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Abstract

This paper provides experimental evidence that behavioral interventions spill over

to untreated sectors by altering consumer choice. We use a randomized controlled trial

and high-frequency data to test the effect of social norms messaging about residential

water use on electricity consumption. Messaging induces a 1.3 to 2.2% reduction

in summertime electricity use. Empirical tests and household survey data support

the hypothesis that this nudge alters electricity choices. An engineering simulation

suggests that complementarities between appliances that use water and electricity can

explain only 26% of the electricity reduction. Incorporating the cross-sectoral spillover

increases the cost-effectiveness of the intervention by 62%.
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1 Introduction

Firms and governments are increasingly relying on behavioral instruments that seek to alter

consumer behavior without changing prices or choice sets.1 The U.S. and U.K. governments

have established divisions tasked with incorporating insights from behavioral sciences into

government programs. Private firms also deploy nudges – Bank of America’s ‘Keep the

Change’ program rounds debit card purchases to the nearest dollar and deposits the difference

into customer savings accounts. The widespread adoption of behavioral policies is informed

by an economics and social psychology literature documenting their ability to alter behavior.

Studies demonstrate the importance of default settings as a lever to increase participation

in retirement savings, organ donations, and dynamic electricity pricing programs (Fowlie

et al., 2017; Johnson and Goldstein, 2003; Madrian and Shea, 2001). Altering price salience

changes behavior - individuals are less responsive to taxes excluded from posted prices,

shipping fees on eBay, earning statements appearing earlier in the week, and automatic bill

payments (Chetty et al., 2009; Brown et al., 2010; DellaVigna and Pollet, 2009; Sexton,

2015). And in applications ranging from personal savings decisions to energy conservation,

commitment devices and social comparisons have been deployed to alter behavior (Ashraf

et al., 2006; Allcott, 2011). Common to all these studies is a shared focus on the evaluation

of an intervention on the targeted outcome or goal.

Less well understood is whether, and to what extent, behavioral interventions extend

beyond the targeted outcome, affecting unexposed margins of behavior for treated individ-

uals. The possibility that interventions spill over is not novel. Studies have investigated if

exposure to conditional cash transfers, deworming, energy efficiency programs, and therapy

affect outcomes of untreated agents (Angelucci and Giorgi, 2009; Boomhower, 2016; Miguel

and Kremer, 2003; Fletcher and Marksteiner, 2017). However, the literature has largely

overlooked whether exposure to treatment affects untreated margins of behavior for treated

individuals, a spillover we define as a “cross-sectoral” spillover. For example, do default

programs for retirement savings encourage or crowd out other forms of savings? Do nudges

aimed at encouraging healthy eating impact rates of exercise? Do encouragements to enroll

in automatic bill payment for the cable bill increase enrollment in other automated pay-

ment programs? If behavioral policies extend beyond their intended objective or sector, this

meaningfully affects their scope, cost-effectiveness, welfare impacts, and potentially the sign

1“Policymakers around the world are embracing behavioural science. The
Economist, May 18, 2017, https://www.economist.com/news/international/

21722163-experimental-iterative-data-driven-approach-gaining-ground-policymakers-around.
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of a simple cost-benefit analysis. This paper uses a randomized controlled trial to examine

whether exposure to a nudge influences behavior outside of the stated outcome, and explores

potential mechanisms underpinning the presence of cross-sectoral spillovers.

Our empirical context – the effect of social norms messaging about residential water use

on household electricity consumption – presents an ideal and policy relevant setting to probe

for the existence of cross-sectoral spillovers. Social norms are perhaps the most frequently

deployed and studied nudge and have been shown to alter consumer behavior in charitable

giving, retirement savings, and voting behavior (Beshears et al., 2015; Croson and Shang,

2008; Duflo and Saez, 2003; Frey and Meier, 2013; Gerber and Rogers, 2009).2 Nowhere has

the study of social norms been more widespread than in the context of energy and water

use (Allcott, 2011; Ayres et al., 2013; Costa and Kahn, 2013; Brent et al., 2015; Dolan and

Metcalfe, 2015; Ferraro and Price, 2013; Mitchell and Chesnutt, 2013). Public and private

utilities have responded by incorporating social pressure as a key component of their water

and energy saving efforts. One notably absent feature in the deployment and evaluation of

these programs is the possibility that social norms may spill over to affect choices beyond

the targeted outcome.

This paper deploys a randomized controlled trial in a service territory with high-frequency

water and electricity use data to investigate the effects of home water reports (HWR) on

patterns of electricity use. Home water reports compare a household’s water use to that

of similar neighbors and provide conservation tips and information about water use. Im-

portantly, this messaging does not target, nor mention, electricity use or conservation. In

our experimental design, approximately 4,500 households were randomly assigned to receive

a HWR, a treatment we refer to as “WaterSmart”. The roll out of the experiment in an

area with high-frequency water and electricity use data provides unique opportunities to

study hourly patterns in response to treatment, and test several hypotheses underpinning

the presence of cross-sectoral spillovers.

A central result is that this water conservation instrument leads to a reduction in elec-

tricity use. We find an electricity conservation effect of 1.3 to 2.2% in the summer months.

The finding is novel not only because a water conservation instrument affects energy use,

but because the magnitude of the electricity response rivals that from the deployment of

home energy reports (HERs) focused exclusively on electricity conservation (Allcott, 2011;

2The use of home reports originated from findings in the social psychology literature showing that simple
behavioral interventions that use social norms, frequent feedback, and customized information promote
conservation (Hutton and McNeill, 1981; Schultz et al., 2007; Nolan et al., 2008).
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Ayres et al., 2013). A second noteworthy element is when the reductions occur. We find

that the largest treatment effects occur in the summer between the hours of 3 PM and 7

PM, a period that includes the hours of peak electricity demand, both for the households in

our study and the electric grid as a whole. This increases the value of the spillovers since

they occur during the hours when wholesale electricity prices are highest.

To understand the mechanisms underpinning this cross-sectoral spillover, we first outline

a model that illustrates two channels through which HWRs may impact household energy

use, and then empirically test for the presence of these channels. One candidate mechanism is

that the cross-sectoral spillovers arises from a mechanical relationship (i.e., complementarity)

between appliances that use both energy and water. For example, if households respond

to treatment by washing one less load of laundry, this leads to a reduction in electricity

use along two margins – less energy is used running the washing machine and the dryer.

An alternative or coincident explanation is that HWRs affect electricity use choices more

generally. For example, HWRs may increase household attention to utility bills or affect the

‘moral utility’ associated with water and energy use. This channel may increase electricity

conservation beyond what would be expected from mechanical complementarities alone.

Results from three empirical tests and an engineering simulation refute the hypothesis

that mechanical complementarities are the sole driver of electricity savings, and are consis-

tent with a framework in which HWRs alter customer choice about water and electricity

consumption. A first test posits that if a mechanical relationship explains the cross-sectoral

spillover, then water conservation should occur when electricity conservation occurs. Taking

advantage of hourly interval data on water and electricity use, we find that the time profile

of electricity and water savings are mismatched, with reductions in energy use but no sig-

nificant reductions in water use between the hours of 3 PM to 7 PM and 8 PM to 10 PM.

A second test examines whether households exposed to HWRs alter their consumption of

air conditioning, an action that requires electricity but not water as an input. Our finding

that electricity conservation increases in temperature but reductions in water use exhibit

no temperature response gradient points to the possibility that households may respond to

treatment by adjusting their thermostats. Third, results from a post-treatment household

survey highlight that exposure to HWRs is positively and significantly correlated with a de-

crease in some actions that require electricity but not water as an input. Finally, results from

a detailed, appliance-level engineering simulation calibrated to Southern California house-

holds imply that mechanical complementarities can explain only twenty-five percent of the

estimated electricity savings.
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Our work highlights the importance of moving beyond a partial equilibrium framework in

program evaluation and contributes to a growing literature examining the cost-effectiveness

of nudges and their welfare impacts (Allcott and Kessler, 2015). Economists have shown that

social norms messaging is a cost-effective water and energy conservation policy (Allcott and

Mullainathan, 2010; Brent et al., 2015; Ferraro and Price, 2013). Our results suggest that

these cost-effectiveness estimates are understated for two reasons. First, electricity conser-

vation yields private and social savings. Incorporating the private savings and social benefits

from the electricity conservation spillover increases the net benefits of HWRs by 39% from

net benefits of 2.91 to net benefits of 4.04. Second, electricity savings occur during peak hours

when wholesale costs are highest, and the marginal emissions from electricity generation are

larger. Accounting for when reductions in electricity use occur further increases the benefit

to cost ratio to 4.70. While these cost-effectiveness estimates demonstrate the importance of

accounting for spillovers in policy analysis, this valuation metric should not be interpreted

as a welfare analysis. Notably, our analysis remains silent on possible disutility or costs

households experience from the receipt of HWRs, and the reduction in surplus attributable

to inefficient pricing of electricity and water (Allcott and Kessler, 2015). The former may

occur due to effort costs involved with conservation or moral costs from consumption. The

latter reduction in surplus will arise because in most hours marginal prices for electricity and

possibly water exceed the marginal social costs of production. For these reasons, the welfare

gains from the deployment of HWRs will likely be less than the savings reported using our

cost-benefit framework.

As behavioral instruments grow in popularity and breadth of application, our results

point to the possibility for cost-sharing and collaboration in their deployment. This is

particularly relevant for the context of water and energy conservation in California. Policy

makers and utilities in the state are investigating whether water conservation programs

present an opportunity to save energy as well. To date, efforts to document a ‘water-energy

nexus’ have focused on ‘embedded’ energy savings from water conservation, i.e., electricity

savings from the conveyance and treatment of water. We depart from this literature by

contributing the first causal data point on the end-use energy impacts of a water conservation

program, and show that meaningful energy savings occur from interventions aimed at water

conservation.

The paper proceeds as follows. Section 2 provides details on the experimental design.

