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Abstract 

Serial nonparticipation in nonmarket valuation using choice data is a frequently observed pattern 

of behavior in which an individual always appears to choose the status quo or ‘no program’ 

alternative. In choice models serial nonparticipation may be viewed as belonging to a class of 

deterministic choice patterns, other examples of which include serial participation and 

lexicographic preferences. While common in the context of environmental goods unfamiliar to 

respondents, logit-based choice models are ill-equipped for identifying such preferences, because 

predicted choice probabilities cannot take a value of zero or one. We extend latent class analysis 

(LCA) of preference heterogeneity to address this issue, for each class specifying a subset of 

alternatives that are avoided with certainty. We are then able to partially observe class 

membership, knowing with certainty that an individual does not belong to a class if she selects 

any alternatives excluded by that class. We apply our model to a discrete choice experiment on 

mosquito control programs to reduce West Nile virus risk and nuisance disamenities in Madison, 

Wisconsin. We find that partially observable latent class analysis (POLCA) obtains the same 

goodness of fit as LCA with fewer parameters. Adjusting for the need to re-specify the reference 

alternative when the status quo is excluded, our relative valuation measures are significantly 

different than those obtained from LCA. We argue that our model is useful for detecting and 

addressing alternative-specific nonidentification in a given dataset, thus reducing the risk of 

invalid inference from discrete choice data.  
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Introduction 

A current challenge in using discrete choice methods to value nonmarket goods is the 

consistent treatment of alternatives which are excluded by different subgroups in a population in 

ways that are not fully observable to the econometrician. Well-studied examples of this issue 

include serial nonparticipation in both choice experiment and revealed preference data. These 

effects arise when a substantial subset of decision-makers choose the status quo (SQ) or opt out 

alternative repeatedly, often to the exclusion of alternatives whose attributes are the objects of 

study. The converse phenomenon – serial participation or the complete avoidance of the SQ 

alternative – is also possible. The standard class of logit-based choice models are ill-suited for 

these situations. Yet methods for dealing with such effects are important for reducing bias in 

valuation estimates, for predicting individuals’ responses to new policies, and for understanding 

which valuation measures can be identified using a given dataset. In this paper we provide a 

novel econometric method we call Partially Observable Latent Class Analysis (POLCA) for 

addressing serial nonparticipation and the more general phenomenon of deterministic choice 

patterns among subgroups of decision makers in discrete choice data. 

Deterministic choice patterns are cases in which assumptions underlying the standard 

random utility model (RUM) for discrete choice data are violated. Serial nonparticipation is an 

example of such a pattern, because serial nonparticipants by definition select the SQ with 

certainty. Conversely, serial participation – avoiding the SQ with certainty – is also deterministic 

choice behavior, even if such behavior is otherwise consistent with a RUM (exhibiting random 

choices among the subset of non-SQ alternatives). Other deterministic choice patterns include 

cases in which a subset of alternatives are selected with probability equal to zero. For example, 

in discrete choice recreation demand models, subsets of recreation sites may be inaccessible or 

unknown to subgroups of the population (Haab & Hicks 1997). Other examples of nonrandom 



2 

 

choice can arise from discontinuous preferences. For example, lexicographic choice patterns – 

while consistent with Rational Choice Theory – exhibit choice patterns clearly inconsistent with 

a RUM, first ordering alternatives strictly by the levels of their most- to least-important 

attributes. The alternative with the highest level of the most-important attribute is selected with 

probability equal to one.  

These examples illustrate a range of explanations for why deterministic choice patterns 

may arise. One explanation is that the decision maker is rational (in the choice theory sense), but 

her preferences are truly deterministic. This will always imply degenerate choice probabilities, 

regardless of the exact preferences. Lexicographic preferences provide an empirically relevant 

example of this possibility (e.g. capturing dietary preferences such as vegetarianism or choices 

based religious beliefs).  

Another explanation for deterministic choice, most applicable to revealed preference 

data, is unobservable variation in the set of individuals’ feasible choice sets. This may be due to 

inaccessibility of excluded alternatives or because some individuals do not know about them. 

This explanation corresponds to the recreation demand example given above. Other methods 

have been developed for addressing this specific issue have been developed, such as the 

Independent Availability Logit (IAL) model (Haab & Hicks 1997; Li et al. 2015). We review 

this model in more detail below, as it relates to POLCA.  

Other reasons for deterministic choice may occupy a gray area between deterministic 

preferences and unobservable choice set restrictions. For example, serial (non)participation 

behavior may reflect persistent bias for or against the status quo. Status quo biases have been 

extensively researched in economics and psychology and may arise for a number of reasons 

(Kahneman 2003). One psychological explanation for a bias towards the SQ is that that actively 
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considering non-SQ alternatives in a decision may require too much cognitive effort. Such 

cognitive demands are likely higher in complex choice tasks with hypothetical, unfamiliar 

alternatives (Meyerhoff & Liebe 2009): a frequent feature of stated preference studies of 

environmental goods and services. SQ effects have been conjectured to represent protest 

responses on the part of those who do not see any value in the goods or services being evaluated, 

or who reject the nature of the hypothetical choice task in the survey (von Haefen et al. 2005).  

