Household Sorting, Moving Costs, and Environmental Justice:

Do Low-income Households Flee the Nuisance under Lower Moving Costs?

Sul-Ki Lee

Colorado School of Mines

Camp Resources XXIV

August 8, 2017

Moving costs

- Any friction associated with moving
 - Out-of-pocket costs
 - Psychological costs
- In literature
 - Free mobility assumed in traditional henonic models (Rosen, 1974)
 - ▶ Non-market valuation (Bayer et al., 2009)
 - Underestimating MWTP for a non-market good when ignored
 - Housing (Quigley, 2002) and labor market (Kennan and Walker, 2011)

Motivation

Some types of households move less than others.

Household types		Movin	g rates
$w \leq \$15,600 \\ \$15,600 < w \leq \$30,000 \\ \$30,000 < w \leq \$48,000 \\ \$48,000 < w$	(IncG1) (IncG2) (IncG3) (IncG4)	0.391 0.397 0.414 0.488	0.280 0.328 0.341 0.402
overall		0.414	0.329
Children		No	Yes

Source: IPUMS US Census 2000

Research Question #1

Do low-income households bear higher moving costs?

- Residential sorting model built upon Bayer et al. (2009)
 - Discrete choice framework
- Allow heterogeneity in moving costs and other parameters
 - ▶ 8 different household types (4 income groups × children)

Link to Environmental Justice

- Environmental Justice (EJ) correlation
- Coming to the nuisance (Been, 1994; Been and Gupta, 1997)
 - Changes in local demographic/income (Banzhaf and Walsh, 2008)
 - ▶ Lower MWTP for clean environments (Depro et al., 2015)

Research Question #2

Does reducing moving costs of low-income households make them flee the nuisance?

- Moving costs in EJ
 - Allows to address EJ correlation by a direct policy instrument
 - With less degree of environmental gentrification
 - ▶ EJ at national scale: where moving costs are relevant
- Simulation model
 - Import parameter estimates from sorting model
 - Benchmark: predict residential location choice
 - Counterfactual: modify migration costs and predict again

Data

- IPUMS US Census 2000 (5% sample)
 - Socio-economic variables: wages, demographic information, etc.
- Center for Disease Control and Prevention (CDC)
 - county-level PM_{2.5} concentrations (monitor + modeled)
 - aggregated to MSA-level

▶ Descriptive Statistic

Random Utility Model

1 Log-transformed indirect utility:

$$\ln v_{ik} = u_{ik} = \alpha_l \ln \hat{w}_{ik} - \ln \delta_{ik} + \ln \theta_{i(l)k} + \epsilon_{ik}$$
 where $\ln \theta_{i(l)k} = -\beta_l \ln p_k + \gamma_l \ln PM_k + \eta_l \ln X_k$

2 Modeling migration costs

$$\begin{split} \ln \delta_{ik} = & \mu_l^S d_{ik}^S + \mu_l^{R1} d_{ik}^{R1} + \mu_l^{R2} d_{ik}^{R2} \\ + & \mathbb{I}[\text{kid} = 1] \times (\mu_l^{S,kid} d_{ik}^S + \mu_l^{R1,kid} d_{ik}^{R1} + \mu_l^{R2,kid} d_{ik}^{R2}) \end{split}$$

Heterogeneity: Four income groups (l) by the presence of children — 4×2

3 Assuming type-I extreme value distribution on ϵ_{ik} :

$$\pi_{ik} = Prob(u_{ik} > u_{ij}, \ j \neq k) = \frac{\exp(u_{ik})}{\sum_{j} \exp(u_{ij})}$$

Results: Moving Costs

$$u_{ik} = \alpha_l \ln \hat{w}_{ik} - \ln \delta_{ik} + \ln \theta_{i(l)k} + \epsilon_{ik}$$

IncC1

IncG/

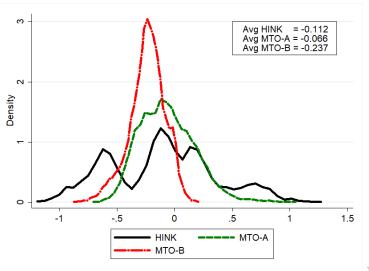
	mcGi	IIICG4
	$w \le \$15,600$	\$48,000 < w
Households withou	ıt children	
State	-2.822	-2.223
Census region	-3.765	-3.207
Macro region	-4.264	-3.803
Households with c	hildren	
State	-3.113	-2.385
Census region	-3.925	-3.486
Macro region	-4.380	-3.979

