decomposition in (4) 

and treating the unobserved area-level component 𝜉𝑗ℎ as a regression error. If the explanatory 

variables in (4) are orthogonal to 𝜉𝑗ℎ, then this second-stage can be estimated consistently with 

OLS or other standard linear panel data regressions (Murdock 2006).    

However, with endogenous sorting, area-level explanatory variables in the second stage 

include the area-level adoption of Bt. This creates an obvious endogeneity problem, since the 

𝛿𝑗ℎ’s are themselves estimated in the first stage to satisfy �̂�𝑗ℎ = 𝜎𝑗ℎ, with 𝐶ℎ = ∑ 𝑏𝑘𝜎𝑘ℎ𝑘∈ℎ . 

Econometrically, this endogeneity problem can thus be stated as 𝔼(𝜉𝑗ℎ|𝐶ℎ) ≠ 0. As Timmins 

and Murdock (2007) point out, naïve OLS of (4) tends to bias estimates of 𝛼 upwards, because of 

unobserved area-level factors giving rise to correlated choices. Such unobserved areawide 

correlation in preferences in the present context may include unobserved agronomic 

characteristics of different varieties that make them more or less suited for a given area, as well 

as areawide marketing of particular varieties. 

To specifically account for endogenous sorting in the econometric analysis, Bayer and 

Timmins (2007) propose an IV for the market shares 𝜎𝑗ℎ. In their context, 𝑗 indexes geographic 

location (rather than seed variety) and ℎ indexes market. In the context of geographic sorting 

models, they propose as an IV a function 𝑓(𝑋𝑗 , 𝑋−𝑗) of “the attributes [𝑋𝑗ℎ ≔ (𝑥𝑗𝑖ℎ)
𝑖=1,…,𝑛ℎ

] of 

location 𝑗 and the exogenous attributes [𝑋−𝑗 ≔ (𝑥−𝑗𝑖ℎ)
𝑖=1,…,𝑛ℎ

] of other locations [−𝑗]” (pp. 
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361, emphasis added). In practice, this function is the conditional logit predicted probability,  

𝑓(𝑋𝑗ℎ, 𝑋−𝑗ℎ) ≔ 𝑛ℎ
−1 ∑

exp 𝜷′𝒙𝑗𝑖ℎ

∑ exp 𝜷′𝒙𝑘𝑖ℎ𝑘∈ℎ
𝑖∈ℎ . Bayer and Timmins demonstrate the validity and 

performance of this estimator using Monte Carlo analysis. Timmins and Murdock (2007), 

applying this IV method in their study of endogenous congestion in anglers’ choices of 

recreation sites, explain this instrument’s exclusion restrictions further, by noting that there is no 

reason for the attributes of other alternatives to enter directly into the utility for alternative 𝑗, 

“except in the way they impact the share of anglers also choosing 𝑗” (pp. 7). Bayer and Timmins 

(2007, p. 365) also emphasize that another source of identification in 𝑓(𝑋𝑗ℎ, 𝑋−𝑗ℎ) is exogenous 

variation in “effective choice sets,” arising either from “data drawn from multiple 

geographically-distinct markets, a single market observed over many periods, or variation in the 

orientation of individuals within a single market.” Intuitively, the availability of more 

alternatives in a market or area, ceteris paribus, should decrease the probability of selecting any 

given alternative, and observing area-level responses to such exogenous variation in choice 

probabilities can be used to infer spillover effects in a RUM. This intuition is captured 

mathematically when 𝑓(𝑋𝑗ℎ, 𝑋−𝑗ℎ) changes with the number of non-chosen alternatives −𝑗, as is 

the case with all discrete choice RUMs including the conditional logit specification. 

The choice sets in our application consist of seed varieties, instead of housing locations 

or recreation sites. In this context, it is orthogonal variation in seed varieties’ availability, 

attributes, and observed heterogeneity in the values of these attributes between areas and over 

time that drives our identification strategy. We explain each of these empirical sources of 

identification in turn, and discuss the relative importance in our application.  

Variation in the attributes of non-Bt varieties can be used as exogenous information to 

instrument for Bt adoption shares in the RUM. As long as the basic exogeneity of these attributes 
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𝑋𝑗𝑖ℎ ≔ (𝑥𝑗𝑖 , 𝑝𝑗ℎ) is satisfied, i.e. that these attributes 𝑋𝑗𝑖ℎ are uncorrelated with the error terms 

𝜖𝑗𝑖ℎ and 𝜉𝑗 – it is reasonable to suppose that these regressors for other varieties (−𝑗) should be 

uncorrelated, in particular, with the error term 𝜉𝑗 of variety 𝑗 in (4). As an example, if we assume 

seed price is exogenous (an issue we take up separately below), then a higher (lower) price of a 

non-Bt variety, ceteris paribus, should increase (decrease) adoption of the Bt variety without 

directly affecting the utility of the Bt variety, thus satisfying the necessary exclusion restriction 

for a valid instrument. Empirically, exogenous variation in non-Bt prices over areas and years 

can then be leveraged to infer how differential adoption of Bt feeds back into area-level 

spillovers. 

This simple example of instrumental variation in relative prices is useful for illustrating 

how effective choice set variation can be generated for a set of seed varieties, i.e. the same 

variety sold at different prices in different areas can be viewed as different alternatives. In our 

empirical setting described below, additional effective choice set variation is generated not only 

by the differences in the actual availability of seed varieties (with an herbicide resistance variety 

being introduced on top of a conventional hybrid and single-trait Bt in all areas between 2007 

and 2011), but also by measureable variation in farmers’ relative values placed on the varieties 

available in their area, as these values relate to observable farmer characteristics. As Bayer and 

Timmins (2007, p. 364) explain, this source of identification “derives from variation in the 

orientation [i.e. preferences] of individuals within a single market or among a single set of 

alternatives.”  

In our application, this means that observable differences in the mix of farmers between 

areas can generate variation in the effective choice set. For example, farmers who find it 

generally more costly to access agricultural inputs (e.g. because of farm remoteness) may find Bt 
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seed varieties relatively more attractive, as a way to prevent more costly pest outbreaks. Thus, 

we would expect relatively greater exogenous utility from the Bt trait in areas characterized by 

relatively remote farms. As Bayer and Timmins note (ibid.), measuring this kind of instrumental 

variation requires “the interaction of individual characteristics with locational characteristics [in 

our application, seed varieties].” So, continuing our example, interacting an indicator for farm 

remoteness with the variety-specific Bt trait would allow for such observable preference 

heterogeneity to generate effective choice set variation. Similar conceptual examples could be 

constructed to illustrate how observable heterogeneity in preferences for the HT trait (e.g. via 

farm terrain) could also generate effective choice set variation. To allow for this type of 

identification, we include an array of exogenous farm(er) characteristics interacted with variety-

specific dummy variables in the discrete choice RUM. 4   

Combining these three sources of identification, the IV from Bayer and Timmins 

therefore takes the following form in our application: 

𝜎𝑗ℎ
𝐼𝑉 =

1

𝑛ℎ
∑

exp{�̃�𝑥𝑗𝑖ℎ − �̃�𝑝𝑗ℎ}

∑ exp{�̃�𝑥𝑘𝑖ℎ − �̃�𝑝𝑘ℎ}𝑘∈ℎ𝑖∈ℎ

 (6) 

where 𝛽, �̃� and �̃� are initial ‘guesses’ of their respective parameters. Bayer and Timmins 

postulate that any initial guess for these parameters provides consistent estimation, but 

researchers applying this method generally estimate �̂� and 𝛿𝑗ℎ via the Berry et al. method, setting 

𝛽 = �̂�, and then regressing 𝛿𝑗ℎ on 𝑝𝑗ℎ to obtain an initial guess of �̃� (Timmins and Murdock 

                                                 
4 Because inference proceeds on the basis of differences in utility in discrete choice RUMs, farm(er)-level 

factors can only be included as explanatory variables if interacted with variety-specific attributes (Train 2009). 
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2007; Hicks et al. 2012). We follow this approach in our application.  In our application, we 

obtain our instrument for area-level Bt shares, 𝐵ℎ from (6), as 𝐶ℎ
𝐼𝑉 ≔ ∑ 𝑏𝑗𝜎𝑗ℎ

𝐼𝑉
𝑗∈ℎ .5 

To recapitulate, the IV in (6) contains the three sources of identification discussed above. 

Variation in the attributes of the non-chosen alternatives is reflected mainly by variation in their 

prices, 𝑝−𝑗ℎ. Direct choice set variation is reflected in (6) by variation in the set of alternatives 

𝑘 ∈ ℎ in each village-year, consisting here of the conventional and single-trait Bt varieties only 

available in all villages in 2007 and then an additional stacked variety combining Bt and HT 

traits made available in all villages by 2011. Finally, effective choice set variation through 

heterogeneous farmer preferences is reflected in 𝑥𝑖𝑗, which in our application consists of 

interactions between farmer-specific characteristics and variety-specific dummies for inclusion 

in 𝑥𝑘𝑖ℎ (for all varieties 𝑘, chosen and nonchosen). It is unclear which of these three 

identification sources is most dominant in our application; their nonlinear combination in (6) 

precludes statistical tests which might be used with conventional IV approaches. (We do, 

however, conduct standard checks for the overall strength of our IV.) For validity of our strategy, 

it is most important to emphasize we have two sources of identification beyond variation in the 

availability of seed varieties, since the latter is collinear with time in our data.           

One limitation of the above econometric methodology is that the conditional logit model 

assumes the ‘independence of irrelevant alternatives’ (IIA) (McFadden 1978). In our application, 

this assumption could be problematic because of the introduction of the stacked variety to the 

choice set in 2011. The IIA assumption would maintain that market shares for this variety after 

its introduction would draw farmer demand equally away from the other available varieties (the 

                                                 
5 Note that this approach avoids the “forbidden regression” problem, in which a nonlinear prediction of the 

endogenous regressor is used directly in the last stage. With the Bayer and Timmins approach, we linearly regress 

𝐶ℎ  on 𝐶ℎ
𝐼𝑉 in the first-stage of the IV procedure, and then use this linear prediction in the last stage.  
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single-trait Bt and non-GM hybrid corn). This is clearly an overly strong assumption given that 

both the GM single-trait and stacked varieties share the Bt feature. However, by estimating area-

level fixed effects in the conditional logit model, the IIA assumption is relaxed at the area level, 

though still assumed to hold at the farmer level. 

To investigate the importance of the IIA assumption, we also estimate a more unrestricted 

mixed logit model, with and without area-level fixed effects. Mixed logit relaxes the IIA 

assumption by allowing for randomly distributed preference parameters 𝜷𝑖~𝜙(𝜷𝑖|�̂�) across 

decision makers 𝑖, where 𝜙(⋅) is a probability density function (pdf), typically assumed as we do 

here to be multivariate normal, and �̂� is a collection of distributional parameters (for a normal 

pdf, a mean and variance-covariance matrix). The econometric approach described above 

translates completely to the mixed logit case, integrating the predicted probabilities 𝑃𝑗𝑖ℎ(𝜷𝑖, 𝛿) in 

(5) over the pdf for 𝜷𝑖. Thus, the area-level predicted shares in the mixed logit model are �̂�𝑗ℎ ≡

𝑛ℎ
−1 ∑ ∫ 𝑃𝑗𝑖ℎ(𝜷𝑖, �̂�ℎ)𝑖∈ℎ 𝜙(𝜷𝑖|�̂�)𝑑𝜷𝑖, and the logit fixed-effects contraction mapping still holds 

(Berry, Levinsohn and Pakes 2004). Because mixed logit contains conditional logit as a 

restricted case, we test whether we can reject the conditional logit restrictions using a likelihood 

ratio (LR) test. The mixed logit model also makes some use of the panel nature of our data: 

Farmer 𝑖’s choices are observed in two separate years, 2007 and 2011, which are treated as 

distinct areas (ℎ) in this model, and each farmer’s preference parameters 𝜷𝑖 are fixed across 

choice occasions.  

