Bioeconomic feedbacks in microeconometric models of pest control decisions: an application to largescale adoption of Bt corn in the U.S.

Serkan Aglasan, Zachary Brown, Paul Mitchell, Roger von Haefen, Guanming Shi

presented by Serkan Aglasan*

*Department of Agricultural and Resources Economics North Carolina State University

Camp Resources XXIV, 2017

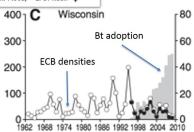
Outline

- Motivation
- Research Question
- Oata and Methods
- 4 Thoughts & Current Status
- Questions?

Motivation

- Landscape-level spillovers from individual farmer decisions:
 - Environmental externalities
 - Bioeconomic feedbacks from pest suppression
 - (Many others...)
- There is almost no econometric analysis of areawide pest suppression feedbacks on farmer decisions...

Example: Pest suppression spillovers from largescale adoption of transgenic Bt crops?


Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers

W. D. Hutchison, ¹* E. C. Burkness, ¹ P. D. Mitchell, ² R. D. Moon, ¹ T. W. Leslie, ³ S. J. Fleischer, ⁴ M. Abrahamson, ⁵ K. L. Hamilton, ⁶ K. L. Steffey, ⁷† M. E. Gray, ⁷ R. L. Hellmich, ⁸ L. V. Kaster, ⁹ F. Hunt, ¹⁰ R. J. Wright, ¹¹ K. Pecinovsky, ¹² T. L. Rabaey, ¹³ B. R. Flood, ¹⁴ E. S. Raun¹⁵‡

European Corn Borer (ECB) damages:

- ECB virtually eliminated by Bt corn over last decade
- \$6.9 Billion total farm benefits
- 62% of these benefits to non-adopters

Map of Bt adoption among US corn growers

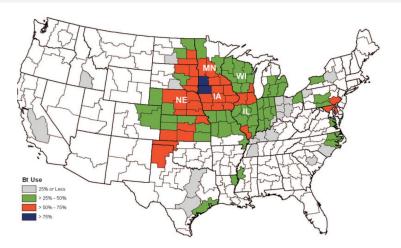


Figure 1: Source: Hutchison et al. (2010)- Spatial distribution of maize containing one or more Bt traits for O. nubilalis control in 2006 in the United States.

(4周) (3) (3) (3)

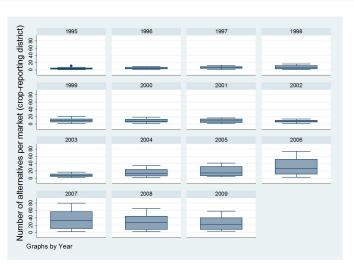
Research Question

- So largescale Bacillus thuringiensis (Bt) adoption provides areawide pest suppression benefits to adopters and nonadopters.
- ▶ How do areawide effects feedback into farmer production decisions?
- ► Should a smart farmer sit back and let her neighbor pay the Bt seed premium?
- ▶ Do individual incentives to adopt the transgenic varieties really decrease with greater area-wide adoption?

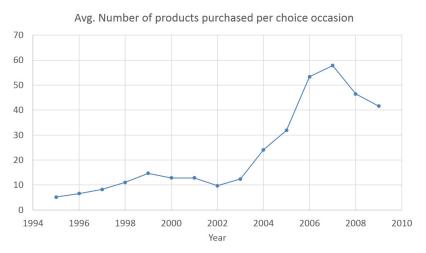
Data

- Kynetec seed sales data (Shi et al. AJAE 2010) contains farmer-level price and quantity sold for over 300 corn products in the US between 1995-2009, including crucially Bt products.
- ② Entomological surveillance data on European corn borer for over 15 years at sub-state regions, from universities
 - Possibly: corn-rootworm data from Monsanto & other biotech firms
- NASS county-level data on climatological, soil quality and other exogenous factors that might affect utility of different seed products & thereby farmer choices.

Research Methodology

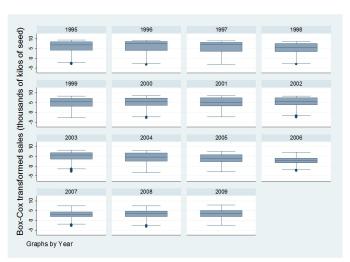

- Structural methods to estimate the feedbacks of spillover effects in endogenous sorting models (Bayer and Timmins 2007; Timmins and Murdock 2007; Klaiber and Phaneuf 2010; Hicks, Horrace and Schnier 2012).
- Random-utility model for farmers (e.g. Useche et al. 2009 AJAE)
 Decomposing utility as:
 - Individual-specific, time-varying utility component
 - Area-wide time-varying component which includes endogenous feedback

As an example:


$$U_{jih} = \beta x_{ji} + \delta_{jh} + \epsilon_{jih}$$

 $\delta_{jh} = \alpha C_{jh} + \lambda p_{jh} + \varepsilon_{jh}$ j =variety, i =grower, h =area\year

- Use Bayer and Timmins (2007) IV approach for spillovers. Identification builds instrument using:
 - Variation in exogenous attributes of non-chosen alternatives
 - Variation in choice set over markets


Lots of variation in choice sets over space-time (good for Bayer & Timmins IV)

Challenge: Our data is "discrete-continuous": Multiple products purchased per choice occasion...

Challenge: Our data is "discrete-continuous": Large variation in seed sales volumes

Research Methodology

- Require econometric models for discrete-continuous demand (a.k.a. Kuhn-Tucker models, corner solution models, etc.)
- We use Bhat's (2005,2008) multiple discrete-continuous extreme value (MDCEV) model.
 - But we require a method for estimating a large number of fixed effects
 - BLP algorithm of conditional logit no longer applies...
- Current status: We are currently testing a latent-class method for approximating the fixed effects
 - Evaluating in OLS, conditional logit before applying to Bhat's model

Questions? & Advice?

THANK YOU!