Simulation Model

$$\hat{\pi}_{ik}^{\text{bmk}} = \frac{\exp(\hat{\alpha} \ln \hat{w}_{ik} - \ln \hat{\delta}_{ik}^{\text{bmk}} + \ln \hat{\theta}_k)}{\sum_{j} \exp(\hat{\alpha} \ln \hat{w}_{ij} - \ln \hat{\delta}_{ij}^{\text{bmk}} + \ln \hat{\theta}_j)}$$
$$\hat{\pi}_{ik}^{\text{cf}} = \frac{\exp(\hat{\alpha} \ln \hat{w}_{ik} - \ln \hat{\delta}_{ik}^{\text{cf}} + \ln \hat{\theta}_k)}{\sum_{j} \exp(\hat{\alpha} \ln \hat{w}_{ij} - \ln \hat{\delta}_{ij}^{\text{cf}} + \ln \hat{\theta}_j)}$$

- For randomly drawn 10,000 low income households with children (treatment group)
- **2** Run simulation 1,000 times based on $\hat{\pi}^{ ext{bmk}}_{ik}$ and $\hat{\pi}^{ ext{cf}}_{ik}$
- 3 Compare mean $PM_{2.5}$ levels over 1,000 chosen locations in bmk to mean $PM_{2.5}$ in cf

Counterfactual Scenarios


- Counterfactual #1 (HINK)
 - Assign moving costs of Highest Income No Kids to treatment group
- Counterfactual #2 (MTO-A)
 - Subsidize median annual rental payments (\$ 5,880) if treatment group moves
- 3 Counterfactual #3 (MTO-B)
 - Same as CF #2, but subsidy is paid only when they move to MSAs that meet EPA's PM_{2.5} standard $(12\mu g/m^3)$

Rates of Moving

- What are the expected per-household costs of each counterfactual policy?
- Are the counterfactual moving costs low enough to encourage people to move?

	Per-hh Cost	State	Census Region	Macro Region
Benchmark	N/A	0.616	0.483	0.378
Counterfactual: HINK	\$14,5 ⁰ 7	0.717	0.569	0.444
Counterfactual: MTO-A	\$3,913	0.666	0.540	0.427
Counterfactual: MTO-B	\$3,742	0.636	0.508	0.400

Results: $PM_{2.5}^{cf}$ - $PM_{2.5}^{bmk}$

Differences in PM2.5 Levels

	HINK	MTO-A	МТО-В
Households that reject H	$p_0: \mathrm{PM}_{2.}^{\mathrm{cf}}$	$_{5} \ge \mathrm{PM}_{2.5}^{\mathrm{bm}}$	k (%)
1% significance level 5% significance level	35.97 42.43	16.39 29.22	45.85 61.93
Households that reject H	$PM_{2.}^{cf}$	$_{5} \le \mathrm{PM}_{2.5}^{\mathrm{bm}}$	k (%)
1% significance level 5% significance level	19.26 25.15	9.78 16.07	0.00 0.08

► Counterfactual Scenarios

Welfare Analysis

Health benefits

Lives saved = Exposed population $\times \text{(Baseline death rate} - \Delta \text{PM}_{2.5} \times \text{ER} \text{)}$ Marginal benefits = Lives saved \times VSL

Changes in consumer surplus (Small and Rosen, 1981)

$$\Delta E(CS) = \frac{1}{\alpha} \left[\max_{k} (u_{ik}^{\text{cf}}) - \max_{k} (u_{ik}^{\text{bmk}}) \right]$$

▶ Detail

Welfare Analysis: Results

Household level avg. (2000 \$)	HINK	МТО-А	МТО-В
Health benefits $\Delta E(CS)$	19,300 2,200	11,400 800	41,000 300
Costs	14,500	3,900	3,700

Avg size of treated household = 4.43

Differences in Housing Prices

	HINK	МТО-А	МТО-В
Significant increase in ho	using pri	ces (%)	
1% significance level 5% significance level	38.29 43.02	23.58 32.05	3.35 11.38
Significant decrease in ho	ousing pr	ices (%)	
1% significance level 5% significance level	26.38 31.58	7.53 20.76	0.40 1.98

Histograms

Descriptive Statistics

Correlation Coefficients

► Results: Other Amenities

Conclusion

Conclusion

- ▶ Low income households with children face higher moving costs
- Policy interventions to reduce moving costs can address environmental injustice
- Path forward
 - Sources of heterogeneity in moving costs
 - ► Attribute-based moving costs (Krupka, 2009)
 - ► MAC of PM2.5