Section 3 describes a conceptual framework of household water and energy use, highlighting

the mechanisms through which behavioral interventions for water may impact electricity
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use. Section 4 describes the data and tests the quality of the randomization, and Section

5 presents our empirical specification and results. Section 6 examines the hypothesis that

a purely mechanical response is driving the estimated response. Section 7 discusses cost-

effectiveness, and Section 8 concludes.

2 Research Design and Setting

We partnered with a municipally owned water and electric utility and the water technology

vendor WaterSmart to evaluate the potential energy and water savings of non-pecuniary

water conservation instruments. The study occurred in the jurisdiction served by Burbank

Water and Power (BWP) and spanned March 2015 to May 2016. BWP serves roughly 18,500

single family customers in the City of Burbank, an inland city in Los Angeles County that

like much of Southern California is characterized by a subtropical Mediterranean climate.

The timeline of the project includes the summer of 2015, a period that coincides with the

worst drought in California’s recorded history, and a relatively wet and cool winter.

We implemented the randomization in partnership with WaterSmart. We utilized the

“big stick” method of rerandomization to randomly assign eligible accounts to treatment

or control, and conducted the randomization in private using a random number generator.

Our randomization protocol formally tested for and ensured covariate balance in the mean

and variance of pre-treatment monthly water use across control and treatment accounts.

Rerandomization of households into treatment and control continued until the p-value from

a test of the joint significance of these covariates in explaining assignment to treatment

exceeded a 0.25 threshold.

Our sample consists of 7,341 single-family homes served by BWP. To be eligible for

participation in our study, a household needed to reside in a single-family home and have

six months of meter readings before the launch of the experiment. Of the roughly 18,000

eligible homes, we randomly assigned 4,559 accounts to the WaterSmart treatment and 2,782

to control.3 Control households did not receive notification that they were in a pilot program

nor that this portal was available.

3The households in this study represent a sub-sample of a broader experiment deployed in Burbank
during this time period. The larger experiment is comprised of 17,000 households. We also removed outliers
from this sub-sample based on pre-treatment electricity use data, excluding households if electricity use was
in the 98.5 or 1.5 percentiles for more than 4 months in the year preceding treatment.
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WaterSmart: Figure 1 provides an example of a WaterSmart report that treatment

households received. The report includes a social comparison, water savings recommen-

dations, and information about the report and BWP’s conservation programs. The social

comparison provides a household with information on its current water use and compares

its use to that of similar households and an ‘efficient’ household.4 An injunctive norm ac-

companies the comparison, conveying pro-social behavior through the display of a smiling or

frowning face depending on the household’s water use relative to its neighbors. The report

also includes individualized recommendations on ways to use water more efficiently. The

bottom panel of Figure 1 provides an example of a “hard” recommendation – changing from

grass to native plants could save 78 gallons per day and $242 per year – and a “soft” rec-

ommendation – upgrading irrigation timer settings could save 53 gallons per day and $148

per year. Thus, HWRs motivate conservation by making use of interpersonal comparisons

and injunctive norms, recommending changes in water use behavior, and encouraging the

adoption of efficient water technologies. Importantly, no messages or water conservation tips

target or mention energy conservation.

Treatment households received bi-monthly reports from May 2015 to March 2016 through

the mail or a combination of email and mail. WaterSmart sent an introductory letter to all

treatment households in March 2015, explaining the product and notifying them that they

would be receiving HWRs over the subsequent year. WaterSmart then mailed the first

home water reports to treatment households in May 2015. Our study defines the treatment

period as May 15, 2015 to May 31, 2016. We exclude data spanning March 15 to May 15,

2015. We do this to account for the possibility that households may change behavior in

response to the introductory letter, but before the rollout of HWRs. The medium through

which households received HWRs depends on their method of bill payment to BWP. While

WaterSmart physically mailed all treatment households the introduction letter and first

HWR, subsequent reports were sent according to the following rule: households enrolled in

electronic billing received electronic HWRs and households enrolled in paper billing received

physical reports in the mail.

4WaterSmart uses proprietary software to choose a group of ‘similar’ households based on publicly
available household characteristics (e.g., number of rooms), an assumed number of occupants, and proximity.
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3 Conceptual Motivation

To understand why cross-sectoral spillovers may exist, we outline a simple conceptual frame-

work that illustrates two channels through which a water nudge may impact energy use.

Consider a household that derives utility from energy-consuming services (e.g., air condi-

tioning), water-consuming services (e.g., a shower), and a composite good. Following Allcott

and Kessler (2015) and Farhi and Gabaix (2017), we allow imperfect information and be-

havioral biases to complicate choices about water and energy. Consumers may misperceive

water and energy prices and/or be misinformed about consumption quantities because de-

mand for electricity and water are derived (Ito, 2013, 2014; Jessoe and Rapson, 2014). Since

our experiment coincided with the worst drought in California’s history, consumers likely

experienced ‘moral utility’ from their consumption of water and energy.5

A water conservation nudge may influence household energy demand through two chan-

nels: a mechanical (complementarities) channel, and a behavioral channel. First, water and

electricity are complementary inputs in the use of many household appliances. For example,

if households respond to a nudge by washing one less load of laundry per day, this leads to

a reduction in electricity use along two margins: less energy is used running the washing

machine, and the dryer is used less. The reduction in electricity use that occurs in response

to the water nudge is a result of the Leontief nature of demand for this appliance, a channel

we label “mechanical complementarities”. If nudges alter the moral tax on water use, or

partly correct customer misperception about water prices, a nudge will cause demand for

water to change, and due to complementarities between water and electricity use, electricity

use will also change.

The second channel reflects the possibility that a nudge on water use may change cus-

tomer perception about electricity prices or the moral tax households place on electricity

consumption. We refer to this as the behavioral channel. This will occur if misperceptions

or behavioral biases about water and energy use share some common components, and the

nudge influences perceptions and/or the moral tax for both water and electricity. Assume

that a nudge on water use increases the moral tax on electricity use. This will lead to

a decrease in electricity use above and beyond the amount attributable to the mechanical

spillover. Alternatively, if the nudge decreases the moral tax on electricity use, for example

5Residents faced enormous conservation appeals from local and state governments, and significant social
pressure to conserve water. The hashtag #droughtshaming was trending on both Twitter and Facebook, and
consumers regularly posted pictures of and reported neighbors that violated outdoor watering restrictions.
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through moral licensing, then this non-mechanical channel will induce households to increase

electricity use.6 Importantly, the sign of this behavioral spillover could be either positive or

negative.

4 Data and Quality of Randomization

High-frequency metering data on household electricity and water use serve as the primary

data for our analysis. BWP provided hourly water and electricity data for every household

in our sample for the treatment period, defined from May 2015 to May 2016. Pre-treatment

monthly billing data on water and electricity use were obtained for all households spanning

the baseline period March 2014 to February 2015. We also collected county assessor data on

housing unit attributes and matched these at the address with the electricity and water use

data. Our balance tests make use of the monthly pre-treatment billing data on water and

electricity use, and the assessor data.

Table 1 reports summary statistics on pre-treatment electricity use, water use and housing

unit attributes, and examines the credibility of the randomization. The first two columns

report means for households assigned to control and treatment, respectively, and the third

column reports the difference in means. A comparison of means across control and treatment

shows no statistically significant differences in monthly water use, monthly electricity use

or summertime electricity use. For the households for whom we observe assessor data,

housing unit characteristics are also balanced across control and treatment.7 We further

investigate the quality of the randomization by comparing baseline electricity use across

control and treatment in each month of the year preceding the experiment. As shown in

Figure 2, there are no significant differences in electricity use across control and treatment

in any calendar month, including importantly the summertime months of May, June, July,

and August. These descriptive statistics provide a first layer of support for the integrity of

the randomization. They also offer visual evidence that control households may use more

but not significantly more electricity than treatment households, particularly in the summer

months. To account for the possibility that differences in post-treatment outcomes may be

6Moral licensing may play an important role in this setting. The psychological theory on “moral licens-
ing” suggests that individuals may use their own “good” behavior to justify “bad” behaviors. It has been
empirically corroborated in the energy setting whereby households voluntarily enrolled in “green” energy
programs increase electricity consumption (Jacobsen et al., 2014; Harding and Rapson, 2014).

7Assessor data were available for 7,105 of the 7,341 homes in our sample.
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attributable to pre-treatment differences in electricity use, we follow the best practices set

forth in Bruhn and McKenzie (2009) and control for pre-treatment annual, summer, and

winter electricity use in our preferred specifications.

While Table 1 focuses exclusively on assignment to treatment, attrition occurs in our sam-

ple for two reasons. First, households move. This leads to the termination of an account and

the omission of post-move household hours from our sample. This form of attrition affects

both control and treatment households and is uncorrelated with assignment to treatment.

The second source of attrition arises since a small number of households, approximately 50,

assigned to the WaterSmart treatment opt out of receiving HWRs. This selective attrition

leads to the presence of “never takers” in the treatment group and may compromise the

experimental research design. To address this concern, we continue to monitor water and

electricity use for households that opt out of HWRs and estimate intent to treat effects.

5 Empirical Approach and Results

This section details the empirical approach used to isolate the effect of HWRs on average

electricity consumption, and the results that follow. We then discuss the impacts of HWRs

on the time profile of electricity usage.

5.1 Average Treatment Effects

To identify the causal effect of HWRs on energy use, we begin by comparing average hourly

electricity use across treatment and control households conditional on weather controls and

time fixed effects, estimating the equation:

yihτ = β0 + β1WSi + f(Thτ ; Θ) + θpPhτ + γτ + γh + εihτ . (1)

The dependent variable yihτ is the level of electricity use specified in kilowatt-hours per hour

(kWh/hr) for household i during hour h of day τ .8 The indicator variable WSi denotes

8We use the level of electricity use for two reasons. First, we are primarily interested in understanding
the level change in electricity use from assignment to treatment. Given that electricity consumption varies
substantially across hours of the days and months of the year, a focus on the percentage change in electricity
use might mask substantial differences in level changes across hours and months. Second, logarithmic
transformations dampen the impact of high electricity users, and previous work has found that these users
exhibit some of the largest treatment effects (Allcott, 2011). In Appendix Tables A.4 and A.5, we show that
our results are robust to a log transformation of the dependent variable.
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assignment to the WaterSmart treatment, and equals one if customer i is assigned to treat-

ment. Calendar date and hour of day fixed effects, denoted by γτ and γh, control for seasonal

and hourly patterns in use. Weather controls include, f(Thτ ; Θ), a flexible function of hourly

temperature (Thτ ) with parameters Θ, and Phτ , an indicator variable denoting if precipita-

tion was recorded in hour h of day τ . We specify f(Thτ ; Θ) as a series of 5◦F temperature

bins,

f(Thτ ; Θ) =



θ60 · 1(Thτ < 65◦F)

θ65 · 1(65◦F ≤ Thτ < 70◦F)
...

