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Preview

• Natural experiment in northwest India

• Smallholders in Rajasthan grow majority of world’s
guar, a key input in fracking

• Shale Revolution −→ parallel guar boom

Preliminary result

Rajasthan shines significantly brighter at night, sugges-
tive of socioeconomic benefits
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Source: Tollefson (2013)
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What is guar?

• Drought-resistant legume primarily grown in the
semi-arid tracts of northwestern India

• Rajasthan: ~65% of global supply (Mudgil et al. 2011)

Source: The Hindu BusinessLine
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Source: Daily agricultural price/quantity data scraped from Ministry of Agriculture
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Does Rajasthan shine brighter than the (synthetic)
counterfactual?

Following Abadie and Gardeazabal (2003), pick W∗ such
that

Yi,t = Yj0,tW∗

where

Y1,t ≡ Mean nighttime luminosity in Rajasthan in t (1)
Yj0,t ≡ Mean nighttime luminosity in J states in t (2)

W = (w1, . . . ,wJ) ;
J∑
j=1

wj = 1 (3)

W∗ = argmin
W

{∑
t<t∗

(
X1,t − Xj0,tW

)
V
(
X1,t − Xj0,tW

)′
}

(4)
8/16



Model specification is a black box.

At least fifteen different state-level characteristics
available from World Bank’s India CPS

Question

How to pick model predictors rigorously and transpar-
ently in the absence of theoretical guidance?
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Our solution? Monte Carlo Model Selection

For each s of S = 10,000 simulations:

1. Randomly choose normalized predictors X(s)t ⊆ Xt

2. Estimate

Yi,t = X(s)t β(s) + γYi,t−1 + ωi + ωt + ϵi,t

and save β(s)

3. Repeat S times in total to obtain B =
{
β(1), . . . , β(S)}
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Next steps: guar shock → energy/development
outcomes

Other empirical approaches

• District-level application of SCM
• District-level matching with DID using Census data
• “Agricultural suitability” for guar production from
Global Agro-Ecological Zones (GAEZ) data as IV

Richer set of outcomes: Household-level data in India
Human Development Survey (IHDS)

Thank You!

Comments welcome at faraz.usmani@duke.edu
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