Serial participation is somewhat more difficult to explain, as such behavior implies bias 

away from the SQ. However, a natural conjecture explaining this phenomena is that preferences 

for non-SQ alternatives strongly dominate the SQ. An extreme example would be a willingness-

to-accept (WTA) study of equivalent variation, in which one of the non-SQ alternatives consisted 

of money payment to decision makers and the other non-SQ alternatives consisted of non-

monetary improvements in environmental quality. Few, if any, individuals would be expected to 

select the SQ in such a choice task. A less extreme example could include a subgroup of 

individuals with a willingness to pay (WTP) for environmental quality which is orders of 

magnitude above the tradeoffs asked of them in an observed choice task. Even if a RUM in 

theory applies to such individuals, practically speaking their choice patterns will appear 

deterministic with respect to the SQ: they will avoid it with certainty.  

Our aim in this paper is not to test these competing explanations for deterministic choice 

patterns, but instead to extend the conventional RUM econometric framework to allow for 

subgroups of decision makers who exhibit deterministic patterns in their choices. All of the 

behavioral patterns described above are ill-suited for discrete choice econometric models based 

only on logit (or probit) choice probabilities. The essence of the problem is that data in which 

one alternative is selected or avoided with certainty imply best-fit logit coefficients which are not 
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finite. In a standard conditional logit framework, in which one representative set of preferences is 

estimated for the entire dataset, this problem rarely arises as long as there is a broad cross-section 

of individuals in the sample. However, as logit-based discrete choice models have been 

embellished to provide more detailed characterization of individual preference heterogeneity, 

researchers increasingly find situations where maximum likelihood estimates of logit model 

coefficients blow up to infinity. As we show below, such cases provide a ‘smoking gun’ that 

some individuals follow deterministic decision rules. 

 The POLCA we describe and perform in this paper extends and unifies previous 

approaches – latent class models and hurdle models – for dealing with serial nonparticipation and 

status quo effects (von Haefen et al. 2005; Burton & Rigby 2008; Thiene et al. 2012). POLCA 

consists of hypothesizing the existence of precise subgroups of individuals exhibiting 

deterministic choice patterns. Once these hypotheses are clearly defined, a variation of a latent 

class choice model is used to probabilistically classify each individual as belonging to the 

hypothesized groups, as well as to other groups (including a standard conditional logit choice 

model). Following Thiene et al. (2012) who note that the latent class analysis is a form of data 

imputation and thus adaptable to cases in which class membership is observable, we modify the 

standard latent class approach to treat class membership as partially observable. For example, in 

the case of serial nonparticipation, we know definitely that an individual is not a serial 

nonparticipant if she selects a non-SQ alternative. In this case, our model is almost identical to a 

double hurdle model (von Haefen et al. 2005). However, our approach uses the concepts of 

exclusion sets within observed choice sets to address a larger range of deterministic preference 

patterns than addressed by prior approaches. This includes serial participation, as we show 

below. 
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The aim of this research is also supported by recent laboratory-based experimental tests 

of RUMs (Regenwetter et al. 2011; McCausland & Marley 2014; McCausland et al. 2016). Such 

studies, through precisely controlled choice sets and in-depth observation of individual subjects 

over many choice tasks, generally identify individual behavior as consistent with or violating the 

assumptions of a RUM. Our POLCA model may be viewed as a complement to this research 

effort, being most suitable for large-scale but less in-depth and focused choice data (either 

experimental or observational). Instead of exactly estimating individuals’ choice structures 

through a long series of choice tasks, POLCA classifies individuals into a relatively small set of 

predefined choice models (RUM and non-RUM), and is suitable for larger cross-sections of 

shorter individual choice series. 

After presenting the formulation, we perform a POLCA on a dataset gathered from a 

discrete choice experiment (DCE) examining preferences for mosquito control programs in 

Madison, Wisconsin, aimed at reducing the risk of West Nile virus and the nuisance costs 

associated with mosquitoes. We find that our POLCA provides the best balance between fit and 

parsimony in modeling the data (based on information criteria statistics), as compared to 

standard latent class models (which we also estimate). Our POLCA estimates imply that there 

are three partially observable latent classes of respondents in the data: serial participants 

(estimated at 46% of the sample), those for which a standard logit model applies (39%), and 

finally a group (the remaining 15%) who are serial nonparticipants for low and medium levels of 

West Nile risk but who behave according to a logit model in a high-risk setting. We also find 

relative WTP values that are somewhat more reasonable and precise, due to an identifying 

restriction related to the reference alternative specified in the choice model. When we include 

individual covariates in the model as predictors of class membership, two observable factors (and 
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their interaction effect) acquire statistical precision that is lacking in the conventional LCA 

model: individuals with greater mosquito densities around their homes (as measured via 

entomological surveys) and those who report spending more time indoors are more likely to be 

serial participants (i.e. those who avoid the status quo alternative entirely in favor of enhanced 

mosquito control programs). 