θ80 · 1(80◦F ≤ Thτ < 85◦F)

θ85 · 1(Thτ ≥ 85◦F)


where 1(·) is an indicator function that equals one whenever the outdoor temperature in an

hour lies within the specified range.

Our coefficient of interest, β1, should be interpreted as the intent to treat effect and rep-

resents the average change in hourly electricity use from assignment to treatment. Standard

errors are clustered at the household. In subsequent specifications, we follow Allcott and

Rogers (2014) and build on this comparison of means by including baseline summer, winter

and annual electricity use in the year preceding treatment as control variables.

Table 2 reports results for the effect of assignment to WaterSmart on average hourly

electricity use.9 To translate these level effects into percentages, this table also reports mean

hourly use for control households. Column (1) displays our results from estimating equation

(1). Column (2) includes pre-treatment summer, winter, and annual electricity use to control

for possible differences in baseline electricity use across households. In columns (3) and (4),

we restrict the sample to the summer months of 2015 (May 15, 2015 to August 31, 2015)

and replicate the specifications in columns (1) and (2). We focus on summer months for

two reasons. First, system-wide electricity loads are highest and water demand peaks in the

summer. Second, this period corresponds to the first 75 days of our pilot when HWRs may

be most salient. In columns (5) and (6), we further restrict the sample to the peak electricity

use hours – 3 PM to 8 PM – in the summer.

Our interpretation of Table 2 focuses on the estimates that condition on pre-treatment

electricity use. Our choice to concentrate on these results is guided by earlier work on

9We exclude AMI meter reads above 20 kWh/hr as they are likely errors. This restriction reduces the
sample by 1,115 observations or 0.01%. Results are similar if we exclude AMI meter reads above 10 kWh/hr
or readings above the 99th percentile.
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evaluation in randomized controlled trials, and a comparison of the results presented in

even and odd columns (Bruhn and McKenzie, 2009). The latter shows that the estimated

treatment effects reduce in magnitude after controlling for pre-treatment electricity use. This

attenuation in treatment effects reflects our finding in Figure 2 that households assigned to

treatment use less (but not significantly less) electricity in the pre-treatment period. Moving

forward, we focus on the specifications that control for baseline electricity consumption and

use the results reported from the estimation of equation (1) as an upper bound.

Assignment to treatment reduced hourly electricity use by approximately 0.017 kWh/hour,

or 1.35 percent, during the summer months. This amounts to every household terminating

the use of one 15W light bulb over the summer. Alternatively, this is equivalent to ev-

ery household reducing its use of an Energy Star dishwasher by one load every three days

during the summer months. The estimated impact falls within the range of treatment ef-

fects reported from the deployment of home energy reports focused exclusively on energy

consumption and conservation (Allcott, 2011). This comparison makes clear the economic

importance of the estimated electricity spillover. Columns (5) and (6) show that the treat-

ment effects are most pronounced during peak hours in the summer when HWRs induce a 1.5

to 2.5 percent reduction in electricity use. This provides the first piece of empirical evidence

that, in addition to a conservation effect, the reports may yield savings via a reduction in

peak electricity demand.

As shown in columns (1) and (2), over the duration of the year WaterSmart does not

induce a change in electricity use. To illustrate the time profile of treatment effects over the

duration of the experiment, we interact assignment to treatment with month of year and

estimate monthly treatment effects conditional on baseline electricity use, weather controls,

calendar date and hour of day fixed effects. Figure 3 plots the estimated treatment effect for

each month spanning the period April 2015 to May 2016 relative to March 2015.10 The blue

line graphs estimates using all hours of the day and the red line illustrates the estimates from

a regression that includes only peak hours. The figure makes clear that significant reductions

in electricity use occur, but are confined to June, July, and August. After the summertime,

HWRs induce no change in electricity use. The difference between the summertime and

annual response may occur because earlier reports are more salient, there are more levers to

reduce electricity use in the summer, or electricity conservation is more front of mind in the

summer.

10We include March and April 2015, months in which households had received a mailer introducing them
to the WaterSmart product but had yet to receive a HWR.
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5.2 Time Profile of Treatment Effects

Hourly interval data allow us to estimate treatment effects across hours of the day and

provide further insight into the load management and environmental impacts of home water

reports, as well as the levers by which households respond to treatment. To decompose the

treatment effect, we augment equation (1) and estimate

yihτ =
23∑
j=1

αh1[h = j] +
23∑
j=0

βh (1[h = j] × WSi)

+ f(Thτ ; Θ) + θpPhτ + ΓXi + γτ + εihτ , (2)

where 1(·) is an indicator function that equals one when hour h equals hour-of-day j. The co-

efficients αh reflect the conditional average hourly electricity consumption for control house-

holds relative to the omitted hour, 12 AM. Controls for monthly pre-treatment average elec-

tricity use in the twelve months, summer months, and winter months preceding treatment

are denoted by Xi. The coefficients of interest, βh, capture the average effect of assignment

to treatment for each hour of the day. Given our findings in Table 2 and Figure 3, we restrict

the sample to the summer of 2015.

Disaggregating the impact of HWRs by hour of day reveals substantial heterogeneity in

the time profile of our average treatment effect. This can be seen in Figure 4(a) which plots

the effect of assignment to treatment on electricity use for each hour of the day. From 12 AM

to 5 AM we observe visual but not statistically significant evidence that treatment households

use less electricity. No discernible differences occur between 5 AM and 11 AM. Around 11

AM, treatment households begin to reduce electricity use relative to control households, with

this effect growing in magnitude and significance over the hours of the late morning and early

afternoon. Significant reductions start to occur at 3 PM. The treatment effects are largest

from 3 PM to 7 PM, peaking at 4 PM and 5 PM. They persist until 11 PM, with the effect

slowly declining after 7 PM. Heterogeneity in the timing of the treatment effects has direct

implications for the greenhouse gas and local pollutant reductions attributable to HWRs and

perhaps energy conservation programs more generally. This is because the marginal source

of electricity generation, and the greenhouse gases and local pollutants generated from this

source, vary hourly. In Section 7, we weigh in on the importance of this heterogeneity by

quantifying the local pollution and greenhouse gas impacts of HWRs under a uniform hourly

average treatment effect assumption and a variation on the hour of day treatment effects

presented in Figure 4(a).
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The largest estimated treatment effects coincide with peak demand hours for both the

households in our study and the electric grid as a whole.11 This suggests that in addition

to a conservation effect the report leads to additional savings by reducing peak load. The

efficiency gain occurs because of the disparity between the marginal cost to supply electricity

and the retail price of electricity. The absence of large-scale economically feasible electricity

storage options means that at each moment in time, the electricity supply needs to meet

demand. This leads to wholesale electricity prices that vary in near real-time as the cost

of the marginal unit differs widely across generation sources. These fluctuating marginal

costs, however, are not passed along to residential customers in BWP. Most customers pay a

flat retail price irrespective of when they use electricity. Our finding that customers reduce

electricity during the hours when it is most expensive to supply provides further private value

to the utility. In Section 7, we monetize the incremental savings attributable to heterogeneity

in wholesale costs and the response to treatment.

6 Mechanisms: Empirical Evidence

Our finding that the water conservation instrument induces electricity conservation leads

to several questions on the mechanisms underpinning the result. One leading explanation

for cross-sectoral spillovers is mechanical – reductions in energy use are due to reductions

in water-consuming activities that also use electricity. An alternative hypothesis is that

treatment alters consumer choice about resource use more generally, encouraging households

to reduce electricity use. We now propose and implement three empirical tests and an

engineering simulation to gauge the plausibility of these two channels.

6.1 Timing of Water and Energy Conservation

In a first empirical test, we hypothesize that if a mechanical relationship explains the cross-

sectoral spillover, then reductions in electricity use should be accompanied by reductions

in water use. One indication that energy conservation is driven exclusively by reductions

in water use is if the observed timing of water and electricity conservation coincide. To

11A recent analysis by the California ISO classifies ‘peak net load hours on the California electricity
grid as 4 PM to 9 PM, with ‘super peak occurring at the same hours in July and August each year. See
http://www.caiso.com/Documents/CaliforniaISO_Time_UsePeriodAnalysis.pdf.
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examine this, we compare the estimated hour of day treatment effects from Figure 4(a) with

the corresponding hour of day treatment effects for water use.

As a first step, we present results for the mean hourly effect of assignment to Water Smart

on water use. Table 3 replicates the specifications from Table 2 using hourly water use as the

dependent variable. The results make clear that HWRs induced large water savings. The

intent to treat effects range from 0.45 to 0.625 gallons per hour. Our results correspond to

a 4.4 and 2.9 percent reduction in water use over the whole year and in the summertime,

respectively, and are equivalent to reducing the amount of time spent showering by 6 minutes

per day.12 Unlike our findings in Table 2, the annual treatment effects are larger in magnitude

than the summertime effects. When we restrict the sample to the peak summer hours of 3

PM to 8 PM, we find that the estimated water reductions increase in levels and percentages.

Panel (b) of Figure 4 plots the treatment effects from estimating equation (2) using

hourly water use as the dependent variable. The water treatment effects are concentrated

in both magnitude and significance in the early morning hours of 5 AM to 7 AM, and at 7

PM. These hours coincide with the sunrise and sunset, suggesting that the treatment effects

are likely driven by reductions in outdoor watering. We observe no significant reductions in

water use in any other hours of the day.

