ASSESSING THE SOCIAL AND ECONOMIC IMPACTS OF MARINE PROTECTED AREAS

DAVID GILL, Ph.D | GEORGE MASON UNIVERSITY & CONSERVATION INTERNATIONAL

DESIRED FEEDBACK

EXPERIMENTAL DESIGN

Study design

Outcome well-being indicators

Covariates: controlling for treatment biases and confounding factors

Other relevant data sources

Simultaneous high dependence and negative impacts on marine resources

UNEP-WCMC 2017

UNEP-WCMC 2017

Rapid increase in MPA numbers and size

Gill et al 2017

Ecological impacts well studied, however social impacts unclear

RESEARCH QUESTIONS

- 1. Impacts of MPAs on U.S. coastal populations
- 2. Variation of impacts across:
 - different contexts (e.g. mainland vs. offshore)
 - social groups (gender, age, ethnicity)
- 3. Role of governance and context in impacts

STUDY OUTLINE

Design

Neyman-Rubin model:

Quasi experimental Difference in Difference with matching

- Match MPA and non-MPA communities based on relevant covariates
- Difference in trends in MPA vs non-MPA populations

ATT=
$$E\{E(Y_i | X_i, T_i = 1) - E(Y_i | X_i, T_i = 0) | T_i = 1\}$$

Y= Δ outcomes; T=treated; X=covariates

STUDY OUTLINE

Outcome (human well-being) indicators:

Economic wellbeing

Educational attainment

Employment

Health

Empowerment

CAUSAL PATHWAY

MATCHING COVARIATES

Treatment (location) bias:

Least political resistance (no extractive uses)
High biodiversity/tourism value

MATCHING COVARIATES

Least political resistance (no extractive uses)
High biodiversity/tourism value

Historic social & economic conditions

Distance to population centers

Biophysical environment (coastal amenities)

Spatial temporal changes

MATCHING COVARIATES

Population density
Proximity to population centers
Proximity to recreational beaches

Historic income, home values, dominant employment sectors (1970)

Proximity to population centers

Proximity to coastline

Match by State, distance

MPA DATA

NOAA MPA spatial dataset: commercial fishing prohibited (n=329 MPAs)

CENSUS DATA

Longitudinal, spatially harmonized census tract data (1970-2010)

>26,000 coastal census tracts

PRELIMINARY RESULTS: MPA VS NON-MPA INCOME DIFFERENCES

NEXT STEPS

Spatial heterogeneity

- small scale (spillover)
- large scales (e.g. island vs mainland, US vs non-US)

Heterogeneity amongst groups

- social groups
- social outcomes

Explaining heterogeneity

- context
- governance

DESIRED FEEDBACK

EXPERIMENTAL DESIGN

Study design

- Causal pathway
- Alternative methodological approaches

Outcome (well-being) indicators: i.e. income, unemployment, property values

- Census indicators
- Other indicators?

Covariates: controlling for treatment biases and confounding factors

Missing covariates?

Other relevant data sources

Non-census sources?

MPA DATA

NOAA MPA Inventory spatial dataset