Previous approaches for addressing deterministic behavior in discrete choice data 

The vast majority of discrete choice econometric analyses are based in some way on the 

conditional logit (CL) model (McFadden 1973). When individual-level covariates are excluded 

in the regression, then utility-maximizing behavior in the CL model implies that the probability 

of choosing alternative ℎ in choice task 𝑡 for any individual is:  

𝑃ℎ𝑡
𝐶𝐿 ≡

exp 𝛼ℎ𝑡

∑ exp 𝛼ℎ𝑡ℎ∈𝑡

 

The 𝛼ℎ𝑡’s are alternative-specific indirect utilities to be estimated, which are typically 

decomposed into the marginal utilities of each alternative’s attributes, including environmental 

and health benefits and risks, and (in economics) monetary attributes such as cost.1 For 

identification, one of these alternative-specific constants must be normalized (usually to zero); 

typically the SQ-specific constant serves as this reference alternative. If a respondent 

participates, the conditional logit specification implies that the likelihood of observing their 

sequence of choices is:  

𝑙𝑛
𝐶𝐿 ≡ ∏ ∏(𝑃ℎ𝑡

𝐶𝐿)𝐶ℎ𝑡𝑛

ℎ∈𝑡𝑡

 

                                                 
1 We index the 𝛼ℎ𝑡’s by task 𝑡, to allow task-specific factors, such as background risk. Later, we consider 

monetary attributes explicitly in the model we formulate below. All logit-based models like this emerge from a 

random utility framework, in which case the 𝛼ℎ𝑡’s can be interpreted as the expected indirect utility from alternative 

ℎ in task 𝑡 and Extreme Value Type I random utility component for each alternative.  
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where 𝐶ℎ𝑡𝑛 is an indicator variable for whether individual 𝑛 selected alternative ℎ in task 𝑡. 

Serial (non)participation specifically – and deterministic choice patterns more generally – 

pose problems for logit-based models for a very simple reason: logit-based choice probabilities 

cannot take a value of zero or unity over any finite values for the taste parameters 𝛼ℎ𝑡. This fact 

typically does not pose problems in a CL model estimated on a sample of individuals who ‘on 

average’ exhibit ‘well-behaved’ choices across alternatives. But the issue is common when 

considering choice probabilities at an individual level. Let 𝑃ℎ𝑡𝑛 be the predicted probability that 

individual 𝑛 chooses alternative ℎ in choice task 𝑡 out of 𝑇 tasks per respondent. An individual 

level logit model (now subscripting by 𝑛) implies a choice probability equal to: 

𝑃ℎ𝑡𝑛 ≡
exp 𝛼ℎ𝑡𝑛

∑ exp 𝛼ℎ𝑡𝑛ℎ∈𝑡

 

where 𝛼ℎ𝑡𝑛is the alternative-specific, logit-based indirect utility for individual 𝑛. If we had a 

large number of choice tasks for each respondent, then we could estimate this choice model 

directly for each individual. 

If we did perform such an estimation, suppose some individual 𝑛 never chooses 

alternative 𝑘 in any of the many choice tasks in which 𝑘 was included in the choice set. In this 

case, it is well known that maximum likelihood estimation (MLE) will not converge to a finite 

solution. This is because in order for 𝑃𝑘𝑡𝑛 = 0 it is necessary for 𝛼𝑘𝑛 = −∞: the log-likelihood 

function can be continually increased by decreasing 𝛼ℎ𝑡𝑛 (or by continually increasing all other 

𝑣ℎ̃𝑡𝑛, if ℎ is the reference alternative). Such a model is not identified. 

However, it is not standard practice to fully estimate conditional logit models at the 

individual level (Louviere 2013 describes some exceptions; also see Czajkowski et al. 2010). 

Instead, assumptions are made to restrict how 𝛼ℎ𝑡𝑛 varies across individuals. This variation can 

be specified in terms of individuals’ observable covariates or in terms of unobservable 
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heterogeneity. The latter can be modeled parametrically using mixed or generalized logit, or 

nonparametrically using latent class logit (described below). But all of these models posit the 

same basic logit structure to choice probabilities. Clearly, individuals ascribed a logit preference 

structure but whose choices do not follow such a pattern (as described above) could significantly 

bias the results of any logit model estimated on the full sample of data. This could have 

important consequences both for predicted choice behavior and for WTP measures, which are the 

main outputs of choice modeling for economic analysis.    

A number of approaches have been considered to address this type of bias, especially in 

the case of serial participation. The most direct approach is to simply estimate the preferred 

model on the sample of those with ‘well-behaved’ choice patterns. However, Lancsar and 

Louviere (2006) strongly advise against this approach, as doing so can introduce bias through the 

researcher having to assess ex ante whose choice patterns are ‘valid.’ Von Haefen et al. (2005) 

and Burton and Rigby (2008), hereafter VHMA and BR, each propose alternative approaches. 