Comparing panels (a) and (b) in Figure 4 provides our first piece of empirical evidence

that a mechanical relationship between actions that use both water and electricity is not the

sole driver of our observed cross-sectoral spillover. The time profile of electricity reductions

runs counter to the time profile of water savings during some hours. While moderate re-

ductions in electricity use occur from 3 PM to 11 PM, there are no statistically significant

reductions in water usage over this time interval except for a large decrease at 7 PM. Under

the mechanical hypothesis, if electricity reductions occur, water reductions should also occur.

From 3 PM to 7 PM and 8 PM to 10 PM this is not the case, suggesting that HWRs affect

at least some electricity use through a non-mechanical channel.

6.2 Response to Temperature

An ideal exercise to tease out the importance of the behavioral channel in explaining the

cross-sectoral spillover would test whether electricity choices that do not require water as an

12The treatment effects are similar to those found in other studies of WaterSmarts HWRs, providing
further support for the integrity of the randomization (Brent et al., 2015).
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input are affected by assignment to treatment. If treatment households make systematically

different electricity consumption decisions, this suggests that assignment to treatment im-

pacts electricity use through a behavioral channel. While the data needed to examine this

hypothesis directly are not available, we propose and implement an indirect empirical test

to investigate its plausibility.

We examine the behavioral hypothesis along an important and salient dimension of house-

hold electricity use: cooling. To do this, we first test whether electricity use for treated

households responds differentially to increases in outdoor temperature relative to control

households. We then test whether water conservation from assignment to treatment also in-

creases in temperature. The rationale guiding this test is that cooling comprises a significant

share of household summertime electricity use, its use increases in outdoor temperature, and

it requires electricity but not water as an input. A differential response to high tempera-

tures for electricity but not for water suggests that households exposed to HWRs alter their

consumption of air conditioning.

We implement this empirical test by augmenting equation (1) and estimating

yihτ = f(Thτ ; Θ) + g(WSi × Thτ ; Λ) + θpPhτ + ΓXi + γτ + εihτ , (3)

where all variables are defined as before. We specify g(WSi × Thτ ; Λ) as the interaction

of each of the temperature bins in f(Thτ ; Θ) with the indicator variable for assignment to

treatment. As before, we limit our sample to summer 2015.

Our empirical strategy identifies the differential impact of a given temperature bin on

electricity (and water) use across treatment and control households. The coefficients θj

estimate the conditional average electricity (water) use for temperatures in bin j relative to

the excluded bin, temperatures less than 65◦F. The coefficients λj estimate the difference

in average electricity and water use when temperatures fall in bin j between treatment

and control households. If treatment households respond to HWRs by reducing their air

conditioning use, λj will increase in temperature for electricity but not for water use.

We face an important challenge in using this empirical strategy – the water consumption

response to treatment may increase in temperature as well. The literature on the relationship

between ambient air temperature and residential water demand highlights that residential

water demand increases linearly in temperature, and/or may exhibit a threshold response

above specific temperatures (Balling and Gober, 2006; Gato et al., 2007). This work points
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to the possibility that the water response to treatment may increase in temperature, though

the mechanism through which this would occur is not obvious ex-ante. Households may

respond to treatment by shifting outdoor irrigation from the afternoon to the morning, or

by reducing outdoor watering altogether on hot days. A unique feature of our setting allows

us to imperfectly control for the relationship between temperature and outdoor irrigation.

Due to the ongoing drought, BWP imposed outdoor watering restrictions and households

were only permitted to water on two exogenously determined days of the week. As such,

we split our sample into utility-wide watering and non-watering days. We hypothesize that

on watering days the water response to WaterSmart is likely increasing in temperature,

while on non-watering days the relationship between temperature and response to treatment

should be substantially attenuated. If our cooling hypothesis holds, then (i) the electricity

response to treatment should be increasing in temperature but should not vary substantially

across watering and non-watering days, and (ii) the water response to treatment should be

relatively constant across temperatures on non-watering days.

Our first set of results highlights that differences in electricity use across treatment and

control households are increasing in temperature, a first step in providing evidence consistent

with a cooling hypothesis. Columns (1) and (2) of Table 4 report the results from the estima-

tion of equation (3) on non-watering and watering days, respectively. On non-watering days

the magnitude of the treatment effect jumps from 0 to 0.027 kwh per hour as temperature

increases from below 65 F to above 85 F, and on watering days the response increases from

around 0 to 0.036 kwh per hour. The findings highlight that the relationship between elec-

tricity use and treatment is increasing in temperature and is nearly identical across watering

and non-watering days, suggesting that it is unaffected by watering restrictions.

In contrast to the electricity results, the water response to treatment does not increase in

temperature on watering days or non-watering days. We report these results in columns (3)

and (4) of Table 4. On both watering and non-watering days, the largest treatment effects

occur during the relatively mild temperature hours of 70F or cooler. This highlights that the

water use response to treatment exhibits no temperature gradient, suggesting that factors

uncorrelated with temperature are driving water conservation.

Our findings provide indirect evidence that households exposed to HWRs alter electric-

ity use through decreased cooling. A comparison of the electricity and water response to

treatment at different temperatures makes explicit that while the electricity response to

treatment is increasing in temperature, the water response to treatment is not. We find
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that the water use response to treatment is not correlated with temperature increases, and

exhibits the largest response in both magnitude and significance during hours with relatively

mild temperatures.

6.3 Household Survey of Electricity Use Behavior

To explore the plausibility of our hypothesis that HWRs affect customer choices about elec-

tricity use, we designed and conducted a post-treatment household survey on electricity and

water use decisions for a subset of households. Comparing responses across control and

treatment households will provide empirical insight into whether assignment to treatment is

correlated with electricity conservation actions.

We mailed our survey to 2,400 households (1,600 treatment and 800 control) in August

2016. The survey asked respondents whether they undertook a variety of actions to reduce

their water and electricity use over the period June 2015 to June 2016. All surveys included

a $2 bill to increase completion rates, and households received two follow-up reminders.

In total, 38% of households that received a survey completed it, with compliance rates

equivalent across the control and treatment groups.

Two empirical challenges arise in drawing inference from the survey data. First, within

each control and treatment group, the households that complete the survey may system-

atically differ from the households that do not. Second, conditional on survey completion,

treatment and control households may be systematically different. Both issues may pose

empirical challenges since unobservable factors that influence a household’s decision to com-

plete the survey may impact their response to treatment. We test for each of these issues in

Table 5. In columns (1) and (2), we regress an indicator variable for whether a household

completed the survey on pre-treatment water and electricity use for treatment households

and control households, respectively. Treatment households that do and do not complete

survey are balanced on pre-treatment water and electricity use but control households are

not. Larger summertime electricity users are less likely to complete the survey. To study

whether survey attrition may be asymmetric across treatment and control households, we

restrict the sample to households that completed the survey and formally test for differences

in observables across control and treatment households. Results presented in column (3)

suggest that treatment and control households differ in baseline electricity use. These im-

balances inform our analysis of the survey data, motivating a comparison of means across

energy conservation actions conditional on baseline electricity and water use.
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For every energy conservation question asked in the survey, households assigned to treat-

ment are (weakly) more likely to respond that they participated in that action. We also find

that even with our small sample, households assigned to the WaterSmart treatment are sig-

nificantly more likely to report turning off the lights or turning off the TV. These results are

shown in Table 6; results are reported from the estimation of a linear probability regressing

participation in an energy conservation activity on assignment to treatment, controlling for

households pre-treatment electricity and water use. Comparing self-reported participation

in various energy consuming actions across treatment and control households highlights that

the largest differences in response, both in magnitude and statistical precision, are for actions

that affect electricity but not water use: (i) turning off the lights or the TV; (ii) air drying

clothes; and (iii) installing a programmable thermostat. These comparisons provide another

line of evidence consistent with our behavioral hypothesis.

6.4 Simulation to Bound Mechanical Spillovers

We develop an engineering model of household water and energy use to understand the

potential magnitude of mechanical complementarities in explaining the cross-sectoral elec-

tricity spillover. The model simulates expected changes in yearly electricity use assuming all

electricity reductions come from reductions in end uses that use both water and electricity

as inputs. The model makes several restrictive assumptions, and thus should be viewed as

an approximation of the expected electricity savings from the deployment of WaterSmart if

the behavioral channel was “shut off.”

We simulate the expected change in yearly electricity use from the WaterSmart interven-

tion assuming that HWRs only impact electricity use through mechanical complementarities.

We use individual response data from the 2009 California Statewide Residential Appliance

Saturation Study (RASS) to parameterize an appliance-level model of a representative house-

hold’s water and electricity use. The RASS data include detailed information on appliance

ownership and estimates of yearly, appliance-level electricity use for over 25,000 homes in

California. We restrict our sample to around 8,500 single-family homes in Southern Cali-

fornia to ensure the RASS respondents closely resemble the households in our study. From

the list of appliances covered in the RASS, we identify the following end uses as directly

or indirectly consuming water and energy: water heating, clothes washing, clothes drying,

dishwashing, groundwater pumping, evaporative cooling, and pool/spa operation. We use

the average ownership rates, the distribution of annual energy use for each appliance, and
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the average water treatment effect from column (4) of Table 3 to simulate the distribution

of average electricity use reductions under four scenarios.13

Table 7 reports our results. In our baseline scenario, we assume that water use reductions

are distributed equally across all appliances. Our additional scenarios take extreme stances

on appliance use and ownership patterns. Our intention is to gauge under each of these

implausible assumptions the extent to which mechanical complementarities could explain

the estimated electricity reductions, and make obvious that mechanical complementarities

are unlikely the sole driver behind the cross-sectoral spillover.

In our preferred scenario – in which water use reductions are distributed equally across

appliances – household electricity consumption decreases by approximately 39 kWh per year.

For comparison, the estimated treatment effect from column (4) of Table 2 is 149 kWh per

year. In this scenario, we can attribute about 25 percent of the observed electricity savings

from the WaterSmart intervention to mechanical complementarities.