Questions?

sulee@mines.edu

Descriptive Statistics

Variables	$Age \leq 35$	All ages
Census		
MSA (%)	76	73
Education (%)		
HS dropout	10	15
HS graduate	24	26
Some college	35	30
College graduate	31	28
White (%)	76	82
Male (%)	63	60
Children (%)	46	41
Income (2000 USD)		
p25	15,000	15,600
p50	26,000	30,000
p75	39,400	48,000
PM2.5 $(\mu q/m^3)$		
mean	11.2	29
sd	2.6	4

Variables	Migrat	of birth	n	
		Census	Macro	
	State	region	region	
Households without Children				
$w_i \le 15,600$	0.39	0.30	0.23	110,446
$15,600 < w_i \le 30,000$	0.40	0.31	0.24	102,585
$30,000 < w_i < 48,000$	0.41	0.31	0.25	101,258
$48,000 < w_i$	0.49	0.38	0.30	60,983
Overall	0.41	0.32	0.25	375,272
Households with Children				
$w_i \le 15,600$	0.28	0.21	0.16	108,802
$15,600 < w_i \le 30,000$	0.33	0.25	0.19	90,649
$30,000 < w_i < 48,000$	0.34	0.26	0.20	85,332
$48,000 < w_i$	0.40	0.30	0.23	59,538
Overall	0.33	0.25	0.19	344,321

▶ Move Rates

Wage Prediction

$$\begin{split} \ln w_{ik} &= \psi_{0k} + \psi_{1k}WHITE_i + \psi_{2k}MALE_i \\ &+ \sum_{m=1}^4 \phi_{mk}EDU_{mi} + \sum_{n=1}^{23} \xi_{nk}OCCUP_{ni} \\ &+ \lambda_{1k}P(R_B,R_D|EDU) + \lambda_{2k}P(R_B,R_D|EDU)^2 + \epsilon_{ik}^{WAGE} \end{split}$$

- Education
 - High school dropout, high school graduate, some college and college degree
- Occupation
 - 23 occupations
 - Military and extraction are eliminated
- 3 Non-random sorting (Dahl, 2002)
 - $P(R_B, R_D|EDU) = \sum_m EDU_m P(R_B, R_D|EDU_m)$

▶ Back

Region FE: Estimates

	(1)	(2)	(3)	(4)
Top 5 cities				
1st	Washington, DC/MD/VA	Washington, DC/MD/VA	Chicago, IL	Chicago, IL
2nd	Chicago, IL	Chicago, IL	Phoenix, AZ	Washington, DC/MD/VA
3rd	Atlanta, GA	Atlanta, GA	Washington, DC/MD/VA	New York, NY/NJ
4th	Phoenix, AZ	Phoenix, AZ	Dallas-Fort Worth, TX	LA-Long Beach, CA
5th	LA-Long Beach, CA	LA-Long Beach, CA	LA-Long Beach, CA	Atlanta, GA
Bottom 5 cities				
261st	Gadsden, AL	Gadsden, AL	Janesville-Beloit, WI	Gadsden, AL
262nd	Decatur, IL	Decatur, IL	Kankakee, IL	Davenport, IA - Rock Island-Moline,
263rd	Alexandria, LA	Alexandria, LA	Wausau, WI	Sharon, PA
264th	Vineland-Milville -Bridgetown, NJ	Vineland-Milville -Bridgetown, NJ	Houma-Thibodoux, LA	Joplin, MO
265th	Kankakee, IL	Kankakee, IL	Barnstable-Yarmouth, MA	Rochester, MN
Heterogeneity	δ	δ, α	δ , α	, θ
Perceived by	All hou	seholds	w < \$15,600	\$48,000 < w

Region FE: Heterogeneity

	(1) MSA	(2) Ranking	(3) Ranking	(4) Ranking	(5) Ranking
op 5 cities (most agreement)				
1st	Houston-Brazoria, TX	10	10	10	11
2nd	Los Angeles -Long Beach, CA	5	5	5	4
3rd	Chicago, IL	2	2	1	1
4th	Denver-Boulder, CO	8	8	7	9
5th	Kansas City, MO/KS	28	28	29	30
ottom 5 citi	es (least agreement)				
261st	Athens, GA	133	132	102	247
262nd	Davenport, IA - Rock Island-Moline, IL	143	141	118	262
263rd	Columbia, MO	175	175	87	251
264th	Monmouth-Ocean, NJ	112	112	216	52
265th	Portland, ME	122	122	250	85
erceived by		$w \leq Q1$	$Q1 < w \le Q2$	$Q2 < w \le Q3$	Q3 < w