VHMA propose hurdle models as a way to address the specific SQ effect of serial 

nonparticipation (the ‘hurdle’ in this case is whether a respondent chooses a non-SQ alternative 

in any of the choice tasks to which she is exposed). In contrast, BR argue that the application of 

standard latent class (LC) choice models can address not only serial nonparticipation but also 

other irregularities in choices. Because our proposed model merges these two approaches, we 

provide some detail below. 

The hurdle approach uses a binary probability model for participation (e.g. probit or 

logit), and then models choices using a conditional logit framework.2 The formulation is as 

follows: for each individual 𝑛, let 𝑑𝑛 be an indicator for whether that respondent is a 

                                                 
2 As VHMA point out, this model could easily be extended to allow for randomly varying conditional logit 

taste parameters within the participant subsample.   
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nonparticipant (in which case 𝑑𝑛 = 1), and let 𝑝𝑛
𝑆𝐻 be the predicted probability that a respondent 

is a nonparticipant (which may be modeled using a binary probability model, such as probit or 

logit). The motivation behind modeling a separate participation process is that certain individuals 

may select the SQ repeatedly as a way to reject the entire premise of the choice task (e.g. protest 

responses in stated choice data) or because they belong to a group of people for whom the choice 

task is irrelevant (e.g. non-users in recreation demand studies). This predicted probability of 

serial nonparticipation is indexed by 𝑛, to allow for individual covariates (or, possibly, 

unobserved heterogeneity). The likelihood of observing individual 𝑛’s sequence of choices under 

the single hurdle model is then (𝑝𝑛
𝑆𝐻)𝑑𝑛[(1 − 𝑝𝑛

𝑆𝐻)𝑙𝑛
𝐶𝐿]1−𝑑𝑛. The log-likelihood function to be 

maximized with respect to parameters contained in 𝑝𝑛 and 𝑙𝑛
𝐶𝐿 can then be expressed as:  

𝐿𝐿𝑆𝐻 ≡ ∑(1 − 𝑑𝑛) log 𝑙𝑛
𝐶𝐿

𝑛

+ ∑[𝑑𝑛 log 𝑝𝑛
𝑆𝐻 + (1 − 𝑑𝑛) log(1 − 𝑝𝑛

𝑆𝐻)]

𝑛

 

Note that the first summation is the log-likelihood function for the CL model, restricted 

to the participant subsample, and the second summation fully contains the parameters for the 

serial nonparticipation probability model. Thus the maximization of the SH log-likelihood is the 

same as estimating a CL model on a subsample of participants, and separately estimating a 

probability model for serial nonparticipation. The SH model therefore ignores correlation 

between the participation probability and the subsequent CL choice probabilities. 

VHMA thus propose the double hurdle (DH) model as one approach for allowing for 

more integration between the two processes – participation and subsequent choice. This model, 

following Shonkwiler and Shaw (1996), acknowledges that there are two ways for a respondent 

to appear as a serial nonparticipant in the dataset: one is through a separate probability process 

(as in the SH case above) and the other is for a ‘standard’ decisionmaker, subject to the CL 
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choice probabilities, to repeatedly choose the SQ, due to sheer chance. Thus, the predicted 

probability for observed nonparticipation in the DH model is: 

𝑝𝑛
𝐷𝐻 ≡ 𝑝𝑛

𝑆𝐻 + (1 − 𝑝𝑛)𝑆𝐻 (∏ 𝑃𝑆𝑄,𝑡
𝐶𝐿

𝑡

) 

where 𝑃𝑆𝑄,𝑡
𝐶𝐿  is the predicted probability, within the CL model, of choosing the SQ in choice task 

𝑡. The log-likelihood function for the DH model replaces the 𝑝𝑛
𝑆𝐻 terms in the 𝐿𝐿𝑆𝐻 formula 

above with 𝑝𝑛
𝐷𝐻. In this way the DH model is aimed at consistently capturing the problem of 

‘excess’ SQ choices in the way that zero-inflated Poisson models capture excess zeros in count 

data (Shonkwiler & Shaw 1996). This is a key point in the design of our generalized latent class 

model presented below. In their application (using both stated and revealed preference datasets), 

VHMA find that the SH and DH models more parsimoniously represent the data than standard 

approaches, including the CL model and mixed logit.   

BR take a markedly different approach for studying serial nonparticipation. They use 

latent class analysis (LCA) to probabilistically classify respondents across a range of logit-based 

choice models. Beyond issues of serial nonparticipation and the like, LCA has been extensively 

used as a way to model individual heterogeneity in choice data (Morey et al. 2006; Boxall & 

Adamowicz 2002). LCMs are sometimes contrasted with mixed and generalized multinomial 

logit models as a way to nonparametrically capture preference heterogeneity (Greene & Hensher 

2003). In BR’s application, one class is hypothesized – though not restricted – to represent serial 

nonparticipants.  