The second scenario assumes that all water reductions come from decreases in the use of

indoor appliances that require both water and electricity as inputs. Specifically, we assume

that the quantity of water savings estimated in column (4) of Table 3 occurs from a reduc-

tion in the use of clothes washers, electric dryers, and dishwashers only. This implies that

on average dishwasher and clothes washer use would need to decrease by nearly 40 percent

in response to treatment.14 Under this implausible assumption, household electricity use

decreases by 140 kWh per year and can explain 90% of the cross-sectoral spillover. Framed

differently, if households respond to WaterSmart by reducing the use of clothes washers, elec-

tric dryers, and dishwashers by 20% this could only explain 45% of the estimated reduction

in electricity use.

Our third scenario assumes that water use reductions are distributed equally across ap-

pliances and that every household uses an electric water heater. While ownership of electric

water heaters is well below 10 percent in our area of study, this scenario allows us to gauge

the importance of water heating in explaining mechanical complementarities. Even under

this extreme assumption, the simulated electricity savings explain only 80 percent of the es-

timated electricity spillover. If we assume that 10% of households have electric water heaters

13Appendix A.1 discusses the RASS data and simulation procedure in more detail.
14According to the RASS data, households run approximately 256 clothes washer loads per year, 228

dryer loads per year, and 133 dishwasher loads per year. If we assume clothes washers use 35 gals/load and
dishwashers use 8 gals/load, total average water use from the appliances is 10,024 gallons per year compared
to our estimated treatment effect of 3,925 gallons per year.
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and all the estimated water savings occur within these households, then these households

would need to reduce water use by almost 45% for the electricity savings to be explained by

mechanical complementarities.

Our last scenario casts light on one potential lever that could explain the cross-sectoral

spillover: pools and spas. If we assume that all households with pools and spas reduce their

use of pool filters and spas by 100 percent, mechanical complementarities lead to electricity

savings far exceeding our estimated treatment effect. Phrased differently, if around twenty

percent of the households in our sample that own pools and spas discontinued their use of

pools and spas entirely, mechanical complementarities could explain our estimated cross-

sectoral spillover. We can assess the extent to which pool users drive our results directly.

To do this, we replicate our results from Table 2 using only the sample of households that

do not own pools. Results reported in Table 8 make clear that households with pools do

not drive the estimated electricity spillover. The robustness of the electricity savings to the

exclusion of these households rules out the hypothesis that mechanical complementarities in

the operation of pools and spas explain the cross-sectoral spillover.

7 Valuing Electricity Conservation Spillovers

Our finding that social norms messaging about water consumption induces electricity con-

servation implies that existing cost-effectiveness estimates of HWRs, and perhaps more gen-

erally social norms messaging, are understated. In this section, we set forth a cost-benefit

framework to quantify the net benefits from the deployment of home water reports. This

analysis departs from existing work on the cost-effectiveness of social norms messaging in the

residential water and energy settings (Allcott, 2011; Brent et al., 2015; Ferraro and Price,

2013). Cost-effectiveness estimates in earlier studies provide a ratio of program costs to

the energy or water savings, yielding a dollar per kWh or dollar per gallon metric. Our

framework uses dollars as the common unit to aggregate water and energy savings, and in-

corporates savings from reductions in local and global pollutants. In addition to reporting

average savings, our framework takes advantage of granular data on electricity and water use

to explicitly account for when these reductions occur. The timing of electricity conservation

affects both wholesale electricity costs and pollution emissions, and will impact cost-benefit

estimates.

An ideal valuation exercise would move beyond a benefit-cost framework and contribute

to a growing literature that quantifies the welfare effects of nudges (Handel, 2011; Bernheim
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et al., 2015). Of particular relevance is recent work that conducts a follow-on experiment to

elicit consumer willingness to pay for home energy reports, and provides a first estimate of

the welfare impacts of nudges in the residential electricity sector. Despite the importance of

evaluating the welfare effects of nudges, our research setting does not provide an opportunity

to do this effectively. In contrast to Allcott and Kessler (2015), we did not elicit willingness

to pay for nudges, rendering it challenging if not impossible to trace out a demand curve

for HWRs. One option would be to use average WTP values from Allcott and Kessler

(2015) as a proxy for consumer welfare in our setting. We do not pursue this for two

reasons. First, Allcott and Kessler (2015) find substantial heterogeneity in WTP across

consumers, even within a single service territory in upstate New York. Second, we question

the external validity of transferring estimates obtained in upstate New York to Southern

California. Instead, we outline a cost-benefit framework that provides a transparent and

practical metric to evaluate the relative importance of electricity spillovers.

Our cost-benefit exercise aggregates the water savings, electricity savings, and savings

from reductions in local and global pollutants into an annual, dollars per household metric.

We measure the average annual net benefits per household from the deployment of HWRs

as:

Net Benefit = PRet,w∆w + PRet,e∆e+ φe∆e+ ∆Π. (4)

The first two terms estimate the average reduction in water and electricity bills from the

intervention, where PRet,w and PRet,e denote the water and electricity retail prices, respec-

tively. Households in BWP’s territory face an increasing block rate pricing structure for both

water and electricity, complicating our determination of marginal prices.15 To approximate

the marginal price, we calculate each household’s cumulative water and electricity use for

each calendar month, and assign each household the marginal price associated with the final

unit of consumption.16

The term φe∆e accounts for social benefits from electricity conservation. These occur

because a reduction in upstream pollution generation reduces global and local pollutants.

Our cost-benefit framework focuses on the benefits from changes in the local pollutants SO2,

15Households pay $0.1153/kWh for the first 300 kWh, and $0.1672/kWh for all consumption above 300
kWh. Similarly, households pay $1.291/HCF for the first 15 hundred cubic feet (HCF) of water consumption,
$1.59/HCF for the next 15 HCF, and $2.001/HCF for all consumption above 30 HCF. One hundred cubic
feet is approximately 750 gallons.

16This is an imperfect measure of marginal price since monthly electricity and water use are based on
billing cycles not calendar months.
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NOx, and PM2.5, and CO2 emissions. To value the avoided pollution from the interven-

tion, we use estimates from Holland et al. (2016) on hourly marginal damages, broken out

separately for CO2 and local air pollutants.17

Our net benefits measure also includes the net change in utility revenue, ∆Π, from the

deployment of HWRs. HWRs affect utility revenue along three dimensions: a reduction

in water and electricity sales to consumers; a decrease in wholesale water and electricity

acquisition costs; and an increase in costs to pay for HWRs. We calculate the change in

utility revenue as,

∆Π = (PWh,e − PRet,e)∆e+ (PWh,w − PRet,w)∆w − C,

where PWh,j are wholesale costs for j = e, w; C is the annual cost per household to supply

bi-monthly HWRs; and all other terms are as defined in equation (4). Based on utility audit

reports, we assume the price incurred by the utility to purchase a marginal unit of water is

$2.072/HCF. We use hourly, day-ahead wholesale electricity prices for a large aggregation

point near our utility in Southern California as our measure of wholesale electricity costs,

and an average annual cost per household of $10 to supply bi-monthly HWRs.18

If we substitute the measure of net utility revenue (∆Π) into equation (4), we show that

customer bill savings are fully offset by utility revenue losses,

Net Benefit = PWh,e∆e+ PWh,w∆w + φe∆e− C. (5)

We choose to measure the savings and losses in retail expenditures because their inclusion

makes explicit how our calculation differs from a welfare analysis. In a welfare analysis, we

would replace household bill savings with the net change in consumer surplus attributable

to HWRs (Allcott and Kessler, 2015). The implication of this is that the revenue losses

incurred by the utility from a reduction in sales would no longer fall out of the net benefits

calculation.

Panel A of Table 9 presents our baseline results, itemizing each term from equation (4).

In this panel, we assume that the reductions in water and electricity use are uniform across

17CO2 damages are valued at the EPA’s social cost of carbon, $41/ton, and marginal local pollutant
damages are estimated with the AP2 model, an extension of the model developed by Muller and Mendelsohn
(2009), using an $8.1 million value of a statistical life.

18We use day-ahead wholesale electricity prices from the default load aggregation point (DLAP) SCE-
APND node.
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all hours and months. All columns report results from the estimation of a modified version

of equation (1) in which (i) we condition on baseline electricity or water use and (ii) the

dependent variable is the outcome of interest listed in each row.19 In the first column we

restrict our attention to the water savings and revenue losses from the deployment of HWRs.

Column (2) focuses exclusively on the net benefits from energy conservation, including the

social benefits from reductions in local pollutants and greenhouse gas emissions. The final

column of the table aggregates these savings and losses.

The table makes clear the importance of incorporating spillovers into a benefit-cost anal-

ysis. The net benefits increase by almost 40% from $2.91 per household to $4.04 when we

account for private electricity savings and the social benefits of electricity conservation. On

average, households save $22 and $3 on their water and electricity bills from the deployment

of HWRs, respectively, though lost utility revenues perfectly offset these savings. Net bene-

fits accrue from a reduction in the cost to purchase water and electricity. Wholesale water

savings amount to $13 per household per year, and electricity savings total at $0.86 per

household per year. The value of the CO2 reductions from the HWRs is $0.16 per household

per year, and the value from reductions in local pollutants amounts to $0.11 per household

per year. While the net savings from water conservation alone are positive, our analysis

suggests that the internalization of spillovers into a cost-benefit framework increases the net

benefits of HWRs substantially.

Our valuation of the electricity spillover in Panel A does not allow for temporal hetero-

geneity in when these treatment effects occur. Accounting for heterogeneity in electricity use

reductions both in the hour of day and month of year may substantially affect the value of

spillovers. This is because the wholesale price of electricity varies considerably across months

of the year and hours of the day, and the marginal source of generation differs in emissions

rates. To incorporate this form of heterogeneity into our net benefits framework, we follow

Novan and Smith (2017) and Boomhower and Davis (2016) and estimate treatment effects

for each month of the year and hour of the day.

As shown in Panel B of Table 9, accounting for variation in the timing of when electricity

reductions occur further increases the net benefits of HWRs by 16% from 4.04 to 4.70. In

our preferred specification, the estimated savings from electricity reductions now amount to

$1.79 per household. This increase in savings aligns with our expectations because treated

households reduced electricity use during the hours of the day when electricity is most

19Tables A.2 and A.3 in the Appendix present the regression results.
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expensive to supply, and the marginal source of generation is dirtier. In this more flexible

and more realistic framework, the incorporation of cross-sectoral spillovers increases the net

benefits from the deployment of HWRs by 62%.

