Integrating Econometric Land Use Models with Ecological Models to Guide Coastal Management and Planning

Laura Villegas August 7, 2017 Camp Resources XXIV

Outline

- Motivation
 - Land Use Policies
- Framework
 - Land Use Change
 - Simulations
- Recap
- Future Directions

Flooding: Climatic and Economic Threat

Flooding: Climatic and Economic Threat

- Since 1960s, inland floods have increased 300-925%
- Since 1980, floods caused \$7.96 billion/year+ 82 fatalities/year
- 39% of US HH live in shoreline coastal counties
 - 445 p/mi² > 105 p/mi²

Flooding: Climatic and Economic Threat

NC STATE UNIVERSITY

What to Do?

What to Do?

- More of the Same
- Build/Protect Natural Barriers

Land Use Policies

Land Use Policies

- Flat development impact fee
- Impact fee that is sensitive to spatial features
- Limit on % of impervious surfaces
- Minimum % of wetland
- Minimum % of tree coverage

Outline

- Motivation
 Land Use Policies
- Framework
 - Land Use Change
 - Simulations
- Recap
- Future Directions

• BAU

• BAU

BAU • LS₅ FP₅ Ξ * Scenario₁ • Flat development impact fee Scenario₂ • Impact fee that is sensitive to spatial features Scenario₃ • Limit on % of impervious surfaces Scenario₄ Minimum % of wetland • Scenario₅ Minimum % of tree coverage Scenario₆

- Which policy leads to lower expected damages?
- What is the spatial distribution of expected damages?

Land Use Change Model

Land Use Change Model

$$\max_{k=D,U} V^{k} = \sum \beta^{t} N B_{t}$$

 $Prob(d = 1) = Prob(V^{D}>V^{U})$

$$\begin{array}{ccc} & t_0 \\ D & U \\ t_1 & D & 1 & \delta \\ U & 0 & 1 - \delta \end{array}$$

What are V^{D} and V^{U} ?

$$\tilde{V}^D = \hat{P}^D(S, L, N, Policy_j)$$

$\tilde{V}^{U} = \hat{P}^{U}(S, L, N, Policy_{i})$

- 2-Step approach: Bockstael,1996; Newburn,2004-2006; Bigelow,2015
- 1-Stage = Predictive hedonic price models
- 2-Stage LU Change (above)

Simulations

Newburn, 2004-2006; Lewis and Plantinga, 2007; Lewis et al., 2011; Bigelow, 2015

 $\delta_{ti} = \text{Prob}(\ d_{ti} = 1) = \text{Prob}(\ \tilde{V}^{D}_{ti} > \tilde{V}^{U}_{ti}); \ \tilde{V}^{k}_{ti} = \hat{P}^{k}_{i}(S, L, N, \frac{Policy_{j}}{Policy_{j}})$

 \forall policies *j*

 $\forall t \leq T$

 \forall parcels *i*

 $\widetilde{\delta_{0i}} \ge r(U[0,1]) \rightarrow parcel i is developed in t_1$

 \rightarrow landscape in t_1

 \rightarrow landscape in T (each *i* is associated with an E[damage from flooding])

 \rightarrow 6 scenarios in T

Which policy leads to lower expected damages? What is the spatial distribution of expected damages?

Outline

- Motivation
 Land Use Policies
- Framework
 - Land Use Change
 - Simulations
- Recap
- Future Directions

Recap

• Forward-looking land management policies:

- that are nature-centered.

- Holistic, flexible approach.
- How effective are they?

Future Directions

- Alternative policies.
- Intensity of development.
- Spatially autocorrelated error in non-linear models.
- Other policy questions.

Thanks!