Finally, as an additional test of our theory in section 3.1, we investigate whether results 

from our RUM are consistent with other indicators of areawide pest pressure and suppression. 

While we lack pest monitoring and entomological data, we do possess farmer survey data on 

perceptions of pest pressure. The hypothesis of areawide pest suppression from Bt – specifically, 
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the first-order stochastic dominance assumption in section 3.1 – implies 𝜕𝔼[𝑑|𝐶]/𝜕𝐶 < 0, i.e. 

that higher areawide deployment of Bt leads to lower expected pest pressure. There are two parts 

to this implication: first, that areawide Bt adoption reduces actual pest density, and second, that 

these reductions inform farmer subjective expectations to influence seed choice. While we lack 

entomological measurements on pest density, as discussed above Hutchison et al. (2010) 

establish the biophysical basis for areawide pest suppression from Bt, and it is likely those same 

mechanisms apply to the Filipino context of our data (described further below), with extensive, 

commercial corn farming and Bt crops targeting a pest of the same genus as that analyzed by 

Hutchison et al. In terms of farmer expectations, our data only provides a binary indicator 𝑏𝑖ℎ of 

whether farmer 𝑖 in village-year ℎ expects infestation from the pest targeted by Bt varieties. To 

test whether expected pest pressure responds as expected to area-level Bt deployment, we 

therefore estimate the following probit regression: 

𝔼[𝑏𝑖ℎ|𝐶ℎ, 𝐵𝑡𝑖ℎ, 𝑋𝑖ℎ] = Φ(𝛽0 + 𝛽𝐶𝐶ℎ + 𝛽𝑐𝑐𝑖ℎ + 𝜷𝑋
′ 𝑿𝑖ℎ) (7) 

where 𝑐𝑖ℎ is an indicator of whether farmer 𝑖 plants a Bt variety (single trait or stacked), 𝑿𝑖ℎ is a 

vector of control variables, Φ(⋅) is the standard normal CDF and the 𝛽’s are regression 

coefficients to be estimated. The hypothesis of interest to test is 𝛽𝐶 < 0. We include own-farm 

Bt adoption 𝑐𝑖ℎ because its obvious correlation with area-level Bt adoption, 𝐶ℎ = 𝑛ℎ
−1 ∑ 𝑐𝑖ℎ𝑖 , 

threatens omitted variable bias if excluded from (7). However, inclusion of 𝑐𝑖ℎ also poses 

potential endogeneity concerns, e.g. with greater expected pest infestation 𝑏𝑖ℎ yielding a greater 

propensity to adopt Bt varieties ceteris paribus. To address endogeneity of 𝑐𝑖ℎ (which is binary), 

as a robustness check on a simple probit estimation of (7), we therefore estimate a full-

information maximum likelihood (FIML) bivariate probit regression allowing for cross-equation 

correlation 𝜏 in residuals between 𝑏𝑖ℎ and 𝑐𝑖ℎ (Amemiya 1985). The selection of instruments for 
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𝑐𝑖ℎ is motivated by the RUM in (3) and is described in more detail in subsequent sections. Our 

expectation in the FIML model is that 𝛽𝑐 < 0 (own-farm Bt adoption causes a reduction in 

expected pest infestation) and 𝜏 > 0 (e.g. higher background pest pressure increases both 

perceived infestation risk and propensity to plant Bt). As an additional robustness check, we also 

include village-level fixed effects in (7), in which case identification of 𝛽𝐶 rests on within-village 

variation in 𝐶ℎ between 2007 and 2011.      

4 Study context and data 

We apply the above econometric framework using data from surveys of Filipino corn 

growers. Corn is the second most important crop in the Philippines after rice, with approximately 

one-third of Filipino farmers (~1.8 million) depending on corn as their major source of 

livelihood. Yellow corn, which accounts for about 60% of total corn production (white corn 

accounts for the rest), is the type considered in this study. Corn growing in the Philippines is 

typically rain-fed in lowland, upland, and rolling-to-hilly agro-ecological zones of the country. 

There are two cropping seasons per year: wet season cropping (usually from March/April to 

August) and dry season cropping (from November to February). Most corn farmers in the 

Philippines are small, semi-subsistence farmers with average farm size ranging from less than a 

hectare to about 4 hectares (Mendoza and Rosegrant 1995; Gerpacio et al. 2004).  

The most destructive pest in the major corn producing regions of the Philippines is 

Ostrinia furnacalis, whose common name is Asian corn borer (ACB) (Morallo-Rejesus, Belen 

G. Punzalan 2002; Gerpacio et al. 2004; Afidchao, Musters and de Snoo 2013). Like ECB, ACB 

larvae damage all parts of the corn plant in feeding, before metamorphosing into moths, which 

can disperse widely (Nafus and Schreiner 1991; Shirai 1998). Historically, ACB infestation has 

occurred yearly, with pest pressure being roughly constant or increasing over time. Farmers 
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report that yield losses from this pest range from 20% to 80%. According to Gerpacio et al. 

(2004), although ACB is a major pest in the country, insecticide application has been moderate 

compared to other countries in Asia. Moreover, Yorobe and Quicoy (2006) suggest insecticide 

application to control for Asian corn borer has been less appealing due to health and 

environmental concerns. 

Given ACB’s dominance as the major insect pest for corn in the country, the agricultural 

sector was naturally interested in Bt corn varieties as a means of control. As with ECB, Bt corn is 

highly effective at suppressing ACB larvae (Afidchao et al. 2013).6 In December 2002, after 

extensive field trials, the Philippine Department of Agriculture (DA) provided regulations for the 

commercial use of GM crops, including Bt corn (specifically Monsanto’s YieldgardTM 818 and 

838). In the first year of its commercial availability, 2002, Bt corn was grown in only 1% of the 

total area planted with corn – on about 230,000 hectares. In 2008, about 12.8% of corn planted 

was Bt, and in 2009 this increased to 19%, or about 500,000 hectares. Apart from Monsanto, 

Pioneer Hi-Bred (since 2003) and Syngenta (since 2005) sell Bt corn seeds in the Philippines.  

The data used in this study come from the International Food Policy Research Institute 

(IFPRI) corn surveys for crop years 2007/2008 and 2010/2011 in the Philippines. The data 

represent a panel where 278 of the farmers in the 2007 cycle were retained into 2010. Data 

collected in the survey included information on corn farming systems and environment, inputs 

and outputs, costs and revenues, marketing environment, and other factors related to Bt corn 

cultivation were collected (i.e., subjective perceptions about the technology). Actual data 

collection was implemented through face-to-face interviews using pre-tested questionnaires.  

                                                 
6 Other Bt varieties, expressing proteins for controlling rootworms, were not available in the Philippines 

over the time period analyzed, because these are not considered major pests of corn there. The only other common 

non-ACB insect pests of corn in the Philippines are the armyworm and cutworm (Gerpacio et al. 2004; Afidchao et 

al. 2013), which the available Bt varieties do protect against.   
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The survey was confined to the provinces of Isabela and South Cotabato, both major 

corn-producing provinces with a high, sustained level of Bt crop deployment. The non-Bt 

farmers in our data are strictly hybrid corn users, and there were no observations in the data of 

farmers using traditional, open-pollinated varieties. This uniformity in the non-Bt group allows 

for a useful baseline to compare the performance difference between Bt corn relative to a more 

homogenous population of non-Bt farmers (i.e. hybrid corn users only). Seventeen top corn-

producing villages (‘barangays’) were selected for surveying from these two provinces. Survey 

sampling proceeded by obtaining lists of farms from each village, and randomly selecting a fixed 

proportion of farms for surveying.  

A total of 468 farmers were interviewed in the 2007/2008 round and 278 of those farmers 

were also interviewed in the 2010/2011 round of data collection. After dropping farmers with 

missing and inconsistent information, a total of 683 total observations across both survey years. 

For the purposes of this analysis, we furthermore exclude villages with fewer than eight growers, 

due to the difficulties of estimating the 𝛿𝑗ℎ’s in (5) with such small area-level sample sizes.  In 

retained villages, we also restrict econometric analysis presented here to the balanced panel of 

261 growers present in both the 2007 and 2011 surveys. We focus on the balanced panel because 

of additional information that was collected in the 2011 survey and which we use in the analysis 

here, such as the distance of the farm to the nearest road.7 

Table 1 summarizes the adoption shares for the different seed types by village 

(corresponding to the 𝜎𝑗ℎ in section 2.2). From this we can quickly see a number of patterns. 

First, there is significant heterogeneity in GM crop adoption between villages and years. Second, 

between 2007 and 2011 there was a significant shift to GM varieties, specifically to the stacked 

                                                 
7 We have also replicated the analysis with the unbalanced panel of farmers, excluding the variables only 

collected in 2011. The main results of the paper are robust; results are available on request to the authors.  
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trait variety. In particular 100% of the sampled farmers in five of the 11 villages in 2011 chose 

the stacked-trait variety; this evidently high demand both poses complications and offers some 

identifying variation for our proposed econometric approach.  

To estimate the choice models used in this study, we require subsets of variables that 

differ over area, individual and variety. Identification requirements for these variables are that 

they should be exogenous to both individual choices and area-level adoption of GM varieties. 

Table 2 summarizes the grower-level variables used in this analysis. At the individual level, we 

include individual growers’ distances to the nearest seed supply source and nearest road in the 

first-stage estimation, following Sanglestsawai et al.’s (2014) study of the yield effects of Bt 

adoption in the Philippines using the 2007 survey data. We also include a measure of farmer 

experience – the number of years farming corn (as of 2007) – and basic indicators of the farm 

terrain.  

While we do not observe pest densities, we do use in this analysis survey data on farmer 

expectations about the future ACB infestations. Table 2 also shows the mean and standard 

deviations for responses to the survey question:  

In using this variety [of seed selected by the farmer], do you expect corn borer 

infestation? (Yes/No) 

We employ responses to this question as the pest infestation indicator in regression equation (7). 

As noted above, this indicator is clearly endogenous with seed choice. Table 2 shows that 

perceived pest infestation risk exhibits proportionally greater between-village than within-village 

variation, more than any of the other variable in this table. This suggests a high within-village 

correlation of this variable and an important areawide component to perceived pest infestation 

risks.   
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Lastly, to obtain variety-specific prices which vary over villages and years for the RUM 

in (3) and (4), we regress the survey-elicited price 𝜑𝑖𝑣𝑡 that farmer 𝑖 paid for their seed in village 

𝑣, year 𝑡 on village fixed effects interacted with the seed type planted by the farmer and a year 

dummy.  