We view these cost-effectiveness estimates as a starting point to quantify the importance

of electricity spillovers, and caution against interpreting them as the welfare impacts from

the deployment of HWRs. For a number of reasons, the net benefits calculated using our

cost-benefit framework likely exceed those that would be calculated using a welfare analysis.

First, our analysis does not account for potential costs incurred from efforts to conserve water

and electricity, or an increase in the moral costs attached to water or electricity consumption.

Instead, we assume that the change in benefits equals a customer’s bill savings. Previous

work finds that consumer willingness to pay for home energy reports is roughly 55 percent of

the energy cost savings, implying that our use of bill savings overstates the consumer surplus

from HWRs (Allcott and Kessler, 2015). Second, the disparity between marginal prices for

electricity and water, and the social marginal costs to supply these goods, indicates that

there may be reductions in consumer surplus from conservation. In our setting, the marginal

price for residential electricity exceeds (on average) the marginal cost to supply it. These

inefficient prices lead to underconsumption of electricity relative to the social optimum, and

suggest that additional conservation will lead to further decreases in consumer surplus. A

welfare analysis would account for differences between marginal prices and the social marginal

cost of production, something that our cost-benefit framework does not do. Even with these

caveats in mind, our benefit-cost framework provides a relevant and valuable launchpad with

which to incorporate spillovers into policy evaluation.

8 Conclusions

This paper evaluates whether behavioral interventions spill over into unintended sectors

through the lens of urban water conservation instruments and energy use. To do this, we

designed and implemented a field experiment that allows us to measure the effect of HWRs on

residential electricity use. We find that water conservation instruments induce conservation

beyond the water sector, leading to a 1.3 to 2.2% reduction in summertime electricity use,

where the magnitude of the response is comparable to that reported from the deployment of

home energy reports. High-frequency data allow us to explore heterogeneity in the timing of

the treatment effect, and reveal that electricity conservation is most pronounced during peak
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hours in the summer when electricity is most expensive to provide and marginal emissions

from generation are higher.

We formalize two channels through which HWRs could affect electricity use: mechanical

complementarities and behavioral choices. Under the former, electricity reductions are ex-

plained by actions that use both water and energy, such as doing a load of laundry. While

mechanical complementarities account for some of the savings, empirical tests, household sur-

vey data, and simulation results all point to the likelihood that HWRs also alter consumer

choices about electricity consumption. Treatment households reduce electricity consumption

during hours of the day when no water consrevation occurs; increase electricity conservation

as ambient temperatures increase; and report a significantly higher frequency of engagement

in energy conservation actions. Results from an engineering simulation imply that only 25%

of the electricity savings can be explained by mechanical complementarities.

To date, economists have primarily evaluated behavioral interventions using a partial

equilibrium framework. The presence of cross-sectoral spillovers points to the importance

of broadening the focus in the direction of a general equilibrium framework, both when

considering the net benefits of these programs as well as their welfare impacts. In our setting,

reductions in electricity use augment the net benefits of the water conservation instruments

by 62% from a benefit to cost ratio of 2.91 to 4.7. We focus exclusively on one possible cross-

sectoral spillover, but spillovers from this intervention may extend beyond energy. Moving

forward, we should improve our understanding of the conditions and circumstances under

which one would expect cross-sectoral spillovers to occur.
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Table 1: Balance Tests

Control Treatment Difference Households

(Total)

Elec Use (kWh/mth) 735.11 729.07 6.03 7,341

(6.72) (5.29) (8.57)

Summer Elec Use (kWh/mth) 1020.76 1010.81 9.95 7,341

(9.58) (7.59) (12.26)

Water Use (gals/mth) 12480.36 12333.84 146.52 7,341

(132.39) (109.53) (174.23)

Year Built 1944.91 1944.87 0.03 7,105

(0.27) (0.21) (0.34)

Bedrooms 2.91 2.89 0.02 7,105

(0.02) (0.01) (0.02)

Bathrooms 1.92 1.93 -0.01 7,105

(0.02) (0.01) (0.02)

Square feet 1621.35 1620.14 1.21 7,105

(12.66) (10.15) (16.31)

TotalValue 391,670 394,493 -2,823.40 7,105

(4915.66) (3938.27) (6329.74)

Pool (Indicator) 0.23 0.22 0.00 7,105

(0.01) (0.01) (0.01)

Notes: The first two columns report means for control and treatment households with standard

deviations in parentheses below. The third column displays the difference in means between treat-

ment and control, with the standard error reported in parentheses below. The last column displays

the total number of households included in the balance test. The assessor data on housing unit

attributes are missing for 236 households. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2: Electricity Intent to Treat Effects
(Dependent Variable: Electricity Use (kWh/hr))

(1) (2) (3) (4) (5) (6)

WaterSmart -0.010 -0.002 -0.028** -0.017** -0.049** -0.029**

(0.011) (0.004) (0.014) (0.008) (0.023) (0.015)

Observations 59,989,591 59,840,480 14,321,113 14,292,331 3,616,831 3,609,534

Mean Control Group Use 1.00 1.00 1.26 1.26 1.99 1.99

Weather Controls Yes Yes Yes Yes Yes Yes

Hour of Day FE Yes Yes Yes Yes Yes Yes

Calendar Date FE Yes Yes Yes Yes Yes Yes

Baseline Electricity Use No Yes No Yes No Yes

Hours All All All All Peak Peak

Sample 5/15-5/16 5/15-5/16 5/15-8/15 5/15-8/15 5/15-8/15 5/15-8/15

Notes: The table reports intent to treat results from an OLS regression of hourly electricity use on

assignment to the treatment. Columns (1) and (2) include all observations from May 15, 2015 to May 31,

2016. Columns (3) and (4) restrict the sample to the summer of 2015 (May 15 to August 30). Columns

(5) and (6) further limit the sample to include only peak demand hours (3 PM to 8 PM). Pre-treatment

electricity use controls include mean monthly electricity use in the summer, winter and year preceding

treatment. Standard errors are clustered at the household. *, **, *** denote significance at the 10%,

5%, and 1%level.
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Table 3: Water Intent to Treat Effects
(Dependent Variable: Water Use (gals/hr))

(1) (2) (3) (4) (5) (6)

WaterSmart -0.585*** -0.528*** -0.572*** -0.448*** -0.724*** -0.625***

(0.179) (0.110) (0.217) (0.133) (0.257) (0.234)

Observations 68,502,709 68,412,093 19,932,386 19,932,386 4,984,984 4,984,984

Mean Control Group Use 12.9 12.9 15.4 15.4 14.2 14.2

Weather Controls Yes Yes Yes Yes Yes Yes

Hour of Day FE Yes Yes Yes Yes Yes Yes

Calendar Date FE Yes Yes Yes Yes Yes Yes

Baseline Water Use No Yes No Yes No Yes

Hours All All All All Peak Peak

Sample 5/15-5/16 5/15-5/16 5/15-8/15 5/15-8/15 5/15-8/15 5/15-8/15

Notes: The table reports intent to treat results from an OLS regression of hourly water use on assignment to

the treatment. Columns (1) and (2) include all observations from May 15, 2015 to May 31, 2016. Columns

(3) and (4) restrict the sample to the summer of 2015 (May 15 to August 30). Columns (5) and (6) further

limit the sample to include only peak demand hours (3 PM to 8 PM). Pre-treatment water use controls

include mean monthly water use in the summer, winter and year preceding treatment. Standard errors are

clustered at the household. *, **, *** denote significance at the 10%, 5%, and 1%level.
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Table 4: Treatment Effect Heterogeneity and Outdoor Temperature
(Dependent Variable: Electricity and Water Use)

Electricity Use Water Use

(1) (2) (3) (4)

WaterSmart (<65F) -0.002 -0.000 -0.505** -0.244

(0.017) (0.017) (0.212) (0.390)

WaterSmart (65F-70F) -0.011 -0.011 -0.360* -0.823**

(0.009) (0.009) (0.187) (0.353)

WaterSmart (70F-75F) -0.017** -0.020*** -0.489*** -0.473

(0.008) (0.008) (0.177) (0.313)

WaterSmart (75F-80F) -0.019** -0.022** -0.385** -0.349

(0.009) (0.010) (0.172) (0.283)

WaterSmart (80F-85F) -0.019 -0.017 -0.395** -0.330

(0.012) (0.013) (0.193) (0.266)

WaterSmart (85F-90F) -0.027 -0.036* -0.486** -0.405

(0.019) (0.019) (0.193) (0.262)

Observations 8,340,181 5,952,150 10,449,277 7,756,130

Calendar Date FE Yes Yes Yes Yes

Day of Week No Watering Watering No Watering Watering

Sample 5/15-8/15 5/15-8/15 5/15-8/15 5/15-8/15

Notes: The table reports intent to treat effects across 5F temperature bins. Columns

(1) and (3) report results for electricity use and columns (4) and (5) report results

for water use. The data include the period spanning May 15, 2015 to August 31,

2015. Day of Week indicates the days included in our sample; ‘No Watering’ restricts

the sample to days of the week when outdoor watering was banned, and ‘Watering’

restricts the sample to days of the week when outdoor watering was allowed. All

regressions include controls for the temperature bins 65F-70F, 70F-75F, 75F-80F,

80F-85F and ≥ 85F, hourly outdoor precipitation, and calendar date fixed effects.

Pre-treatment electricity use controls in columns 1 and 2, and water use use controls in

columns 3 and 4 include mean monthly use in the summer, winter and year preceding

treatment.Standard errors in parentheses are clustered at the household. *, **, ***

denote significance at the 10%, 5%, and 1% level.