LCA posits the existence of a finite number 𝑀 of latent classes, indexed throughout this 

paper by 𝑚 (for model), according to which every individual can be classified. Conditional on an 



11 

 

individual belonging to class 𝑚, the choice probability takes the usual conditional logit form, but 

with the parameters now indexed by class: 

𝑃ℎ𝑡
𝑚 ≡

exp 𝛼ℎ𝑡
𝑚

∑ exp 𝛼ℎ𝑡
𝑚

ℎ∈𝑡

 

The above requires the usual identifying restriction of having one of the alternative-specific 

effects restricted to zero; usually this is the SQ effect (𝑣𝑆𝑄,𝑡
𝑚 = 0 ∀𝑚, 𝑡). Conditional on the 

individual belonging to class 𝑚, the likelihood of an individual’s observed sequence of choices is 

therefore: 

𝑙𝑛|𝑚 = ∏ ∏(𝑃ℎ𝑡
𝑚)𝐶ℎ𝑡𝑛

ℎ∈𝑡𝑡

 

Let 𝑝𝑛
𝑚 be the predicted probability of individual 𝑛 belonging to class 𝑚. LCA then use a 

separate multinomial probability model (usually also logit-based) for these predicted 

probabilities. An expectation-maximization (E-M) algorithm is often used to treat class 

membership as unobserved data, which can be imputed using Bayes’ rule. The imputed value 𝑑̂𝑛
𝑚 

for an individuals’ likelihood of belonging to class 𝑚, conditional on the predicted probability 

𝑝𝑛
𝑚 and the conditional likelihood of their observed choices 𝑙𝑛|𝑚 is: 

𝑑̂𝑛
𝑚 ≡

𝑙𝑛|𝑚𝑝𝑛
𝑚

∑ 𝑙𝑛|𝑚̃𝑝𝑛
𝑚̃

𝑚̃

 

Using these imputed values in place of the ‘missing’ class membership data, the log-likelihood 

function for an LCA is: 

𝐿𝐿𝐿𝐶 ≡ ∑ ∑ 𝑑̂𝑛
𝑚 log 𝑙𝑛|𝑚

𝑛𝑚

+ ∑ ∑ 𝑑̂𝑛
𝑚 log 𝑝𝑛

𝑚

𝑛𝑚

 

Some rough comparison can be made between the LL function for this model and the SH model 

above: if class membership were directly observable, rather than imputed in 𝑑̂𝑛
𝑚, the first double-
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summation over 𝑚 would correspond to summing over separable CL models for each class, and 

the second double-summation would correspond to the LL function for estimating a multinomial 

class membership probability model. That is, if we had observed 𝑑𝑛
𝑚 as data, rather than 

imputing 𝑑̂𝑛
𝑚, the above would equate to estimating each CL model separately, as well as 

separately estimating the class membership model. However, imputing class membership as 

above eliminates this separability, and – as with the DH model – links the class membership and 

choice probability models.   

Using this LC approach in an application to a DCE related to genetically modified (GM) 

food, BR find evidence for multiple classes who exhibit different types of SQ effects: one class 

appears to contain genuine serial nonparticipants, with a very high estimated SQ effect, whereas 

another class is strongly biased against GM food, and thus appears as otherwise similar to serial 

nonparticipants. This highlights a key advantage of LCA: it captures a wide variety of behavioral 

patterns beyond only serial nonparticipation.  

Econometrically, serial nonparticipation here is captured by large estimated values for 

𝛼𝑆𝑄
𝑆𝑁𝑃, the SQ effect in the serial nonparticipant (SNP) class. As BR point out, the “high and 

limiting value for that parameter” captures the fact “all those within the [SNP] class have a very 

high probability of selecting that option throughout the choice sequence, regardless of other 

attribute values.” This high, limiting value – while useful for exploratory examination of the data 

– can imply a lack of identification, for the reasons discussed at the beginning of this section. 

While BR estimate finite coefficients for the SQ effect in the SNP class, it seems reasonable that 

this effect should in fact be such that 𝑣𝑆𝑄
𝑆𝑁𝑃 = ∞, so that true members of this class select the SQ 

with probability equal to one. In terms of economic valuation, members of such a class in 

principle have an infinite willingness to accept a non-SQ alternative: no amount of money 
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offered to SNPs (or at least no finite amount identified within the scope of the choice 

experiment) would induce them away from the SQ.  

Another drawback of conventional LCA is that it ignores information that can make class 

membership partially observable. In the case of serial nonparticipation, an individual who selects 

a non-SQ alternative can be classified with certainty as not belonging to the SNP class. Thiene et 

al (2012) note this observability of SNP behavior and incorporate this into a LC framework, by 

specifying an SNP class with fully observable membership probabilities (and leaving the other 

preferences as latent and unobservable). Yet this approach does not acknowledge the fact that 

there is a positive probability (albeit decreasing with the number of observed choice tasks per 

respondent) that an SNP behavioral pattern can emerge with some positive probability from a 

standard conditional logit model of preferences. In this way, Thiene et al,’s approach can be 

viewed as a latent class extension of the single hurdle model of VHMA. 

In the revealed preference literature, a related approach has been the use of endogenous 

choice sets, sometimes referred to as endogenous ‘consideration’ sets to distinguish from the 

observed choice set posed in an experiment or posited by the researcher in an observational study 

(Manski 1977; Swait & Ben-Akiva 1987; Haab & Hicks 1997; Li et al. 2015). This approach is 

most commonly applied in the independent availability logit (IAL) model. The IAL model 

specifies an independent probability of inclusion for every alternative (not just ones for which 

serial behavior is observed) that is independent of the choice set.  