𝜑𝑖𝑣𝑡 = ∑(𝜃𝑗𝑣 + 𝜃𝑗𝑡)𝑐𝑖𝑗𝑡

𝑗

+ 𝜐𝑖𝑣𝑡 (8) 

where 𝑐𝑖𝑗𝑡 indicates which variety 𝑗 farm 𝑖 purchased in year 𝑡, the 𝜃’s are regression coefficients 

to be estimated and 𝜐𝑖𝑣𝑡 is the residual. After estimating (8) via OLS, we use predictions from 

this regression to obtain area-level prices, where an “area” is defined here and throughout as a 

year-village combination ℎ = (𝑣, 𝑡), so that 𝑝𝑗ℎ = 𝜃𝑗𝑣 + 𝜃𝑗𝑡.8 Table 3 summarizes these 

computed variety-specific prices. The price premium for Bt single-trait in 2007 is 62% that of the 

mean conventional hybrid price, declining to 41% in 2011. The premium for the stacked variety 

is 65% of the mean hybrid seed price in 2011. The price of the hybrid variety increased by an 

average of 48% between 2007 and 2011.  

5 Econometric estimation and specification 

Given the data described above, we must address some empirical complications to 

implement our econometric approach. The most significant challenge to implementing our 

econometric approach with these data is the presence of 0% and 100% village-level adoption 

shares for 2011. This poses a challenge to our proposed estimation method, because the 

                                                 
8 The reason we specify village 𝜃𝑗𝑣 and time trend 𝜃𝑗𝑡 as additively separable is specifically because of the 

5 villages in 2011 for which we only observe farmers purchasing the stacked variety (Table 1), therefore making 

estimation of a fully saturated model with 𝜃𝑗𝑣𝑡 infeasible, i.e. we require imputations for the prices for the Bt single 

trait and hybrid varieties even in village-years where no one was observed purchasing these varieties.  
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estimated 𝛿𝑗ℎ’s will converge to negative or positive infinity in these cases (since by design these 

estimates exactly match predicted village-year seed type shares to their empirical counterparts).  

To deal with this problem of boundary adoption shares, we use two alternative 

approaches: an IV quantile regression (IVQR), following Timmins and Murdock (2007) who 

deal with this same challenge, and an IV Tobit appraoch. In analyzing the second-stage results, 

we compare both of these approaches with a simple linear IV regression, as well as naïve OLS 

ignoring endogenity. Timmins and Murdock (2007) implement the IVQR by first modifying 

boundary shares 𝜎𝑗ℎ infinitesimally to lie in the interior (0,1) interval, which ensures 

convergence of the contraction mapping algorithm but yields very large magnitude, though 

finite, values for the 𝛿𝑗ℎ’s associated with boundary shares. In the second stage, Timmins and 

Murdock then treat the boundary share 𝛿𝑗ℎ’s as outliers and use IVQR techniques to address this. 

We follow that approach here, using the IV quantile treatment effects regression model of 

Chernozhukov and Hansen (2005; 2006).9  

The second approach we believe is a novel way to address boundary shares. That is, to 

treat the boundary share fixed effects 𝛿𝑗ℎ’s as censored data rather than outliers. We use an IV 

Tobit to jointly address censoring and endogeneity. The benefits of this approach over the IVQR 

are that: (a) as shown below, we argue censoring better describes the data-generating process 

(DGP) leading to 0% or 100% shares than treating them as outliers, (b) the IV Tobit is older, 

more well-studied and more widely applied than IVQR (including in software packages, e.g. 

being built into Stata rather than the user-written packages for IVQR), (c) quantile regression 

                                                 
9 The IV quantile treatment effects model of Chernozhukov and Hansen was not widely known at the time 

of the Timmins and Murdock (2007) paper, which uses a rarely employed GMM estimator for an IV quantile 

regression. Chernozhukov and Hansen (2005; 2006) discuss the drawbacks of GMM relative to their less restrictive 

model, which is why we employ the latter here.  
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coefficients, in determining the conditional quantiles (in our case, median) of the dependent 

variables, are not the same as those in (4), which are the parameters of interest in estimation and 

are structurally linked to first-stage maximum-likelihood estimation in (5), and finally (d) if the 

IV Tobit correctly characterizes the DGP (which we test below), then it is generally understood 

to be more efficient than the IVQR for estimating the parameters of interest.  

The logic of censoring the 𝛿’s associated with boundary shares is that, because we have 

finite samples of farmers in each area, the smallest and largest area-level interior shares we can 

observe with a sample of size 𝑛ℎ are, respectively, 𝑛ℎ
−1 and (1 − 𝑛ℎ

−1). And because the 

predicted shares �̂�𝑗ℎ are strictly monotonic in the fixed effects, with 𝜕�̂�𝑗ℎ/𝜕𝛿𝑗ℎ > 0 and 

lim
𝛿𝑗ℎ→∞

�̂�𝑗ℎ = 1 (and lim
𝛿𝑗ℎ→−∞

�̂�𝑗ℎ = 0), then if the true 𝛿𝑗ℎ is large enough (but finite) in magnitude 

it will yield �̂�𝑗ℎ(𝛿𝑗ℎ) > (1 − 𝑛ℎ
−1), i.e. the predicted share at the true parameters is greater than 

can be measured with a sample size of 𝑛ℎ. This implies the true 𝛿𝑗ℎ is greater than any estimate a 

size-𝑛ℎ data sample could produce and makes it more likely we observe 𝜎𝑗ℎ = 1, in which case 

we treat 𝛿𝑗ℎ as censored from above. Conversely, if 𝛿𝑗ℎ is negative and so large in magnitude that 

�̂�𝑗ℎ(𝛿𝑗ℎ) < 𝑛ℎ
−1 and we likely observe 𝜎𝑗ℎ = 0, then we treat 𝛿𝑗ℎ as censored from below. In 

theory, for maximal efficiency with the Tobit, the upper and lower censoring bounds should vary 

by area-level sample sizes 𝑛ℎ
−1. However, in practice this makes the censoring bounds not only 

variable but also dependent on the first-stage estimates �̂�′𝒙𝑗𝑖 in (5). So we instead manually 

specify the lower and upper bounds for the 𝛿𝑗ℎ.10 As compared to the other second-stage IV 

methods we use, the IV Tobit adds these censoring assumptions, and an assumption that the error 

                                                 
10 Since this uses less information than with variable bounds, this estimator is still consistent but less 

efficient than IV Tobit with the highest or lowest known variable bounds. 
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terms 𝜉𝑗ℎ in (4) are normally distributed and homoscedastic. We implement IV Tobit via limited-

information maximum likelihood (LIML), with first-stage linear projection of 𝐶ℎ onto 𝐶ℎ
𝐼𝑉 

inserted into the Tobit regression (Roodman 2011). Because of these strict assumptions, we 

perform a conditional moments test on the generalized residual of the Tobit model (Cameron and 

Trivedi 2005; Pagan and Vella 1989). Rejection in this test implies a misspecified model, 

whereas we retrieve a p-value = 0.35.11  

Another econometric challenge for estimating the RUM specified in (3) and (4) is the 

potential for price endogeneity. While not the focus of our paper, prices are obviously important 

in seed demand. Price endogeneity may arise if, for example, within-area market power permits 

seed sellers to increase their prices to capture rent. This concern is somewhat alleviated because 

the logic of RUMs implies only between-variety differences (𝑝𝑗ℎ − 𝑝𝑘ℎ) in prices affect choices 

in these models. So, for example, if all the 𝑝𝑗ℎ’s within area ℎ were marked up by an area-level 

constant 𝜁ℎ, this would not alter the estimated effect of 𝑝𝑗ℎ on farmers’ seed choices when 

included in the RUM: Any endogenous markups to price would have to differ by variety to 

contaminate the RUM with price endogeneity. While this somewhat alleviates the concern, we 

acknowledge that endogenous premiums for the GM varieties remain possible (Shi, Chavas and 

Stiegert 2010). We therefore further analyze whether there is a relationship between 𝑝𝑗ℎ and 

measures of area-level market size, which have been shown to be proxies for market power 

(Campbell and Hopenhayn 2005; Melitz and Ottaviano 2008). The sampling methodology for 

                                                 
11 The formula used for the generalized residual 𝜖𝑗ℎ from the left- and right-censored Tobit model can be 

found in the replication materials for this paper. The conditional moments test of Pagan and Vella (1989) specifies 

the null hypothesis 𝔼[𝜖𝑗ℎ𝒛𝑗ℎ] = 𝟎 for any vector 𝒛𝑗ℎ of exogenous variables. We set 𝒛ℎ to include all of the 

exogenous variables used to estimate the second-stage regressions in Table 5, as well as squares and exponential of 

the continuous variables and all interactions. We implement the test using generalized method of moments (GMM) 

with an iteratively computed optimal weighting matrix. Details are in the online replication materials.  
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our survey data provides a convenient measure of market size: the number of sampled corn 

growers in each village-year, which by design was proportional to the number of corn growers in 

each village’s records. Table A1 shows OLS results regression 𝑝𝑗ℎ on dummies for seed variety 𝑗 

and area-level sample size 𝑛ℎ, with interactions. These regressions show no systematic 

relationship between market size, and variety-specific prices, either in absolute terms or in terms 

of the Bt and Stacked trait premiums. In the model with full interactions between 𝑛ℎ and variety-

specific dummy variables, the F-statistic testing the joint significance of the 𝑛ℎ regressors has a 

p-value = 0.516. While this does not completely rule out price endogeneity in the discrete choice 

model, these results – coupled with the properties of RUMs and the fact as we see below that the 

price variable performs as expected in regression results – suggest that price endogeneity if 

present is at least not contaminating the main qualitative results of this paper concerning pest 

suppression feedbacks.   

 We also perform specification tests of random (mixed logit) versus fixed parameters 

(conditional logit) in the first-stage RUM. Our general specification allows for a farm-level 

random utility effect Δ𝑗𝑖 associated with each variety 𝑗:12 

𝑈𝑗𝑖ℎ = 𝛿𝑗ℎ + 𝜷′𝒙𝑗𝑖 + Δ𝑗𝑖 + 𝜖𝑗𝑖ℎ (9) 

with the assumption that (Δ𝐵𝑡,𝑖, Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖) are jointly i.i.d. 𝒩(𝟎, 𝚺) and the standard RUM 

restriction that reference alternative 𝐻’s random effect is zero (Δ𝐻,𝑖 = 0) to ensure identification 

(Train 2009). In this model, the covariance matrix 𝚺 of the random effects is to be estimated in 

addition to the coefficients in (9). This model relaxes the IIA assumption by allowing for 

                                                 
12 Note that the two-year panel rules out fixed effect estimation of Δ𝑗𝑖  in a conditional logit model: For any 

farmer who planted the same variety 𝑗 in both years, fixed effects estimation yields Δ𝑗𝑖 = ∞ (or Δ𝑘𝑖 = −∞ ∀𝑘 ≠ 𝑗), 

to ensure that farmer’s predicted probability of selecting that variety equaled one, i.e. the observed share of choice 

occasions they purchased that variety.  
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nonzero off-diagonal elements of 𝚺. Further analysis (table A2) shows that imposing the 

restriction that corr(Δ𝐵𝑡,𝑖, Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖) = 1 does not result in the loss of any statistically 

significant explanatory power (LR test p-value = 0.33). Therefore, our preferred mixed logit 

specification for first-stage seed choice RUM (last two columns of table 4) assumes a common 

random effect from either of the GM varieties, with Δ𝐺𝑀,𝑖 ≔ Δ𝐵𝑡,𝑖 = Δ𝑆𝑡𝑎𝑐𝑘𝑒𝑑,𝑖, reducing 𝚺 to a 

single component, 𝑠𝐺𝑀.  