Table 5: Survey Participation: Attrition and Balance Tests

(1) (2) (3)

Dependent Variable Completed Survey Completed Survey WS Treatment

Annual Water Use (1,000 gals.) -0.009 0.015 -0.021

(0.011) (0.015) (0.015)

Summer Water Use (1,000 gals.) 0.008 -0.007 0.012

(0.006) (0.008) (0.009)

Winter Water Use (1,000 gals.) -0.003 -0.007 0.005

(0.006) (0.008) (0.006)

Annual Elec Use (1,000 kWh) -0.347 0.564 -0.753*

(0.306) (0.454) (0.446)

Summer Elec Use (1,000 kWh) 0.145 -0.328* 0.347*

(0.136) (0.197) (0.190)

Winter Elec Use (1,000 kWh) 0.026 -0.283 0.330

(0.164) (0.253) (0.257)

Observations 1504 746 867

Sample WS Control Complete Survey

Response Rate 37.80% 38.23% 38.09%

Notes: Columns (1) and (2) report results from a linear probability model regressing survey completion

on pre-treatment water and electricity use. The sample in column (1) is comprised only of households

assigned to the WaterSmart treatment, and the sample in column (2) is comprised of households assigned

to control. Column (3) reports results from a linear probability model regressing treatment on pre-

treatment water and electricity use for all households. Standard errors are robust to heteroskedasticity.

*, **, *** denote significance at the 10%, 5%, and 1% level.
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Table 6: Survey Responses Across Control and Treatment
(Dependent Variable: Survey Response)

(1) (2) (3) (4) (5) (6)

Turned Off

Lights, TV,

etc.

Adjusted

Thermostat

Installed

Programmable

Thermostat

Air Dried

Clothes

Reduced

Dishwasher

Use

Reduced

Laundry Use

Water Smart 0.049* 0.003 0.031 0.023 0.022 0.008

(0.028) (0.033) (0.032) (0.032) (0.035) (0.034)

Observations 867 867 867 867 867 867

Control Response 0.80 0.71 0.26 0.26 0.54 0.67

WS Response 0.85 0.71 0.29 0.29 0.56 0.67

Notes: The table reports results from a linear probability model regressing the response to each survey

question on assignment to the treatment. Controls include mean monthly water and energy use in the

summer, winter and year preceding treatment. The bottom two rows report the mean survey response for

control and treatment households, respectively. Standard errors are clustered at the household. *, **, ***

denote significance at the 10%, 5%, and 1%level.

Table 7: Household Energy-Water Use Appliance Model:
Electricity Savings (kWh/year)

Scenario Mean 5th

Percentile

95th

Percentile

% TE

Explained

All appliances 39.09 37.85 40.36 26.23

Clothes washer, dishwasher,

and dryers only

139.73 135.86 143.68 93.78

All appliances: Electric water

heater

119.63 117.95 121.33 81.43

Pool and spa use only 766.12 731.96 800.74 514.17

Notes: The table presents the mean, 5th percentile, and 95th percentile of the estimated elec-

tricity savings for each scenario in kWh/year. The last column reports the percent of the

estimated electricity treatment effect (TE) explained by the mean electricity savings in each

scenario. The estimated electricity TE is 149 kWh/year on average for each household based

on our estimate in column (4) of Table 2.
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Table 9: Net Benefits of Home Water Reports ($/Household)

Water Electricity Total

(1) (2) (3)

Panel A: Year Average Treatment Effects

(+) Customer Bill Savings 21.65 3.15 24.80

(-) Utility Revenue Loss 21.65 3.15 24.80

(+) Utility Wholesale Expenditure Savings 12.91 0.86 13.77

(+) Local Externalities Benefits – 0.11 0.11

(+) Global Externalities Benefits – 0.16 0.16

(-) HWR Cost 10 10 10

(=) Private Net Benefits 2.91 0.86 3.77

(=) Private & Public Net Benefits 2.91 1.13 4.04

Panel B: Monthly-by-Hour Average Treatment Effects

(+) Customer Bill Savings 21.65 4.53 26.18

(-) Utility Revenue Loss 21.65 4.53 26.18

(+) Utility Wholesale Expenditure Savings 12.91 1.26 14.17

(+) Local Externalities Benefits – 0.26 0.26

(+) Global Externalities Benefits – 0.27 0.27

(-) HWR Cost 10 10 10

(=) Private Net Benefits 2.91 1.26 4.17

(=) Private & Public Net Benefits 2.91 1.79 4.70

Notes: The table reports our benefit-cost calculations on an annual, per household basis.
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Figure 1: Generic Home Water Report

YOUR HOME WATER REPORT
THIS IS AN INFORMATIONAL REPORT AND NOT A BILL.

SERVICE ADDRESS: 456 Washington St., Anytown
ACCOUNT NUMBER: 123873124-01

GO PAPERLESS. SEE ALL INFO & PRODUCTS AT:

Log On

• Where you’re using the most
• Your progress over time
• Efficient products for purchase

citywater.com

citywater.com

Account: 123873124-01 
Zip Code: 98765

A free service offered by your water utility 

and powered by WaterSmart Software®

Blair Jones
456 Washington St. 
Anytown, USA

Your WaterScore compares your use to others in 
City Water District who also have 2 occupants 
and a similar yard size.  Is your household 
different? Log on to update your profile and see 
adjusted comparisons.

citywater.com

Surprised by your WaterScore? 

Your WaterScore 
SEP 1 to OCT 31, 2016

You met your 24% goal!
Take action to save even more.

Gallons Per Day (GPD)
 22 CCF = 276 GPD

276 GPDYou

Average
Households

E�cient
Households

250 GPD

111 GPD

Change 
grass to 
native plants

78 GALLONS
PER DAY

$242 DOLLARS
PER YEAR

EXPERT 
ADVICE

$148 DOLLARS
PER YEAR

53 GALLONS
PER DAY

Install 
a faucet 
aerator

Upgrade
irrigation
timer

Potential savings if you:

22 GALLONS
PER DAY

$82 DOLLARS
PER YEAR

Water-saving actions just for you 
Selected based on your household characteristics, yard size, and historical water use. 

       Log on to update your profile

    415.555.5555         info@citywater.com

WaterSmart Program  

123 Main Street 

Anytown, USA

Your	water	use	is	compared	to	homes	 in	Anytown 
with	2	occupants	and	a	similar	yard	size.

Get your full list of recommended 
actions, and see:

388 GPD 276 GPD
207 GPD 195

 
GPD

FebDec

Your Goal
Your Actual

Oct

Your 24% reduction goal
Your goal is 24% less than your 2013 use in the 
same billing period, ending in the month of:
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Figure 2: Balance: Pre-treament Electricity Use by Month (kWh/mth)

Notes: The upper portion of the figure plots the difference in mean monthly electricity use across control

and treatment. The vertical lines are the 90% confidence intervals. The lower portion of the figure plots

mean electricity use in a given month for control and treatment households.

Figure 3: Electricity Intent to Treat Effects Over Time

Notes: The figure plots intent to treat electricity effects (kWh/hr) for each month in the post-treatment

period relative to March 2015. The blue and red lines plot estimates using all hours of the day and peak

hours, respectively. The dashed lines are 90% confidence intervals for the ‘all hours’ treatment effects. The

vertical line denotes May 2015, the first month in which HWRs were mailed to treatment households. All

regressions include weather controls, hour of day fixed effects, calendar date fixed effects, and household

pre-treatment electricity use controls.
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Figure 4: Heterogeneity by Hour of Day

(a) Electricity Intent to Treat Effects (kWh/hr)

(b) Water Intent to Treat Effects (gals/hr)

Notes: The figure plots hourly intent to treat electricity effects in panel (a) and water effects in panel (b)

from assignment to the WaterSmart treatment. The estimated treatment effects are denoted as diamonds

in panel (a) and circles in panel (b). The 90% confidence intervals and mean hourly use for control

households are plotted as well. All regressions include weather controls, calendar date fixed effects, and

mean monthly electricity(water) use in the summer, winter and year preceding treatment.



A Appendix: For Online Publication

A.1 Simulation Model Details

We develop a model of residential households’ water and electricity use to quantify the

magnitude of electricity savings attributable to mechanical spillovers. The model uses indi-

vidual response data from the 2009 California Statewide Residential Appliance Saturation

Study (RASS).20 The RASS reports appliance ownership statistics as well as estimates of

appliance unit energy consumption (UEC) for over 25,000 households in California. UECs

are household- and appliance-specific annual electricity use estimates based on households’

appliance ownership portfolio and electricity billing data.21

The RASS data include information on households throughout the state of California.

We restrict the data in two ways to ensure the sample we use is similar to those in our utility

area. First, we limit the sample to single-family homes. Second, we include only households

in Southern California.22 With these restrictions in place, we are left with 8,442 household

survey responses.

The RASS data include ownership and UECs for twenty-seven electric and ten natural

gas appliances. Of those, we identified nine that either directly or indirectly use both water

and electricity. Table A.1 lists these appliances along with the average ownership (satura-

tion) rates and average UECs. The most commonly owned appliances that use electricity

and water are clothes washers and dishwashers, which have 97% and 77% saturation rates,

respectively. Large electricity using appliances include electric water heaters, electric dry-

ers, evaporative (or swamp) coolers, pool pumps, well pumps, and electrically heated spas.

However, the saturation rates of these appliances are generally below 20%. The table high-

lights the variation in appliance UECs and ownership. For example, electric dryers have a

mean UEC of 625 kWh/year. However, the standard deviation is 624 kWh/year, reflecting

significant variation in the intensity of dryer use across households.

20More information on the RASS survey is available at http://www.energy.ca.gov/appliances/rass/.
We thank Glen Sharp from the California Energy Commission for giving us access to anonymous individual
response data.

21More information on the methods used to calculate appliance UECs are available at http://www.

energy.ca.gov/reports/400-04-009/2004-08-17_400-04-009VOL2B.PDF.
22Specifically, we restrict the data to households located in the CEC’s building climate zones 5, 6, 7,

9, 10, 14 and 16. For a map of the CEC’s building climate zones, see http://www.energy.ca.gov/maps/

renewable/BuildingClimateZoneMap.pdf.
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Simulating the average reduction in household electricity use attributable to appliances

that use both water and electricity involves dealing with several layers of uncertainty. These

include (1) household appliance ownership and the intensity of appliance use; (2) the impact

of WaterSmart treatment on household water use; and (3) appliance use patterns. We use

the RASS saturation rates and UEC data to address the first source of uncertainty and

our estimated water treatment effect to address the second. To address the last issue, how

households changed their appliance use behavior, we consider four behavioral scenarios that

we elaborate on below. Our simulation procedure proceeds as follows:

1. Draw 5,046 Bernoulli random appliance ownership variables based on estimated satu-

ration rates for each appliance.23

2. Draw 5,046 UECs from the estimated distribution of UECs for each appliance, and

multiply by ownership indicators.