Partially observable latent class analysis 

Our approach jointly addresses the issue of unbounded valuation estimates and partial 

observability of SP or SNP for subgroups of respondents, as well as a wide variety of other 

possibly deterministic behaviors. As with LCA, POLCA supposes that there are 𝑀 classes, 
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indexed by 𝑚, capturing individual preference heterogeneity. POLCA departs from the standard 

approach because of a single additional assumption: the specification of a subset ∅𝑚,𝑡 of 

alternatives which are excluded from class-𝑚 individuals’ choice sets in task 𝑡. An implication 

of this assumption is that class membership is partially observable, since we then know with 

certainty that an individual does not belong to class 𝑚 if she chooses an alternative ℎ from the 

exclusion set ∅𝑚,𝑡.  

There are a number of causal hypotheses as to why nonempty exclusion sets may be 

justified for certain classes. Individuals may exclude alternatives from their choice sets for a 

number of reasons. Members of such classes could exhibit truly deterministic preferences, 

especially lexicographic preferences (e.g. always choosing the alternative that offers a positive 

health benefit, regardless of the amount that it costs). Or members of these classes may have 

finite, logit-based taste parameters, but ones that are so large in relation to the excluded 

alternatives’ attributes that these alternatives are never selected in the observed tasks. In the case 

of choice experiments, this would imply a failure of the experimental design to properly account 

for individuals with more extreme preferences, even if in theory they satisfy the assumptions of a 

RUM. The excluded alternative could also be systematically overlooked by some individuals due 

to a lack of survey engagement in stated preference context (Hess & Stathopoulos 2013) or 

because they are not even aware of the alternative in a revealed preference context (Haab & 

Hicks 1997).  

The rest of this section simply carries out the mathematical formulation implied by this 

logic. With respect to nonexcluded alternatives, POLCA assumes individuals exhibit standard 

logit choice probabilities, as in LCA. In order to retain a focus on valuation, we also explicitly 

separate the marginal utility of money 𝜂𝑚  from the alternative-specific constant 𝛼ℎ𝑡
𝑚  (embodying 
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the alternatives’ other attributes): 𝑣ℎ𝑡
𝑚 = 𝛼ℎ𝑡

𝑚 − 𝜂𝑚𝑞ℎ𝑡, where 𝑞ℎ𝑡 is the cost of alternative ℎ in 

task 𝑡. The class-specific predicted choice probabilities for POLCA are therefore: 

𝑃ℎ𝑡𝑚 ≡ {

0                           , ℎ ∈ ∅𝑚,𝑡

exp(𝛼ℎ𝑡
𝑚 − 𝜂𝑚𝑞ℎ𝑡)

∑ exp(𝛼ℎ𝑡
𝑚 − 𝜂𝑚𝑞ℎ𝑡)ℎ∉∅𝑚,𝑡

, ℎ ∉ ∅𝑚,𝑡
 

(1) 

As with LCA the likelihood of observing an individual 𝑛’s sequence of choices, conditional on 

them belonging to class 𝑚 is then 𝑙𝑛|𝑚 ≡ ∏ ∏ 𝑃ℎ𝑡𝑚
𝐶𝑛ℎ𝑡

ℎ∈𝑡𝑡 , which provides the basis for MLE. This 

is a general formulation that captures serial nonparticipation (with the excluded set consisting of 

everything but the SQ), serial participation (with the excluded set consisting only of the SQ), as 

well as variety of other behaviors (e.g. excluding the alternative conveying the lowest health 

improvement in a given choice task). Note that this formulation requires the econometrician to 

take extra care with identification in specifying the reference alternative (for each class). If the 

SQ is excluded from consideration, for example with serial participants, then a new reference 

alternative must be specified. This means that WTP or WTA values within each class can only 

be estimated relative to the (potentially class-specific) reference alternative. The implications of 

this point are discussed below, in the empirical application. 

The partial observability of individual class membership in the model consists of the 

following. If an individual is ever observed selecting an alternative ℎ ∈ ∅𝑚,𝑡, then we can be sure 

that she does not belong to class 𝑚. Nevertheless, individuals who never select an alternative 

from the excluded set ∅𝑚,𝑡 cannot be classified with certainty, because we only ever observe a 

finite number of decisions. An individual who always selects the SQ out of nine choice tasks, for 

example, can only be probabilistically classified as a serial nonparticipant, because on the 10th 
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choice task she may have chosen a non-SQ alternative. Consequently, for these individuals, we 

use the same Bayesian imputation formula as in conventional LCA. 