The last specification decision we discuss addresses FIML estimation of the pest 

infestation probit regression in (7). For this model we must select excludable instruments 

predicting use of the Bt varieties (𝑐𝑖ℎ in eq. 7), but do not directly predicting expected pest 

infestation (𝑏𝑖ℎ). For this purpose, we use a subset of the farmer-level covariates in our seed 

choice RUM: price premiums for GM varieties (computed in this regression as the average 

premium between the Bt and single trait varieties), as well as the farm’s distance to the nearest 

road and the nearest seed source. As shown below (e.g. the F-statistics in table 6), these factors 

are statistically significant determinants of seed choice, and we argue should satisfy the 

exclusion assumptions that they not directly affect pest pressure. (In contrast, the other seed 

choice variables in the RUM – the terrain indicators – we consider as violating the exclusion 

restrictions.) We investigate robustness of the FIML probit results with respect to subsets of 

these instruments, finding that the GM seed price premium has nearly the same F-statistic with 

respect to explaining 𝑐𝑖ℎ as compared to all excluded instruments.  

6 Results 

Table 4 shows the first-stage conditional and mixed logit models, with and without area-level 

fixed effects. For the purposes of this paper, the important takeaway from this table is that the set 

of farm-level covariates, taken as a whole, have statistically significant explanatory power over 
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seed choice (as seen in the significant Wald 𝜒2 statistics in the table). In the baseline conditional 

and mixed logit regressions without area-level fixed effects (first and third columns of table 4), a 

farm’s distance to the nearest seed source and indicators of farm terrain appear to have the most 

explanatory power for use of the GM seed varieties. As in Sanglestsawai et al. (2014), distance 

to nearest seed source appears in these columns to have a counterintuitive effect on use of the 

single-trait Bt variety, with farms farther from their nearest seed supplier evidently more likely to 

purchase the single-trait Bt seed. However, the counterintuitive effect of seed supplier distance 

on single-trait Bt use becomes insignificant when area-level fixed effects are included (second 

and fourth columns of table 4). Moreover, the effect of seed supplier distance on purchase of the 

stacked-trait GM variety is statistically significant across three of the four specifications and 

always has the intuitive sign (greater distance from the seed source leads to a lower likelihood of 

purchasing the most advanced variety).  

The farm’s distance to the nearest road also appears to significantly explain demand for 

the single-trait Bt variety in three of the four specifications. The positive sign of the estimated 

coefficient, in all specifications, implies more remote farms (i.e. those less connected to 

transportation networks) are more likely to use the single-trait Bt variety (as well as the stacked 

trait variety, though none of these coefficients are statistically significant). This patterns appears 

even stronger when area-level fixed effects are included in the regression (in terms of statistical 

significance; recall that the coefficient magnitudes in RUMs cannot be directly compared 

between specifications). Multiple explanations could accommodate this result: More remote 

farms may find it more costly to access local labor markets, and be using the Bt and herbicide-

tolerant varieties to reduce hired labor inputs in pre-harvest pest control and weeding activities 

(Gouse et al. 2016; Connor 2017). Areawide pest suppression may also play a role: More remote 
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farms may also enjoy fewer benefits of areawide pest suppression from neighbors’ use of Bt 

seed, thereby increasing remote farms’ own incentive to use these varieties, ceteris paribus. 

Alternatively, more remote farmers may find it more costly to access and reactively apply topical 

insecticides upon pest outbreaks, and thus find the Bt trait relatively more desirable as a means 

of ACB control. This latter hypothesis could also explain why distance to roads has a smaller and 

insignificant effect on utility from the stacked variety, since access to herbicides is important to 

benefit from the HT trait in this variety.    

The dummy variable indicators for terrain, despite their coarseness, show explanatory 

power and mostly intuitive relationships with seed choices in table 4. Farms with “rolling 

terrain” generally appear more likely to use the GM varieties over the hybrid. This could be 

explained by ecological conditions on such terrain that favor ACB and weeds. Afidchao et al. 

(2013) find that ACB damage on corn in the Philippines is positively correlated with distance 

away from rivers and floodplains. “Hilly/mountainous” terrain, meanwhile, can limit potential 

yield and increase farming costs, limiting incentives for farmers to invest in the extra price 

premia for more productive varieties.  

Comparing the conditional and mixed logit models, we see that inclusion of area-level 

fixed effect estimation appears to obviate the need for relaxing IIA using the farm-level mixed 

logit model. While mixed logit model without area-level fixed effects (third column of table 4) 

yields a statistically significant estimate of 𝜎𝐺𝑀, suggesting the importance of unobserved 

preference heterogeneity, this additional explanatory power dissipates when area-level fixed 

effects are included (last column of table 4). An LR test between the mixed and conditional logit 

models with area-level fixed effects yields a p-value of 0.24, compared to a p-value of 2.7×10-5 

from the same test of mixed v. conditional logit without area-level fixed effects. These results 
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suggest that accounting for unobserved farm-level heterogeneity in seed preference in these data 

is less important than accounting for area-level heterogeneity. 

Concluding our discussion of table 4, we note that in those specifications including seed 

price its coefficient is of the expected sign and always significant, though only at the 10% level 

in the baseline conditional logit model. The increased explanatory power attributed to seed price 

in the mixed logit regression (third column) compared to the conditional logit suggests the role 

of prices in seed choices is related to unobserved preference heterogeneity. (Recall that seed 

price is omitted along with all other variety-specific constants from all first-stage specifications 

with area-level fixed effects, because regressors not varying below the area-level are reserved for 

second-stage estimation.)  

The second-stage regression estimates in table 5 exhibit intuitive patterns and appear to 

confirm our bioeconomic hypothesis. Across all of the specifications in Table 5, we find a 

statistically significant negative feedback effect of areawide Bt deployment on utility from these 

varieties in the IV regressions (columns 3 and 8). Moreover, comparing the naïve OLS model 

(cokumn 1) with the IV models (cols. 3-5), we see as expected that ignoring endogeneity of the 

feedback results in a smaller magnitude (though still negative) feedback effect. (The magnitudes 

of the coefficients are comparable across columns, since the same fixed effects from the first-

stage logit are used as dependent variables throughout this table.) The other coefficients in these 

regressions behave as expected in the context of the application: Seed price has a consistently 

negative marginal utility across all specifications, and is statistically significant in all regressions. 

The fixed effect of the stacked trait variety is consistently larger than the single-trait variety, 

which is in turn always greater than zero (with the hybrid variety being reference alternative).  

Our preferred specification, the IV Tobit in column 5 that allows for endeogeneity and censoring 
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of the fixed effects, appears to be conservative both in the estimated relative magnitude 

(discussed below) and statistical precision of the feedback effect, compared to the IV and IVQR 

models.   

In terms of IV performance, we confirm the Bayer and Timmins instrument appears 

strong, with an F-statistic = 11 yielded by a linear regression of observed area-level Bt shares on 

the IV. Without additional structural assumptions, statistical tests of exogeneity of the instrument 

are not possible, since this IV system is not over-identified.  

The estimated coefficients in table 5 are marginal utilities and preclude direct economic 

interpretation of magnitudes (although they are comparable across the columns). Two relevant 

economic quantities can be computed from the estimated coefficients. The first is the ratio 

between the areawide feedback coefficient and the price coefficient, which can be interpreted as 

the equivalent variation in utility between a marginal change in seed price or a marginal change 

in areawide Bt deployment. In terms of reduced utility to farmers, this calculation implies a 1% 

increase in areawide Bt deployment is equivalent to an approximately 1.7% increase in seed 

prices in the IV and IV Tobit models (t-statistics of 1.74 and 1.42 respectively), and in the IVQR 

model to a 2.82% increase in prices (t-stat. = 1.81). This contrasts with a much lower equivalent 

variation estimate of 0.88% estimate implied by the naïve OLS model.   

A second quantity of economic interest is the importance of accounting for the area-level 

feedback when estimating the marginal effects of other factors such as prices. For example 

consider how a marginal decrease in the price of all varieties with Bt traits affects their ‘long-

run’ market shares, based on the estimated RUM with endogenous feedbacks. ‘Long-run’ in this 

context means that market shares equilibrate to the endogenous feedbacks estimated here. The 

immediate direct effect of the price decrease would be to shift market share to the Bt varieties 
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(due to the negative estimated price coefficient in tables 4-5). However, the endogenous sorting 

model implies that an immediate increase in their market share would be attenuated in 

equilibrium by the estimated negative (allegedly pest-suppressing) areawide feedback. The 

magnitude of this attenuation, and the long-run effect of a marginal price change, can be 

computed by recognizing that the endogenous sorting model estimated implies that the areawide 

share of Bt seed �̂�(𝑿) predicted by that area’s characteristics 𝑿 (including seed prices) is an 

implicit function satisfying �̂�(𝑿) = 𝐹[𝑿, �̂�(𝑿)], where 𝐹(⋅) is defined by the fixed effects 

conditional logit RUM in (3) and (4); the Appendix explains further. By the Implicit Function 

Theorem, the gradient of �̂�(𝑿) is �̂�𝑿 = 𝐹𝑿(1 − 𝐹𝑐)−1. A negative coefficient on area-wide Bt 

shares, 𝛼 < 0, implies 𝐹𝐶 < 0, as shown in the Appendix, so that the factor (1 − 𝐹𝑐)−1 < 1 

attenuates the magnitudes of the partial derivatives 𝐹𝑿 in computing �̂�𝑿. When we apply this 

formula to compute average price elasticities of demand for the Bt varieties across areas, we find 

an price elasticity of -1.77 when ignoring the areawide feedback and a long-run elasticity of -

0.58 when accounting for areawide feedbacks: the endogenous sorting model, in the IV Tobit 

specification, reduces the long-run price elasticity of demand for the Bt varieties by 67% 

compared to the naïve OLS model. 

The support the IV models provide for a significant, negative feedback effect from 

areawide Bt deployment also leads to the question of whether this feedback is in fact 

bioeconomic; i.e. does it it arise from pest suppression spillovers as hypothesized above? Table 6 

addresses this question using the farmers’ expectations about ACB infestations. Across all 

estimated specifications of the FIML model described in section 3.2, we find results highly 

consistent with our bioeconomic hypothesis, with greater areawide Bt deployment strongly 

associated with significantly reduced perceived likelihood of infestation. Table 6 reports 
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marginal effects, so that for example a 10% increase in areawide Bt deployment is associated 

with a minimum 5.6% reduction (first column of table 6) in the likelihood that the farmer 

indicates expecting ACB infestation.  

This marginal effect is robust across specifications, and in fact increases as we account 

for additional potential sources of bias (moving from left to right in the table), from omitted 

variables to endogeneity. In the probit regressions including own-farm use of Bt, the marginal 

effect of areawide deployment increases, whereas own-farm Bt use exhibits a highly significant 

positive marginal ‘effect.’ This result raises obvious concerns about endogeneity of the type 

described in 3.2. When we control for this endogeneity of own-farm Bt use in the FIML models 

(columns 4-5), using either the full set of instruments or only the GM seed price premium, the 

estimated marginal effect of own-farm Bt use changes sign as we would expect, though loses 

statistical significance. A negative marginal effect would be consistent with the own-farm use of 

Bt varieties reducing perceived ACB infestation risk. In contrast, the positive cross-equation 

correlation of residuals between perceived infestation risk and Bt use suggests that farmers who 

ex ante perceive greater pest pressure are also more likely to select Bt varieties, although this 

correlation is only statistically significant in a single specification and only at the 10% level.  