3. Calculate the energy savings from water-saving scenarios 1-5. Collect average electric-

ity savings across all households.

4. Repeat (1)-(3) 10,000 times.

Step 1 generates a vector of 5,046 zeros and ones for each appliance, where the frequency

of ones is equal in expectation to the saturation rates in Table A.1. Step 2 converts the

ownership indicators into annual energy use values for each appliance and household. We

estimate the distribution of UECs for each appliance by fitting a beta distribution using a

maximum likelihood estimator to the UECs from the RASS data. Using a beta distribu-

tion ensures that all UECs drawn from each distribution are positive. Steps 3 and 4 give

the distribution of mean changes in electricity use to determine the distribution of average

electricity savings under each scenario.

To implement step 3, converting water reductions to electricity reductions, we use the

estimated water treatment effect from column (4) of Table 3. In all scenarios, we assume

that water and energy use in appliances is proportional, i.e., a 1% reduction in water use

by an appliance leads to a 1% reduction in energy use. To account for heterogeneity in

the estimated treatment effect, we draw a treatment effect from a normal distribution with

mean 0.034, the average treatment effect divided by the mean hourly water use, and standard

deviation 0.015. The resulting electricity savings estimates are specified in kWh/year, which

23We use a sample of 5,046 since this is the size of our treatment group.
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we compare to our estimated average treatment effect from column (3) of Table 2, which is

298 kWh/year.

We consider the following four scenarios:

Scenario 1: Equal reduction across all appliances. Households reduce water use across

all appliances equally. This amounts to reducing use of all appliances on average by 3.4%.

Scenario 2: Reductions in indoor appliance water use. We assume that all water

savings come from reductions in dishwasher, clothes washer, and dryer use. According to the

RASS data, households in our sample on average run 256 loads of laundry and 133 dishwasher

loads each year. While the RASS data do not include information on appliance water use,

Home Water Works, a project sponsored by the Alliance for Water Efficiency, found that old

clothes washers (dishwashers) use 40-45 (10-15) gals/load and newer, more efficient clothes

washers (dishwashers) use 14-25 (<5.5) gals/load. To be conservative, we assume clothes

washers use 35 gals/load and dishwashers use 8 gals/load. Under these assumptions, the

average water treatment effect is 4,572 gals/year. To achieve these reductions, households

would need to curtail their use of clothes washer and dishwasher use by 45.6% on average.

This scenario further assumes that households would reduce electric dryer use by the same

amount, and includes savings from reductions in the use of water heaters and well pumps.

Scenario 3: Electric Hot Water Heaters. Electric hot water heaters are large energy

users. While the RASS data confirms information from our partner utility that ownership of

electric hot water heaters is low, to understand if electric hot water heaters are driving our

results, we replicate Scenario 1 assuming that all households own an electric water heater.

Scenario 4: Reductions in outdoor appliance water use. The drought saw mandates

for substantial reductions in water use among residential households. This included some

cities passing regulations restricting construction of new pools and banning homeowners from

refilling their existing pools.24 To explore whether reductions in pool and spa appliance use

could explain our findings, we consider a scenario where all households that own a pool stop

using them entirely. This amounts to a 100% reduction in pool pumps and spa use among

households owning them.25

24See http://www.latimes.com/local/california/la-me-pool-drought-20150602-story.html.
25We also include reduction in well pump use in this scenario.
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Table A.1: Household Energy-Water Use Appliance Model:
Ownership and UECs

UEC (kWh/year) Saturation Rate

Electric Water Heater 2,936.94 0.06

(1,431.80) (0.23)

Clothes Washer 94.28 0.97

(175.27) (0.16)

Electric Dryer 625.25 0.21

(624.05) (0.41)

Dish Washer 76.27 0.77

(49.50) (0.42)

Evaporative Cooler 669.36 0.09

(340.53) (0.28)

Pool Pump 3,604.22 0.18

(1,068.90) (0.41)

Spa 300.43 0.10

(230.47) (0.30)

Spa Electric Heat 995.94 0.08

(664.12) (0.28)

Well Pump 518.01 0.03

(214.13) (0.17)

Notes: The table presents mean and standard deviation statistics

for all household appliances included in the 2009 California RASS

survey that use both water and electricity. ‘Saturation Rate’ is the

average ownership, and UEC=unit energy consumption in kWh

per year. (Source: 2009 CEC RASS)
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A.2 Net Benefit Calculations: Regression Results

Table A.2: Effects of HWRs on Electricity Expenditures and Externalities

Dep. Variable Retail Expend. Wholesale Expend. CO2 Damages Local Damages

(1) (2) (3) (4) (5) (6) (7) (8)

WaterSmart -0.0018 -0.0004 -0.0004 -0.0001 -0.0001 -0.00002 -0.0002 -0.00001

(0.0020) (0.0007) (0.0004) (0.0001) (0.0002) (0.00006) (0.0002) (0.0001)

Yearly Savings 15.40 3.15 3.34 0.86 1.22 0.16 1.53 -0.11

Std. Error (17.14) (6.30) (3.21) (1.21) (1.47) (0.54) (1.93) (0.71)

Observations 59,989,591 59,840,480 59,982,748 59,833,656 59,989,591 59,840,480 59,989,591 59,840,480

Weather Controls Yes Yes Yes Yes Yes Yes Yes Yes

Hour of Day FE Yes Yes Yes Yes Yes Yes Yes Yes

Calendar Date FE Yes Yes Yes Yes Yes Yes Yes Yes

Pre-treatment Electricity Use No Yes No Yes No Yes No Yes

Notes: The table reports intent to treat results from an OLS regression of either (i) retail electricity expenditures, (ii)

wholesale electricity expenditures, (iii) CO2 damages from electric generation for CA, or (iv) local damages from electric

generation for CA on assignment to the treatment. Yearly savings are calculated by multiplying each ATE by 24 hours and

365 days. Standard errors are clustered at the household. *, **, *** denote significance at the 10%, 5%, and 1%level.

Table A.3: Effects of HWRs on Water Expenditures

Dep. Variable Retail Expend. Wholesale Expend.

(1) (2) (3) (4)

WaterSmart -0.003*** -0.002*** -0.002*** -0.001***

(0.001) (0.001) (0.000) (0.000)

Yearly Savings 24.10 21.65 14.37 12.91

Std. Error (7.52) (6.70) (4.35) (3.86)

Observations 63,034,882 62,852,349 63,034,882 62,852,349

Weather Controls Yes Yes Yes Yes

Hour of Day FE Yes Yes Yes Yes

Calendar Date FE Yes Yes Yes Yes

Pre-treatment Electricity Use No Yes No Yes

Notes: The table reports intent to treat results from an OLS regression of either (i)

retail electricity expenditures, (ii) wholesale electricity expenditures, (iii) CO2 dam-

ages from electric generation for CA, or (iv) local damages from electric generation for

CA on assignment to the treatment. Standard errors are clustered at the household.

*, **, *** denote significance at the 10%, 5%, and 1%level.
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A.3 Logarithm Regression Results

Table A.4: Electricity Intent to Treat Effects
(Dependent Variable: Log Electricity Use)

(1) (2) (3) (4) (5) (6)

WaterSmart -0.014 -0.006 -0.020* -0.013 -0.020 -0.010

(0.012) (0.006) (0.012) (0.009) (0.014) (0.011)

Observations 59,890,587 59,741,506 14,287,890 14,259,108 3,608,205 3,600,908

Weather Controls Yes Yes Yes Yes Yes Yes

Hour of Day FE Yes Yes Yes Yes Yes Yes

Calendar Date FE Yes Yes Yes Yes Yes Yes

Hours All All All All Peak Peak

Sample 5/15-5/16 5/15-5/16 5/15-8/15 5/15-8/15 5/15-8/15 5/15-8/15

Notes: The table reports intent to treat results from an OLS regression of the log of hourly electricity

use on assignment to the treatment. Columns 1 and 2 include all observations from May 15, 2015 to May

31, 2016. Columns 3 and 4 restrict the sample to the summer of 2015 (May 15 to August 30). Columns

5 and 6 further limit the sample to include only peak demand hours (3 PM to 8 PM). Standard errors

are clustered at the household. *, **, *** denote significance at the 10%, 5%, and 1%level.

Table A.5: Water Intent to Treat Effects
(Dependent Variable: Log Water Use)

(1) (2) (3) (4) (5) (6)

WaterSmart -0.046*** -0.047*** -0.037*** -0.037*** -0.047*** -0.047***

(0.013) (0.011) (0.013) (0.012) (0.015) (0.014)

Observations 63,034,882 62,651,855 18,319,342 18,205,407 4,581,513 4,553,021

Mean Control Group Use

Weather Controls No Yes No Yes No Yes

Hour of Day FE No Yes No Yes No Yes

Calendar Date FE No Yes No Yes No Yes

Hours All All All All Peak Peak

Sample 5/15-5/16 5/15-5/16 5/15-8/15 5/15-8/15 5/15-8/15 5/15-8/15

Notes: The table reports intent to treat results from an OLS regression of the log of hourly water use on

assignment to the treatment. Because there are many hours of the day with zero consumption, we use add

one gallon per hour to every households’ consumption. Columns 1 and 2 include all observations from May

15, 2015 to May 31, 2016. Columns 3 and 4 restrict the sample to the summer of 2015 (May 15 to August

30). Columns 5 and 6 further limit the sample to include only peak demand hours (3 PM to 8 PM). Standard

errors are clustered at the household. *, **, *** denote significance at the 10%, 5%, and 1%level.
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