▶ Back

Marginal Health Benefits: In Detail

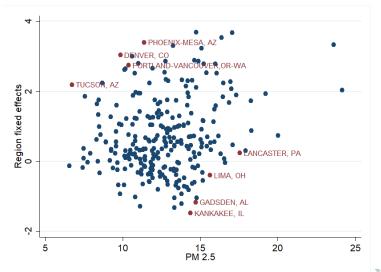
Lives saved =Exposed population \times (Baseline death rate $-\Delta PM_{2.5} \times ER$)

Marginal benefits =Lives saved \times VSL

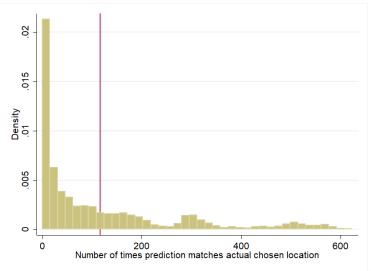
- Exposed population = 15.6 million
- Baseline death rate (Pope III et al., 2015) = 0.0075
- Excess risk for mortality (Pope III et al., 2015) = 0.0063
 - ► Relative risk for all-cause mortality (Pope III et al., 2002) = 1.06 (1.02–1.10)
- VSL = 6.5 million in 2000

▶ Welfare Analysis

Top and Bottom 5 cities

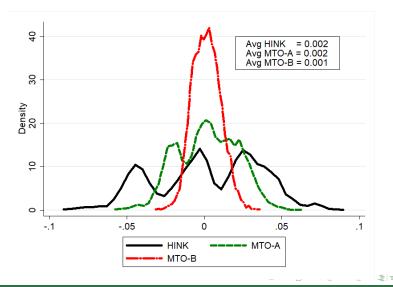

- 5 cities with lowest PM2.5 levels
 - Hinsdale, CO (6); Mineral, CO (6.1); San Juan, CO (6.1);
 Catron, NM (6.2); Ouray, CO (6.3)
- 5 cities with highest PM2.5 levels
 - Riverside, CA (30.3); San Bernardino, CA (27.6); LA, CA (26.9); Allegheny, PA (23.3); Orange, CA (22)

→ Go back

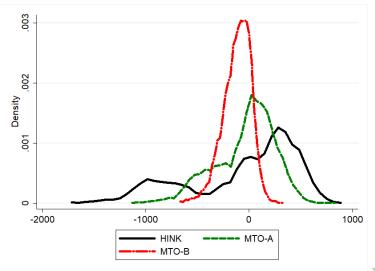

Appendix

θ and PM2.5

Goodness of Fit

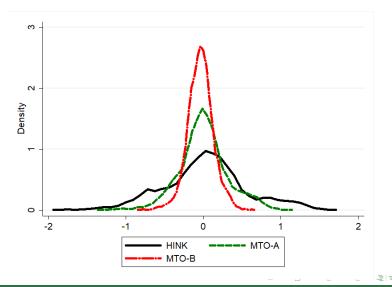

Changes in Other Amenity Values

Relocation decision is multifaceted (Kling et al., 2007; Ludwig et al., 2013; Davis et al., 2017)

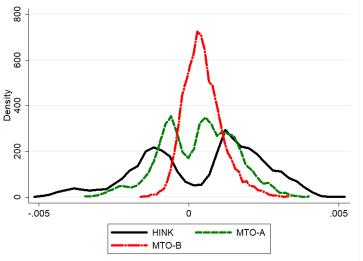

- MTO achieved:
 - exposure to crime & poverty
 - mental health of female children
- but at the same time, MTO failed to improve:
 - child ability
 - educational attainment
 - physical health

Does treatment group experience improvements in amenity values other than $PM_{2.5}$?