7 Discussion  

Bioeconomic feedbacks associated with pest control have important implications for 

agricultural systems. In addition to negative environmental externalities associated with chemical 

pesticides and the open-access resource issues associated with pesticide resistance, we draw 

attention to the positive externalities associated with areawide pest suppression spillovers.13 

                                                 
13 On the topic of resistance, it deserves mentioning that one advantage of our data is that it covers a period 

of time where Bt adoption was widespread, but before any resistance to ACB in the Philippines had been 

documented. 
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While previous entomological research has shown these spillovers to be biologically significant, 

our econometric analysis addresses how these spillovers feed back into farmers’ pest control 

decisions. 

This research raises a number of methodological and policy implications and questions 

for future research. Evidence from prior research and this paper strongly suggest that pest 

suppression spillovers from Bt crop adoption are significant (as argued by Hutchison et al.) and 

that these spillovers are likely perceived by farmers (as we find here). In the presence of such 

spillovers, then farmers who choose not to plant Bt crops initially are more likely to continue to 

do so ceteris paribus, as they enjoy the spillover benefits of neighboring farms’ use of Bt crops. 

Indeed, prior media reports in the U.S. have suggested that “farmers are getting savvier about 

gene shopping,” for example avoiding paying the extra technology fee associated with Bt corn 

rootworm traits, due to low perceived risks from that pest (WSJ 2016).  

In the context of areawide pest suppression, economic theory suggests a role for 

corrective incentives. Efficiency could be improved in principle via a Pigovian subsidy for Bt 

seed, although such an incentive may also need to account for other possible environmental and 

bioeconomic externalities, e.g. pest resistance (Ambec and Desquilbet 2012; Brown 2018). That 

is, an integrated policy should account for both the positive and negative externalities associated 

with different pest control practices (Lefebvre, Langrell and Gomez-y-Paloma 2015).  

An integrated view of these feedbacks is particularly relevant when we compare the 

implications of our findings – that farmers not using Bt crops are free-riding on those that are 

using them – with the fact that Bt crops are widely adopted in a variety of contexts. This is true 

in our data by 2011, in which 5 of the 11 villages exhibited 100% adoption of the stacked trait 

variety among sampled farmers. And it is also true in the US, where over 84% of corn acreage 
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has been planted to Bt varieties since 2014, with the vast majority (over 95%) of this Bt corn 

being stacked with HT traits (NASS 2018). This pervasive combination of Bt and HT traits, as 

well as evidence that seed companies have tended to bundle these traits with their higher yielding 

conventional germplasm (Shi et al. 2013), complicates arguments of farmers simply free-riding 

on their peers’ Bt deployment. However, it is still possible – as we find in this study – that at the 

margin farmers face a diminished incentive to plant the Bt trait alone in the presence of 

significant areawide pest suppression. In the US, for example, the share of corn acreage planted 

to single trait Bt has monotonically decreased from 27% in 2004 to 2% in 2018 (NASS 2018). 

Our results (if they were shown to also apply in the US context) could provide one among a 

number of possible reasons for this secular decrease in use of single-trait Bt varieties. A broader 

lesson is simply that complex feedbacks, bioeconomic and otherwise, can drive trends in crop 

choice.    

Our suggestive evidence of a pest suppression feedback effect on incentives to use Bt 

crops warrants more detailed follow-up research in other contexts and using additional types of 

data. To the extent that we identify a negative feedback between areawide deployment of Bt and 

individual farmer incentives, we can only interpret it as a net effect. For example, in addition to 

bioeconomic feedbacks, behavioral peer effects may inform farmers’ beliefs about the utility of 

the technology (Aldana et al. 2012), which could generate positive feedbacks from Bt use (see 

references in the Introduction). As such, the net negative feedback we find in our analysis may 

reflect an even larger negative bioeconomic feedback counterbalanced by a positive feedback 

from peer effects. Nevertheless, our finding that areawide Bt deployment led to reductions in 

perceived ACB infestation risk, coupled with the fact that transgenic corn was widely available 

and adopted in the years covered by the data, limit the likelihood that peer effects were a 
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significant source of crop choice feedbacks. Future research combining entomological pest 

density data with farmer pest control decisions could better disentangle bioeconomic and 

behavioral feedbacks. Our research suggests this would be a worthwhile effort. 

Other agglomeration-inducing endogenous feedbacks may arise in the context of GM 

corn due to herbicide drift. Recent studies have reported significant damage to US soybean and 

cotton crops from the drift of the herbicide dicamba. This drift is caused by farmers planting 

dicamba-resistant varieties and then (illegally) spraying their crops with the herbicide, which 

then drifts onto neighboring fields planted with non-resistant crops (Bennett 2016). Viewed in 

the light of the present study, this dynamic would appear to increase growers’ demand for 

dicamba-resistant varieties even if they do not intend to spray dicamba. In the context of our 

present study with the ‘stacked’ corn variety including glyphosate resistance and the Bt trait, we 

do not attempt to identify these potential agglomeration feedbacks, because of somewhat 

diminished concern about glyphosate drift compared to dicamba (Jordan et al. 2009; Hightower 

2017), in particular in the Philippine corn-farming context where farmers generally use knapsack 

sprayers applying herbicide close to their plants. However, the dicamba drift problem in US 

cotton and soybeans could provide an important future application of the approach developed 

here for identifying endogenous feedbacks in crop adoption.      

Another implication of this research relates to econometric estimates of yield, profit and 

income effects of Bt crops. Much of the literature on this topic utilizes observational data, often 

observing a panel of individual farmers or small spatial units over a number of years (Fernandez-

Cornejo and Wechsler 2012; Kathage and Qaim 2012; Mutuc and Rejesus 2012; Xu et al. 2013; 

Sanglestsawai et al. 2014; Qiao 2015). While much of this econometric work addresses the 

potential endogeneity of Bt adoption owing to selection, our research suggests there may be 
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another source of bias arising from the fact that farmer-level adoption is likely correlated with 

areawide adoption and hence possibly associated with pest suppression spillovers and resulting 

yield gains. This suggests that econometric studies using farmer-level data may overestimate the 

direct effect of Bt adoption on key outcomes such as yield and profit, even when controlling for 

selection. Such areawide feedbacks may not only generate a potential source of bias, and may for 

example play a role in seeming inconsistencies between micro-level and aggregate analyses of 

the yield impacts of Bt crops (NASEM 2016; Lusk, Tack and Hendricks 2016). At the very least 

because the nature of such bioeconomic spillovers is inherently dynamic, the present analysis 

provides motivation for yield regressions to include flexible fixed effects interactions between 

geographic areas and temporal units or trends (the main effects for which are standard in such 

yield regressions), at least if one aims to isolate the own-farm yield effects of transgenic crop 

deployment. Of course, such flexible fixed effects specifications could place extreme demands 

on the datasets typically used for these yield regressions.  

Recognizing these areawide bioeconomic feedbacks suggests alternative ways of 

eliminating bias from these regressions: Estimate the two-stage endogenous sorting model 

described above to generate predicted farmer-level adoption probabilities, controlling for 

selection and areawide adoption feedbacks, and then use these predicted probabilities to estimate 

the effects of adoption on key outcomes such as yield and profit. Considering that controlling for 

selection alone makes significant demands on the data for achieving sufficient statistical power, 

we reserve such an exercise for future work with richer data.  

Appendix 

[Tables A1- A2] 

Estimating the long-run price elasticity of demand with endogenous sorting  
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Because the probability of planting either of the Bt crops is one minus the probability of 

planting the hybrid variety, it easiest to derive marginal effects in terms of the predicted 

probability of planting the hybrid variety. Moreover, we consider the effect of a common price 

change to both Bt crop varieties, which in the RUM specified in (3) and (4) is equivalent to an 

opposing change in the price of the hybrid variety 𝑝𝐻ℎ. Combining (3) – (5), and noting that 

𝑏𝐻 = 0 in (4), the predicted probability of adopting the hybrid is: 

𝑃𝐻𝑖ℎ(𝑝𝐻ℎ, 𝐶ℎ) =
exp{𝜷′𝒙𝑯𝒊 + 𝛿�̅� − 𝜂𝑝𝐻ℎ + 𝜉𝐻ℎ}

∑ exp{𝜷′𝒙𝒌𝒊 + 𝛿�̅� − 𝜂𝑝𝑘ℎ + 𝛼𝑏𝑘𝐶ℎ + 𝜉𝑗ℎ}𝑘∈ℎ

 

Here, we express 𝑃𝐻𝑖ℎ as a function of 𝑝𝐻ℎ and 𝐶ℎ, as these are the focal arguments required to 

derive the net price elasticity.  

In our endogenous sorting model, the area-level average probability of planting Bt crops 

therefore satisfies the following equilibrium equation:  

𝐶ℎ = 𝐹ℎ[𝑝𝐻ℎ, 𝐶ℎ] ≔ 𝑛ℎ
−1 ∑[1 − 𝑃𝐻𝑖ℎ(𝑝𝐻ℎ, 𝐶ℎ)]

𝑖∈ℎ

 

This equation provides an implicit function �̂�ℎ(𝑝𝐻ℎ) for the predicted area-level average Bt 

probability, in terms of the hybrid variety’s price 𝑝𝐻ℎ (though any exogenous factor determining 

seed variety choice could be substituted here for 𝑝𝐻ℎ). The Implicit Function Theorem implies 

the net marginal effect of 𝑝𝐻ℎ is: 

𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
=

𝜕𝐹ℎ
𝜕𝑝𝐻ℎ

(1−
𝜕𝐹ℎ
𝜕𝐶ℎ

)
=

−𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ
𝜕𝑝𝐻ℎ

𝑖∈ℎ

(1+𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ
𝜕𝐶ℎ

𝑖∈ℎ )
  (A1) 

Because 𝑝𝐻ℎ is the logarithm of price throughout the manuscript, (A1) is a semi-elasticity, i.e. 

the net effect of a marginal percentage change in the price of the hybrid variety (or, conversely, 

an opposing common marginal percentage change in the prices of the Bt varieties) on the area-
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level average probability of planting either of the Bt varieties. Dividing (A1) through by 𝐶ℎ gives 

the full elasticity. 