This logic is captured in the following specification for class membership. For each 𝑚, 

define the observed class membership variable 𝑑𝑛
𝑚 as follows: 

𝑑𝑛
𝑚 ≡ {

0                            if  𝐶𝑛ℎ𝑡 = 1 for any ℎ ∈ ∅𝑚,𝑡  

missing               otherwise                                   
 

(2) 

Then we only use Bayesian imputation for the missing class membership information. The 

imputed value class membership indicator when 𝑑𝑛
𝑚 is missing, using Bayes’ rule, is: 

𝑑̂𝑛
𝑚 ≡

𝑙𝑛|𝑚𝑝𝑛
𝑚

∑ 𝑙𝑛|𝑚̃𝑝𝑛
𝑚̃

{𝑚̃|𝑑𝑛
𝑚̃ missing}

 
(3) 

Then the class membership variable 𝑑̃𝑛
𝑚 used in estimation, based on observed values where 

possible and imputation otherwise is: 

𝑑̃𝑛
𝑚 ≡ {

0                                if  𝐶𝑛ℎ𝑡 = 1 for any ℎ ∈ ∅𝑚,𝑡  

𝑑̂𝑛
𝑚                            otherwise                                   

 
(4) 

Given this formulation, the log-likelihood for POLCA is the same as for conventional LCA, 

except using equations (1) – (4) in place of the standard formulation:    

𝐿𝐿𝑃𝑂𝐿𝐶𝐴 ≡ ∑ ∑ 𝑑̃𝑛
𝑚 log 𝑙𝑛|𝑚

𝑛𝑚

+ ∑ ∑ 𝑑̃𝑛
𝑚 log 𝑝𝑛

𝑚

𝑛𝑚

 
(5) 

As with LCA, 𝑝𝑛
𝑚 is the predicted probability that individual 𝑛 belongs to class 𝑚. Usually, 𝑝𝑛

𝑚 

is parameterized using a multinomial logit probability function: 

𝑝𝑛
𝑚 =

exp 𝛾𝑚𝑋𝑛

∑ exp 𝛾𝑚̃𝑋𝑛𝑚̃

 
(6) 
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where 𝑋𝑛 is a vector of respondent covariates that may predict class membership (including a 

vector of ones to allow for a regression constant), and the 𝛾𝑚’s are conformable vectors of 

coefficients to be estimated (with the identifying restriction of one class’s coefficients set to 

zero). In practice, 𝑋𝑛 should contain characteristics that predict a respondent’s behavioral profile: 

for example, serial participants in a program to reduce an environmental health risk may exhibit 

other behaviors that either increase their baseline exposure to that risk or indicate a much higher 

disutility from the risk. It is not advisable to include attitudinal variables directly in 𝑋𝑛, even 

though it is best practice in choice experiments to include a set of attitudinal debriefing 

questions: while these questions are useful for descriptive analysis of the data, they can pose 

endogeneity problems when used to explain, for example, stated choices (Adamowicz & 

Deshazo 2006).3 

 As with LCA, estimation can proceed using the iterative E-M algorithm or direct MLE, 

employing the gradient and Hessian of the full likelihood function (eq. 6) to compute regular or 

robust standard errors (Train 2009). In supplementary material, we provide a formula for the 

analytical gradient of the above likelihood function, which is a minor generalization of the 

standard LCA conditional logit gradient. This greatly reduces computation time in estimation 

and in the computation of robust standard errors, as can be verified in the Matlab computer code 

implementing the model (also included as supplementary material).  

Relationship to standard latent class and hurdle models 

The POLCA bridges the advantages of hurdle models and latent class models in 

addressing not only serial nonparticipation, but also a much broader range of ‘weird’ 

                                                 
3 One approach to dealing with the endogeneity between stated choices and attitudes is to jointly model 

these variables as explained by a common set of latent preference classes (Morey et al. 2006). While this is a 

promising direction to extend the model described in this paper, it is beyond the present scope of our analysis.   
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preferences. POLCA reduces to a standard LCA by setting ∅𝑚,𝑡 = ∅ for all 𝑡 and 𝑚, i.e. all 

alternatives retain a positive probability of selection in all tasks and classes. In this special case, 

we do not observe any information about class membership (since no alternatives are excluded 

from any of the choice sets), and so class membership is completely imputed via Bayes’ rule.  

In the case of serial nonparticipation (SNP), POLCA can also be reduced to a hurdle 

model. This can be seen by supposing there are only two classes 𝑚 ∈ {𝐶𝐿, 𝑆𝑁𝑃}: a normal 

conditional logit (CL) class and a SNP class, with  ∅𝑆𝑁𝑃,𝑡 = {ℎ ≠ 𝑆𝑄} for all tasks 𝑡 (i.e. all 

alternatives but the SQ are excluded from the SNP choice set). The conditional likelihood for the 

SNP class in this case is degenerate, with log 𝑙𝑛|𝑆𝑁𝑃 = 0, because 𝑙𝑛|𝑆𝑁𝑃 = ∏ (𝑃𝑆𝑄,𝑡,𝑆𝑁𝑃

𝐶𝑛,𝑆𝑄,𝑡 ×𝑡

∏ 𝑃ℎ,𝑡,𝑆𝑁𝑃
𝐶𝑛ℎ𝑡

ℎ≠𝑆𝑄 ) = ∏ (11 × ∏ 00
ℎ≠𝑆𝑄 )𝑡 = 1. Consequently, the POLCA log-likelihood function 

restricted to the hurdle model reduces to: 