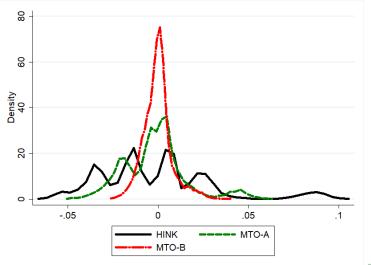
Housing Prices



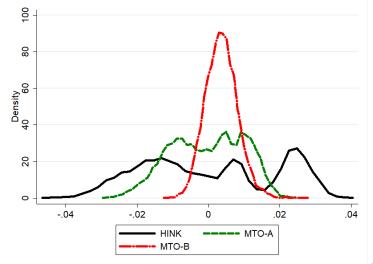
manufacturing establishment



Per-capita income



Per-capita crime rate



Property tax rates

Proportion of population that is white

Differences in Other Amenity Levels

		HINK	MTO-A	МТО-В
Housing prices	+	38.29	23.58	3.35
	-	26.38	7.53	0.40
Manufacturing establishment	+	30.16	11.88	0.01
	-	19.30	5.50	2.27
Property tax rates	+	29.97	16.60	3.62
	-	45.14	28.04	4.00
Per-capita income	+	19.20	9.31	0.29
	-	15.97	4.74	0.96
Per-capita crime	+	47.89	28.63	14.14
	-	28.10	12.10	0.13
Proportion of White	+	35.52	12.20	5.77
	-	34.35	19.38	0.06

Notes: Results are reported based on 1% significance levels.

Descriptive Statistics

Variables	Mean	Std. Dev.	Min	Max
Manufacturing establishment	991.279	1914.301	66.000	17915.000
Property tax rates	0.743	0.159	0.268	0.993
Per-capita income	25.300	4.745	11.064	45.229
Per-capita crime	0.042	0.015	0.000	0.086
Proportion that is White	0.791	0.115	0.469	0.976

▶ Go back

Correlation Coefficients

	(A)	(B)	(C)	(D)	(E)	(F)	(G)
 (A) PM_{2.5} (B) Housing prices (C) Manuf. est. (D) Prop. tax (E) Per-capita income (F) Per-capita crime (G) White 	1.000 -0.032 0.372 -0.058 0.059 -0.239 -0.170	1.000 0.460 0.207 0.661 -0.037 -0.247	1.000 0.073 0.421 -0.049 -0.257	1.000 0.251 -0.281 0.312	1.000 -0.125 0.013	1.000 -0.462	1.000

- Banzhaf, S. H. and R. P. Walsh (2008). Do people vote with their feet? an empirical test of tiebout's mechanism. The American Economic Review 98(3), 843–863.
- Bayer, P., N. Keohane, and C. Timmins (2009). Migration and hedonic valuation: The case of air quality. *Journal of Environmental Economics and Management 58*(1), 1–14.

 Been, V. (1994). Locally undesirable land uses in minority neighborhoods: Disproportionate siting or market
- Been, V. (1994). Locally undesirable land uses in minority neighborhoods: Disproportionate siting or market dynamics? Yale Law Journal, 1383–1422.
- Been, V. and F. Gupta (1997). Coming to the nuisance or going to the barrios-a longitudinal analysis of environmental justice claims. *Ecology LQ 24*, 1.
- Dahl, G. B. (2002). Mobility and the return to education: Testing a roy model with multiple markets. Econometrica 70(6), 2367–2420.
- Davis, M. A., J. Gregory, D. A. Hartley, and K. T. K. Tan (2017). Neighborhood choices, neighborhood effects and housing vouchers. Working Paper.
- Depro, B., C. Timmins, and M. O'Neil (2015). White flight and coming to the nuisance: can residential mobility explain environmental injustice? *Journal of the Association of Environmental and Resource Economists* 2(3), 439–468.
- Kennan, J. and J. R. Walker (2011). The effect of expected income on individual migration decisions.
- Kling, J. R., J. B. Liebman, and L. F. Katz (2007). Experimental analysis of neighborhood effects. Econometrica 75(1), 83–119.
- Krupka, D. J. (2009). Location-specific human capital, location choice and amenity demand. *Journal of Regional Science* 49(5), 833–854.
- Ludwig, J., G. J. Duncan, L. A. Gennetian, L. F. Katz, R. C. Kessler, J. R. Kling, and L. Sanbonmatsu (2013). Long-term neighborhood effects on low-income families: Evidence from moving to opportunity. *The American Economic Review 103*(3), 226–231.
- Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *Jama 287*(9), 1132–1141.
- Pope III, C. A., M. Cropper, J. Coggins, and A. Cohen (2015). Health benefits of air pollution abatement policy: Role of the shape of the concentration-response function. *Journal of the Air & Waste Management Association* 65(5), 516–522.
- Quigley, J. M. (2002). Transactions costs and housing markets. Working Paper, Berkeley Program on Housing and Urban Policy.
- Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. *Journal of political economy 82*(1), 34–55.