The partial derivatives 
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
 and 

𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
 follow from the standard marginal effects formulas 

for the conditional logit model:  

𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
= −𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝜂 

𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
= −𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝛼 

When there is no feedback effect, then 𝛼 = 0 and the area-level marginal effect of prices is 

simply the area-level mean of the partial derivatives, 
𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
= −𝑛ℎ

−1 ∑
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
𝑖∈ℎ . As such, the 

divisor (1 + 𝑛ℎ
−1 ∑

𝜕𝑃𝐻𝑖ℎ

𝜕𝐶ℎ
𝑖∈ℎ ) in (A1) embodies the areawide feedback effect. If 𝛼 < 0 (as 

hypothesized with areawide pest-suppression), then because 𝑃𝐻𝑖ℎ ∈ (0,1) this effect is 

attenuating, with |
𝑑�̂�ℎ

𝑑𝑝𝐻ℎ
| < |

𝜕𝐹ℎ

𝜕𝑝𝐻ℎ
| = |𝑛ℎ

−1 ∑
𝜕𝑃𝐻𝑖ℎ

𝜕𝑝𝐻ℎ
𝑖∈ℎ | when  𝛼 < 0 because: 

𝑛ℎ
−1 ∑ 𝑃𝐻𝑖ℎ(1 − 𝑃𝐻𝑖ℎ)𝛼

𝑖∈ℎ

< 0        if  and only if        𝛼 < 0  

We compute marginal price effects for the naïve OLS model in column (1) of table 5, where 𝛼 =

0 and the price coefficient estimate is 𝜂 = −10.30, comparing this to the IV model in column (5) 

with estimates of 𝛼 = −24.19  and 𝜂 = −14.06. (Note that the predicted probabilities 𝑃𝐻𝑖ℎ for 

the marginal effects computation are the same between both the naïve and IV models, as these 

are estimated in the fixed effects conditional logit first-stage, i.e. table 4)   

Table A3 presents the results of this computation. Results imply that a 1% increase in the 

price of all Bt varieties (or equivalently a 1% decrease in the price of the hybrid variety), yields 

on average a long-run 0.58% decrease in the average grower’s demand for these varieties in the 
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IV model accounting for areawide feedbacks, compared to an estimated 1.77% decrease in the 

naïve model ignoring this equilibrium feedback. Due to the complex nonlinear formula in 

equation (A1) and the fact that our estimation method does not produce covariance estimates 

between the first- and second-stage coefficients, we do not compute standard errors of the mean 

price elasticities to account for estimation error in the regression coefficients. Instead, given the 

point estimates of the coefficients, we report summary statistics for the estimated price 

elasticities over the sample of 22 areas in the data. As with other parts of our analysis, we see 

significant heterogeneity in the estimated area-level price responses, with some areas with price 

elasticities in excess of 7% and others with virtually no estimated response to price. The latter 

tend to correspond to areas where the Bt single-trait and stacked varieties are fully deployed.  

[Table A3 here]
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Tables 

Table 1: Corn variety adoption shares and number of surveyed growers by village 

  2007  2011 

Province Village / Barangay Hybrid Bt N  Hybrid Bt Stacked N 

          

Mindanao Olympog 71% 29% 38  14% 18% 68% 28 

Sinawal 79% 21% 52  65% 27% 8% 26 

Tampakan 73% 27% 70  27% 9% 64% 22 

          

Isabela Andarayan 30% 70% 10  0% 0% 100% 8 

Bugallon 46% 53% 28  0% 17% 83% 18 

San Pablo 50% 50% 20  0% 0% 100% 14 

Villa Luna 26% 74% 35  0% 20% 80% 20 

Cabaseria 5 29% 71% 92  0% 0% 100% 60 

Dappat 45% 55% 33  0% 0% 100% 22 

San Fernando 28% 72% 36  3% 0% 97% 34 

San Manuel 7% 93% 14  0% 0% 100% 12 

          
 TOTAL 207  221  428   28  21  215  264  

  48% 52%   11% 8% 81%  
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Table 2. Grower-level characteristics used in the choice models. 

 

Table 3. Variety-specific, area-level seed prices (Philippine pesos, PHP). 

 2007 2011 

Variety Mean Std. Dev. Mean Std. Dev. 

Conventional hybrid 185 32 274 36 

Bt single-trait 300 44 386 48 

Bt/HT stacked-trait n/a n/a 451 42 

Notes: These data are obtained from an OLS regression of seed prices 

paid by growers on village-level fixed effects interacted with variety-

specific dummy variables and an independent time trend. Prices for 

stacked trait in 2007 are not applicable (n/a) because this variety was 

not available in that year. 

 

 

 

 

 

 

 

 

 
Mean 

Standard 

deviation 

Village-level 

std. dev.1 

Village-level 

variation (%)2 

Years corn farming 22 11 4 36% 

Distance to roads (km) 0.5 1.1 0.3 31% 

Distance to seed source (km) 6.2 10.2 3.5 34% 

 
    

Terrain     

Flat 66% 48% 29% 61% 

Rolling 21% 40% 17% 42% 

Hilly or mountainous 14% 35% 14% 40% 

     

Expect corn borer infestation 45% 50% 38% 76% 

Notes: 1. Standard deviation in village×year-level means, 2. Defined as the standard 

deviation of area (village×year) means divided by the total standard deviation. 
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Table 4. First-stage conditional and mixed logit estimates. 

 Conditional logit  Mixed logit 

Log(seed price) -1.071* [in fixed effect]  -1.910** [in fixed effect] 

 (0.564)   (0.837)  

Bt single-trait ×      
 

     

Constant 0.233 [in fixed effect]  0.791 [in fixed effect] 

 (0.385)   (0.603)  

Distance to seed source 0.0288*** 0.0149  0.0352* 0.0159 

 (0.0105) (0.00967)  (0.0186) (0.0136) 

Rolling terrain 0.865** 0.139  0.875* 0.158 

 (0.342) (0.320)  (0.469) (0.367) 

Hilly/mountainous terrain -0.561 -1.005***  -0.650 -1.056*** 

 (0.344) (0.352)  (0.493) (0.390) 

Distance to nearest road 0.244 0.362**  0.290 0.377*** 

 (0.165) (0.153)  (0.177) (0.139) 

Years farming corn 0.00197 0.00125  0.00331 0.00186 

 (0.0132) (0.00781)  (0.0182) (0.00849) 

Stacked variety ×    0.0352* 0.0159 
 

     

Constant 2.463*** [in fixed effect]  3.404*** [in fixed effect] 
 (0.530)   (0.765)  

Distance to seed source -0.0490** -0.0714*  -0.0426 -0.0707* 
 (0.0217) (0.0409)  (0.0291) (0.0379) 

Rolling terrain 2.228*** 1.245*  2.312*** 1.345 

 (0.733) (0.730)  (0.774) (0.936) 

Hilly/mountainous terrain -0.360 -0.875  -0.120 -0.869 

 (0.446) (0.640)  (0.523) (0.608) 

Distance to nearest road 0.102 0.111  0.0664 0.122 

 (0.246) (0.242)  (0.203) (0.206) 

Years farming corn 0.0289 0.0149  0.0339 0.0171 

 (0.0215) (0.0172)  (0.0225) (0.0167) 

Random parameters      

𝑠GM
a    1.767*** 0.658 

    (0.357) (0.442) 

Area fixed effectsb No Yes  No Yes 

Choice occasions 515 515  515 515 

Farmers 261 261  261 261 

Deg. Freedom 13 10  14 11 

Log-likelihood -313.6 -220.9  -304.8 -220.2 

Wald-𝜒2 196.66*** 41.11***  126.76*** 23.69*** 

Pseudo-R2 0.321 0.0575  0.341 0.0596 
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Table 4 notes: Robust standard errors clustered at the grower level and in parentheses. Statistical 

significance: *** p<0.01, ** p<0.05, * p<0.1. a 𝑠GM is the estimated standard deviation in a 

mixed logit model for a random parameter associated with both the GM seed varaieties: single 

trait B or stacked trait; see section 3.2. bArea-level fixed effects model calculated using 

contraction mapping algorithm (Berry et al. 1995). Area-level coefficients (price and variety-

specific constants) are contained within area-level effects. ‘Within’ pseudo-R2 calculations in 

fixed-effect models calculated relative to a null conditional logit model with only area-level 

fixed effects. 
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Table 5. Second-stage regression estimates. 

 OLS  2SLSa  IVQRa,b  IV Tobita,b 

 (1) (2)  (3)  (4)  (5) 

Area Bt fraction 

× Bt variety 

 -7.811**  -17.79**  -19.98***  -24.19* 

 (3.626)  (7.201)  (4.878)  (13.59) 

Log(seed price) -10.30*** -8.829***  -10.44***  -7.098*  -14.06*** 

 

(2.972) (2.894)  (3.084)  (4.008)  (4.252) 

Bt single trait 4.265** 9.433***  17.81***  16.26***  24.05** 

 

(1.609) (2.870)  (5.778)  (4.206)  (11.31) 

Stacked variety 11.31*** 17.42***  26.38***  29.63***  35.01*** 

 

(2.771) (4.273)  (6.604)  (5.498)  (12.27) 

Constant 54.83*** 46.84***  55.62***  39.97*  74.8*** 

 

(16.21) (15.75)  (16.84)  (21.84)  (23.22) 

Areas 22 22  22  22  22 

Observations 55 55  55  55  55 

(Pseudo-)R2 0.296 0.362  0.22    0.13 
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Table 5 notes: Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01. Unless otherwise noted, we report jackknife 

standard errors clustered at the area level and obtained from joint estimation of first-stage (fixed effects conditional logit, Table 4) and 

second-stage regressions. a Area Bt fraction instrumented using Bayer and Timmins instrument. b IVQR is an instrumental variable 

quantile regression, using the quantile treatment effects model of Chernozhukov and Hansen (2005; 2006). Due to inappropriateness 

of jackknifed standard errors for quantile regression (Shao and Wu 1989) and the complex data structure for bootstrap resampling 

jointly over the discrete choice first stage and area-level second stage, IVQR standard errors are obtained from bootstrap resampling 

only over the second-stage data (ignoring first-stage measurement error in 𝛿’s); previous econometric analysis using these methods 

follows this approach and has shown the first-stage measurement error tends to have a small effect on standard errors (Berry, Linton 

and Pakes 2004; Timmins and Murdock 2007; Hicks et al. 2012). c Pseudo-R2 reported based on joint null and MLE log-likelihoods. 
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Table 6. Marginal effects on probability of farmer expecting corn borer infestation in 

coming season.  

 Probit  IV Probit (FIML)a 

 (1) (2) (3)  (4) (5) 

Area-level fraction 

adopting GM 

-0.555*** -0.810*** -1.433***  -1.283*** -1.078*** 

(0.0703) (0.0893) (0.0860)  (0.210) (0.194) 

Own GM adoption 

(binary) 

 0.258*** 0.235***  -0.0359 -0.214 
 (0.0605) (0.0536)  (0.218) (0.131) 

Rolling terrain 0.127*** 0.116** 0.0917*  0.0935* 0.0880* 
 (0.0480) (0.0468) (0.0514)  (0.0521) (0.0495) 

Hilly/mountainous  0.0369 0.0589 0.101*  0.0782 0.0539 
 (0.0529) (0.0524) (0.0589)  (0.0572) (0.0538) 

Years farming corn 0.00331** 0.00323** 0.00185  0.00185 0.00171 
 (0.00150) (0.00148) (0.00142)  (0.00180) (0.00171) 

Cross-eq. residual 

correlation (𝜏) 

    0.540 0.795* 
    (0.372) (0.208) 

Village-level fixed 

effects 
No No Yes 

 
Yes Yes 

Excluded 

instruments a 
   

 
All 

Only GM 

seed premium 

F-stat 1st stage 

instruments 
    

18.78*** 17.31*** 

Observations 515 515 515  515 515 

Farms 261 261 261  261 261 

Degrees of freedom 4 5 15  31 29 

Log-likelihood -329.1 -318.3 -270.9  -509.7 -510.7 

Pseudo-R2 0.0704 0.101 0.235    

 

Table 7 Notes: Robust standard errors clustered at grower level in parentheses, * p < 0.10, ** p < 

0.05, *** p < 0.01. a FIML IV probit estimated as a correlated bivariate probit system between 

farmer’s expected corn borer infestation and own use of GM corn. Instruments include village-

level mean GM seed premium, farm distance to seed source and distance to nearest road.    
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Table A1. Ordinary least squares regression of seed prices on village-level sample size (𝒏𝒗). 

Dependent variable: 

Log(seed price) 

(1) (2) (3) 

Bt 0.362*** 0.362*** 0.205 

 

(0.0737) (0.0744) (0.148) 

Stacked 0.633*** 0.632*** 0.427** 

 

(0.0903) (0.0912) (0.185) 

Village-level sample size (𝑛𝑣) 

 

-0.000192 -0.00155 

  

(0.000775) (0.00120) 

Bt x 𝑛𝑣 

  

0.00210 

   

(0.00170) 

Stacked x 𝑛𝑣 

  

0.00279 

   

(0.00220) 

Constant 5.438*** 5.453*** 5.554*** 

 

(0.0521) (0.0784) (0.104) 

Observations 55 55 55 

Degrees of freedom 3 4 6 

R2 0.510 0.511 0.532 

P-value of F-test on 𝑛𝑣 regressors  0.806 0.516 

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A2. First-stage seed choice, mixed logit specification tests 

 (1) (2) 

Log(seed price) -1.214 -1.910** 

 (0.850) (0.837) 

Bt single-trait ×   
 

  

Constant 0.488 0.791 

 (0.557) (0.603) 

Distance to seed source 0.0321* 0.0352* 

 (0.0169) (0.0186) 

Rolling terrain 0.730* 0.875* 

 (0.418) (0.469) 

Hilly/mountainous terrain -0.627 -0.650 

 (0.440) (0.493) 

Distance to nearest road 0.261* 0.290 

 (0.155) (0.177) 

Years farming corn 0.00447 0.00331 

 (0.0156) (0.0182) 

Stacked variety ×   
 

  

Constant 3.189*** 3.404*** 
 (0.740) (0.765) 

Distance to seed source -0.0576 -0.0426 
 (0.0376) (0.0291) 

Rolling terrain 2.482*** 2.312*** 

 (0.923) (0.774) 

Hilly/mountainous terrain -0.0355 -0.120 

 (0.596) (0.523) 

Distance to nearest road 0.0256 0.0664 

 (0.232) (0.203) 

Years farming corn 0.0398 0.0339 

 (0.0262) (0.0225) 

Random parameters   

𝑠GM  1.767*** 

  (0.357) 

𝑠Bt 1.260***  

 (0.454)  

𝑠Stacked 2.182***  

 (0.650)  

𝑠Bt,Stacked 2.750***  

 (1.040)  

Area fixed effects1 No No 

Choice occasions 515 515 

Farmers 261 261 

Deg. Freedom 16 14 

Log-likelihood -303.7 -304.8 

Pseudo-R2 0.343 0.341 
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Table A2 notes: Robust standard errors clustered at the grower level and in parentheses. 

Statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 1Area-level fixed effects model 

calculated using contraction mapping algorithm (Berry et al. 1995). Area-level coefficients (price 

and variety-specific constants) are contained within area-level effects. Pseudo-R2 calculations in 

fixed-effect models calculated relative to a null conditional logit model with only area-level 

fixed effects. 
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Table A3. Estimated Price Elasticities of Demand. 

 
Model 

Areas 

(villages x years) 
Mean Std. Dev. Min Max 

       

Semi-elasticity OLS 22 -0.89 1.02 -0.77 > -0.0001 

𝑑�̂�𝐵𝑡/𝑑𝑝 IV Tobit 22 -0.29 0.89 -0.21 > -0.0001 

       

Elasticity OLS 22 -1.77 1.75 -9.76 > -0.0001 

(𝑑�̂�𝐵𝑡/𝑑𝑝)/�̂�𝐵𝑡 IV Tobit 22 -0.58 0.54 -7.96 > -0.0001 

 

Table A3 notes: 𝑑𝑝 refers to the differential with respect to a constant logarithmic change to all 

Bt varieties’ prices, equivalent in the RUM to the opposing differential with respect to the 

logarithm of the hybrid variety’s price. OLS and IV Tobit estimates correspond respectively to 

regression results in columns (1) and (5) of table 5. 

  



55 

 

References 

Afidchao, M.M., C. Musters, and G.R. de Snoo. 2013. “Asian corn borer (ACB) and non-ACB 

pests in GM corn (Zea mays L.) in the Philippines.” Pest Management Science 69(7):792–

801. Available at: http://doi.wiley.com/10.1002/ps.3471 [Accessed September 11, 2017]. 

Aldana, U., B. Barham, J. Foltz, and P. Useche. 2012. “Early adoption, experience, and farm 

performance of GM corn seeds.” Agricultural Economics 43(SUPPL. 1):11–18. 

Ambec, S., and M. Desquilbet. 2012. “Regulation of a Spatial Externality: Refuges versus Tax 

for Managing Pest Resistance.” Environmental and Resource Economics 51(1):79–104. 

Available at: http://link.springer.com/10.1007/s10640-011-9489-3 [Accessed September 22, 

2015]. 

Amemiya, Y. 1985. “Instrumental variable estimator for the nonlinear errors-in-variables 

model.” Journal of Econometrics 28(3):273–289. Available at: 

http://www.sciencedirect.com/science/article/pii/0304407685900016 [Accessed January 15, 

2018]. 

Ayer, H.W. 1997. “Grass Roots Collective Agricultural Opportunities.” Journal of Agricultural 

and Resource Economics 22(1):1–11. 

Banzhaf, S.H., and R.P. Walsh. 2008. “Do People Vote with Their Feet? An Empirical Test of 

Tiebout’s Mechanism.” American Economic Review 98(3):843–863. 

Bayer, P., and C. Timmins. 2007. “Estimating Equilibrium Models of Sorting across Locations.” 

The Economic Journal 117(518):353–374. 

Bayer, P., and C. Timmins. 2005. “On the equilibrium properties of locational sorting models.” 

Journal of Urban Economics 57(3):462–477. 

Bennett, D. 2016. “Dicamba drift incidents have ripple effect.” Delta FarmPress. Available at: 

http://www.deltafarmpress.com/soybeans/dicamba-drift-incidents-have-ripple-



56 

 

effect?page=1 [Accessed March 26, 2018]. 

Berry, S., J. Levinsohn, and A. Pakes. 1995. “Automobile Prices in Market Equilibrium.” 

Econometrica 63(4):841–890. 

Berry, S., J. Levinsohn, and A. Pakes. 2004. “Differentiated Products Demand Systems from a 

Combination of Micro and Macro Data: The New Car Market.” Journal of Political 

Economy 112(1):68–105. Available at: 

http://www.journals.uchicago.edu/doi/10.1086/379939 [Accessed October 31, 2017]. 

Berry, S., O.B. Linton, and A. Pakes. 2004. “Limit Theorems for Estimating the Parameters of 

Differentiated Product Demand Systems.” Review of Economic Studies 71(3):613–654. 

Available at: http://restud.oxfordjournals.org/content/71/3/613.short [Accessed March 15, 

2016]. 

Birol, E., E.R. Villalba, and M. Smale. 2008. “Farmer preferences for milpa diversity and 

genetically modified maize in Mexico: a latent class approach.” Environment and 

Development Economics 14(04):521. Available at: 

http://journals.cambridge.org/abstract_S1355770X08004944 [Accessed March 15, 2016]. 

Brito, D.L., E. Sheshinski, and M.D. Intriligator. 1991. “Externalities and compulsary 

vaccinations.” Journal of Public Economics 45(1):69–90. Available at: 

http://www.sciencedirect.com/science/article/pii/0047272791900487. 

Brock, W.A., and S.N. Durlauf. 2001. “Discrete choice with social interactions.” The Review of 

Economic Studies 68(2):235–260. 

Brown, Z.S. 2018. “Voluntary programs to encourage compliance with refuge regulations for 

pesticide resistance management: evidence from a quasi-experiment.” American Journal of 

Agricultural Economics 100(3):844–867. 



57 

 

Cameron, A.C., and P.K. Trivedi. 2005. Microeconometrics: Methods and Applications. 

Cambridge University Press. 

Campbell, J.R., and H.A. Hopenhayn. 2005. “Market Size Matters.” Journal of Industrial 

Economics 53(1):1–25. Available at: http://doi.wiley.com/10.1111/j.0022-

1821.2005.00243.x [Accessed January 15, 2018]. 

Chernozhukov, V., and C. Hansen. 2005. “An IV Model of Quantile Treatment Effects.” 

Econometrica 73(1):245–261. Available at: http://doi.wiley.com/10.1111/j.1468-

0262.2005.00570.x [Accessed March 15, 2016]. 

Chernozhukov, V., and C. Hansen. 2006. “Instrumental quantile regression inference for 

structural and treatment effect models.” Journal of Econometrics 132(2):491–525. 

Available at: http://www.sciencedirect.com/science/article/pii/S0304407605000643 

[Accessed January 3, 2018]. 

Connor, L.Q. 2017. Post-Adoption Impacts of GM Corn on Farm Decisions in the Philippines. 

Available at: https://repository.lib.ncsu.edu/handle/1840.20/34356 [Accessed January 23, 

2018]. 

Culliney, T.W. 2014. “Crop Losses to Arthropods.” In Integrated Pest Management. Dordrecht: 

Springer Netherlands, pp. 201–225. Available at: http://link.springer.com/10.1007/978-94-

007-7796-5_8 [Accessed October 21, 2016]. 

Dively, G.P., P.D. Venugopal, D. Bean, J. Whalen, K. Holmstrom, T.P. Kuhar, H.B. Doughty, T. 

Patton, W. Cissel, and W.D. Hutchison. 2018. “Regional pest suppression associated with 

widespread Bt maize adoption benefits vegetable growers.” Proceedings of the National 

Academy of Sciences of the United States of America 115(13):3320–3325. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/29531049 [Accessed April 9, 2018]. 



58 

 

Fernandez-Cornejo, J., and S. Wechsler. 2012. “Revisiting the impact of Bt corn adoption by 

U.S. farmers.” Agricultural and Resource Economics Review 41(3):377–390. 

Foster, A.D., and M.R. Rosenzweig. 1995. “Learning by Doing and Learning from Others: 

Human Capital and Technical Change in Agriculture.” Journal of Political Economy 

103(6):1176–1209. Available at: http://www.jstor.org/stable/2138708. 

Gerpacio, R. V, J.D. Labios, R. V Labios, and E.I. Diangkinay. 2004. Maize in the Philippines: 

Production Systems. Constraints, and Research Priorities. CIMMYT. 

Gouse, M., D. Sengupta, P. Zambrano, and J.F. Zepeda. 2016. “Genetically Modified Maize: 

Less Drudgery for Her, More Maize for Him? Evidence from Smallholder Maize Farmers in 

South Africa.” World Development 83:27–38. Available at: 

https://www.sciencedirect.com/science/article/pii/S0305750X16000498 [Accessed January 

23, 2018]. 

Grogan, K.A., and R.E. Goodhue. 2012. “Spatial externalities of pest control decisions in the 

California citrus industry.” Journal of Agricultural and Resource Economics 37(1):156–

179. 

Hicks, R.L., W.C. Horrace, and K.E. Schnier. 2012. “Strategic substitutes or complements? The 

game of where to fish.” Journal of Econometrics 168(1):70–80. Available at: 

http://www.sciencedirect.com/science/article/pii/S0304407611001709 [Accessed April 8, 

2015]. 

Hightower, M. 2017. “Division of Ag researchers find volatility in all dicamba formulations they 

tested.” University of Arkansas Cooperative Extension Service News. Available at: 

https://www.uaex.edu/media-resources/news/august2017/08-10-2017-Ark-NEREC-Field-

Day.aspx [Accessed March 26, 2018]. 



59 

 

Hutchison, W.D., E.C. Burkness, P.D. Mitchell, R.D. Moon, T.W. Leslie, S.J. Fleischer, M. 

Abrahamson, K.L. Hamilton, K.L. Steffey, M.E. Gray, R.L. Hellmich, L. V Kaster, T.E. 

Hunt, R.J. Wright, K. Pecinovsky, T.L. Rabaey, B.R. Flood, and E.S. Raun. 2010. 

“Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt 

maize growers.” Science 330(6001):222–225. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20929774 [Accessed August 12, 2014]. 

Janssen, S., and M.K. van Ittersum. 2007. “Assessing farm innovations and responses to policies: 

A review of bio-economic farm models.” Agricultural Systems 94(3):622–636. 

Jordan, T., G. Nice, B. Johnson, and T. Bauman. 2009. “Reducing Spray Drift from Glyphosate 

and Growth Regulator Herbicide Drift Caution.” Available at: 

https://ag.purdue.edu/btny/weedscience/Documents/ReducingDrift09.pdf [Accessed March 

26, 2018]. 

Kathage, J., and M. Qaim. 2012. “Economic impacts and impact dynamics of Bt (Bacillus 

thuringiensis) cotton in India.” Proceedings of the National Academy of Sciences of the 

United States of America 109(29):11652–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/22753493 [Accessed October 21, 2016]. 

Klaiber, H.A., and D.J. Phaneuf. 2010. “Valuing open space in a residential sorting model of the 

Twin Cities.” Journal of Environmental Economics and Management 60(2):57–77. 

Available at: http://www.sciencedirect.com/science/article/pii/S0095069610000574 

[Accessed August 6, 2015]. 

Koster, H.R.A., J. van Ommeren, and P. Rietveld. 2014. “Agglomeration economies and 

productivity: A structural estimation approach using commercial rents.” Economica 

81(321):63–85. 



60 

 

Kuminoff, N. V., V.K. Smith, and C. Timmins. 2013. “The New Economics of Equilibrium 

Sorting and Policy Evaluation Using Housing Markets †.” Journal of Economic Literature 

51(4):1007–1062. Available at: 

http://www.ingentaconnect.com/content/aea/jel/2013/00000051/00000004/art00001 

[Accessed April 8, 2015]. 

Lee, J.C., H.J. Burrack, L.D. Barrantes, E.H. Beers, A.J. Dreves, K.A. Hamby, D.R. Haviland, R. 

Isaacs, T.A. Richardson, P.W. Shearer, C.A. Stanley, D.B. Walsh, V.M. Walton, F.G. 

Zalom, and D.J. Bruck. 2012. “Evaluation of Monitoring Traps for <I>Drosophila 

suzukii</I> (Diptera: Drosophilidae) in North America.” Journal of Economic Entomology 

105(4):1350–1357. Available at: http://jee.oxfordjournals.org/content/105/4/1350.abstract 

[Accessed March 15, 2016]. 

Lefebvre, M., S.R.H. Langrell, and S. Gomez-y-Paloma. 2015. “Incentives and policies for 

integrated pest management in Europe: a review.” Agronomy for Sustainable Development 

35(1):27–45. Available at: http://link.springer.com/10.1007/s13593-014-0237-2 [Accessed 

April 26, 2017]. 

Lusk, J.L., J. Tack, and N. Hendricks. 2016. “Adoption of Genetically Engineered Corn on Yield 

and the Moderating Effects of Weather, Soil Characteristics, and Geographic Location.” 

Available at: 

https://static1.squarespace.com/static/502c267524aca01df475f9ec/t/58de47701b10e3ddf31d

4878/1490962300971/NBER_CornGBO_Manuscript_NBER.pdf. 

Maertens, A., and C.B. Barrett. 2013. “Measuring Social Networks’ Effects on Agricultural 

Technology Adoption.” American Journal of Agricultural Economics 95(2):353–359. 

Available at: http://ajae.oxfordjournals.org/cgi/doi/10.1093/ajae/aas049 [Accessed 



61 

 

November 30, 2014]. 

McFadden, D. 1978. “Modeling the Choice of Residential Location.” Transportation Research 

Record 673. 

Melitz, M.J., and G.I.P. Ottaviano. 2008. “Market Size, Trade, and Productivity.” Review of 

Economic Studies 75(1):295–316. Available at: https://academic.oup.com/restud/article-

lookup/doi/10.1111/j.1467-937X.2007.00463.x [Accessed January 15, 2018]. 

Mendoza, M.S., and M.W. Rosegrant. 1995. “Pricing Behavior in Philippine Corn Markets: 

Implications for Market Efficiency.” Research Report- International Food Policy Research 

Institute:11–79. 

Morallo-Rejesus, Belen G. Punzalan, E. 2002. “Mass Rearing and Field Augmentation of the 

Earwig, Euborellia Annulata, against Asian Corn Borer.”  

Murdock, J. 2006. “Handling unobserved site characteristics in random utility models of 

recreation demand.” Journal of Environmental Economics and Management 51(1):1–25. 

Available at: http://www.sciencedirect.com/science/article/pii/S0095069605000574 

[Accessed October 31, 2017]. 

Mutuc, M., and R. Rejesus. 2012. “Which Farmers Benefit the Most from Bt Corn Adoption in 

the Philippines? Estimating Heterogeneity Effects.” In International Association of 

Agricultural Economists Triennial Conference. Foz do Iguacu, Brazil, pp. 18–24. 

Nafus, D.M., and I.H. Schreiner. 1991. “Review of the biology and control of the Asian corn 

borer, Ostrinia furnacalis (Lep: Pyralidae).” Tropical Pest Management 37(1):41–56. 

Available at: http://www.tandfonline.com/doi/abs/10.1080/09670879109371535 [Accessed 

November 2, 2017]. 

NASEM. 2016. Genetically Engineered Crops: Experiences and Prospects. Washington, D.C.: 



62 

 

National Academies Press. 

NASS. 2018. “Recent Trends in GE Adoption.” Available at: https://www.ers.usda.gov/data-

products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption/ 

[Accessed September 27, 2018]. 

Oerke, E.-C. 2006. “Crop losses to pests.” The Journal of Agricultural Science 144(01):31. 

Available at: http://journals.cambridge.org/abstract_S0021859605005708 [Accessed 

October 19, 2015]. 

Pagan, A., and F. Vella. 1989. “Diagnostic tests for models based on individual data: A survey.” 

Journal of Applied Econometrics 4(S1):S29–S59. Available at: 

http://doi.wiley.com/10.1002/jae.3950040504 [Accessed September 21, 2018]. 

Qiao, F. 2015. “Fifteen Years of Bt Cotton in China: The Economic Impact and its Dynamics.” 

World Development 70:177–185. 

Roodman, D. 2011. “Estimating fully observed recursive mixed-process models.” Stata Journal 

11(2):159–206. 

Sanglestsawai, S., R.M. Rejesus, and J.M. Yorobe. 2014. “Do lower yielding farmers benefit 

from Bt corn? Evidence from instrumental variable quantile regressions.” Food Policy 

44:285–296. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0306919213001395 

[Accessed March 10, 2014]. 

Schelling, T.C. 1971. “Dynamic models of segregation.” Journal of Mathematical Sociology 

1(2):143–186. 

Schelling, T.C. 1969. “Models of segregation.” The American Economic Review 59(2):488–493. 

Shao, J., and C.F.J. Wu. 1989. “A General Theory for Jackknife Variance Estimation.” Available 

at: 



63 

 

https://www.jstor.org/stable/pdf/2241717.pdf?refreqid=excelsior%3Ac3f5f0a02941dfd71a6

b53208a111495 [Accessed September 26, 2018]. 

Shi, G., J.-P. Chavas, J. Lauer, and E. Nolan. 2013. “An Analysis of Selectivity in the 

Productivity Evaluation of Biotechnology: An Application to Corn.” American Journal of 

Agricultural Economics 95(3):739–754. Available at: https://academic.oup.com/ajae/article-

lookup/doi/10.1093/ajae/aas169 [Accessed November 18, 2014]. 

Shi, G., J.P. Chavas, and K. Stiegert. 2010. “An analysis of the pricing of traits in the U.S. corn 

seed market.” American Journal of Agricultural Economics 92(5):1324–1338. 

Shirai, Y. 1998. “Laboratory evaluation of flight ability of the Oriental corn borer, Ostrinia 

furnacalis (Lepidoptera: Pyralidae).” Bulletin of Entomological Research 88:327–333. 

Available at: http://cabweb.org/PDF/BER/BER88-3/327.pdf [Accessed November 2, 2017]. 

Singerman, A., S.H. Lence, and P. Useche. 2017. “Is Area-Wide Pest Management Useful? The 

Case of Citrus Greening.” Applied Economic Perspectives and Policy 52(3):155–66. 

Available at: https://academic.oup.com/aepp/article-lookup/doi/10.1093/aepp/ppx030 

[Accessed July 6, 2017]. 

Songsermsawas, T., K. Baylis, A. Chhatre, and H. Michelson. 2016. “Can Peers Improve 

Agricultural Revenue?” World Development. Available at: 

http://www.sciencedirect.com/science/article/pii/S0305750X16000280 [Accessed March 

15, 2016]. 

Timmins, C. 2007. “If you Cannot Take the Heat, Get out of the Cerrado? Recovering the 

Equilibrium Amenity Cost of Nonmarginal Climate Change in Brazil.” Journal of Regional 

Science 47(1):1–25. Available at: http://doi.wiley.com/10.1111/j.1467-9787.2007.00497.x 

[Accessed April 8, 2015]. 



64 

 

Timmins, C., and J. Murdock. 2007. “A revealed preference approach to the measurement of 

congestion in travel cost models.” Journal of Environmental Economics and Management 

53(2):230–249. Available at: 

http://www.sciencedirect.com/science/article/pii/S0095069606000817 [Accessed April 21, 

2015]. 

Train, K.E. 2009. Discrete Choice Methods with Simulation. Cambridge University Press. 

Useche, P., B.L. Barham, and J.D. Foltz. 2009. “Integrating Technology Traits and Producer 

Heterogeneity: A Mixed-Multinomial Model of Genetically Modified Corn Adoption.” 

American Journal of Agricultural Economics 91(2):444–461. Available at: 

http://ajae.oxfordjournals.org/cgi/doi/10.1111/j.1467-8276.2008.01236.x [Accessed 

November 19, 2014]. 

WSJ. 2016. “Behind the Monsanto Deal, Doubts About the GMO Revolution.” The Wall Street 

Journal. Available at: http://www.wsj.com/articles/behind-the-monsanto-deal-doubts-about-

the-gmo-revolution-1473880429. 

Xu, Z., D. a. Hennessy, K. Sardana, and G.C. Moschini. 2013. “The realized yield effect of 

genetically engineered crops: U.S. maize and soybean.” Crop Science 53(3):735–745. 

Yorobe, J.J.M., and C.B. Quicoy. 2006. “Economic impact of Bt corn in the Philippines.” 

Philippine Agricultural Scientist 89(258–267). 

 


	WP-2018-015
	Bioeconomic Feedbacks from Large-Scale Adoption of Transgenic Pesticidal Corn in the Philippines

	Spillovers in Bt_rev2_wkp