𝐿𝐿𝑃𝑂𝐿𝐶𝐴→Hurdle = 

(1 − 𝑑̃𝑛
𝑆𝑁𝑃) ∑ log 𝑙𝑛|𝐶𝐿

𝑛

+ ∑[𝑑̃𝑛
𝑆𝑁𝑃 log 𝑝𝑛

𝑆𝑁𝑃 + (1 − 𝑑̃𝑛
𝑆𝑁𝑃) log(1 − 𝑝𝑛

𝑆𝑁𝑃)]

𝑛

 

(7) 

This is almost identical to the log-likelihood function for the hurdle model, presented in the 

literature review above, except that the fully observable indicator 𝑑𝑛 for SNP in the hurdle model 

is replaced with the partially observable indicator 𝑑̃𝑛
𝑆𝑁𝑃 (defined in equations 3 and 4). This 

formulation is therefore similar in spirit to the DH model, because the hurdle/class probability 

model and the CL model must be estimated jointly. In a POC model this joint estimation arises 

because 𝑙𝑛|𝐶𝐿 is used in Bayes’ rule to impute missing values for 𝑑̃𝑛
𝑆𝑁𝑃, whereas the DH model 

considers SNP classification itself to be fully observed but with two latent processes giving rise 

to SNP, one of which is determined by the CL choice model.   
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It is more difficult to econometrically compare POLCA with IAL models, because the 

latter has not (to our knowledge) been applied to repeated choice data, e.g. in a stated preference 

setting, and has not yet been combined with a latent class approach to preference heterogeneity. 

Consequently, while the IAL model is able to allow for choice probabilities equal to zero and 

estimate all alternative-specific constants in a conditional logit model, it is unsuitable in its 

conventional form for directly addressing SP (for example), where inference about the status quo 

alternative’s utility among serial participants necessarily relies on the behavior of other groups of 

individuals. The IAL model is also clearly unsuitable for lexicographic preferences, where the 

consideration probability of a given alternative obviously depends on the other potential items in 

the choice set. For example, a ‘health-first’ lexicographic preference ordering would exclude all 

alternatives from consideration that did not provide the highest level health. But as soon as the 

healthiest alternatives in the original choice set were removed, such an ordering would actively 

consider (e.g. via the standard conditional logit model) the alternatives in the choice set sharing 

the next-highest level for the health attribute. This behavior is inconsistent with the IAL model, 

but can easily be addressed in our POLCA framework.   

Valuation estimates 

As with LCA, WTP estimates in POLCA-based conditional logit model are class-specific 

and the overall sample mean WTP is the weighted mean across classes using the posterior class 

membership probabilities as weights (e.g. Scarpa et al. 2005). Because the choice structure here 

assumes only alternative-specific constants 𝛼ℎ𝑡
𝑚  in conjunction with a monetary attribute with 

taste parameter 𝜂𝑚, we estimate nonmarginal values for each alternative. This is not a necessary 

feature for the general POLCA approach, but only used here because of the above setup, which 



20 

 

was chosen for ease of exposition and because of the nature of the data in our application 

(described below).  

To obtain aggregate, nonmarginal welfare measure across classes, we can calculate the 

compensating variation (CV) associated with making alternative ℎ available in task 𝑡. For class 

𝑚, CV is log(1 − 𝑃̃ℎ𝑡𝑚) /𝜂𝑚 (McConnell 1995), where 𝑃̃ℎ𝑡𝑚 is the probability of a class 𝑚 

individual selecting alternative ℎ in task 𝑡 in an appropriately specified baseline situation 

(defined below). Accounting for heterogeneous preferences, the mean CV across the sample is 

then:  

𝐶𝑉̅̅ ̅̅
ℎ𝑡 ≡ −

1

𝑁
∑ ∑ 𝑑̃𝑛

𝑚
log(1 − 𝑃̃ℎ𝑡𝑚)

𝜂𝑚
𝑚

𝑁

𝑛=1

 

(8) 

Care is required in defining the baseline situation. POLCA acknowledges that the data simply 

may not permit estimating valuation estimates which are of most interest to the researchers, due 

to violation of the RUM assumptions among discrete subgroups. Consider the case of serial 

participants (𝑚 = "SP"): In this case 𝑃0,𝑡,𝑆𝑃 = 0, i.e. the probability of SPs selecting the status 

quo is zero. If we are considering a valuation scenario in which any alternative ℎ is made 

available relative to a baseline case of no alternatives being available, then the probability of 

selecting any alternative is one and the CV for this class is infinite, which carries through to the 

whole sample so that 𝐶𝑉̅̅ ̅̅
ℎ𝑡 = ∞. Thus, when the data support the existence of SPs, we can only 

obtain the value of alternative ℎ’s availability relative to other, non-SQ alternatives. This is not a 

bug but a feature of POLCA (we argue): it acknowledges and helps uncover the limits of the 

data. 

 Therefore the appropriate conditional choice probability to be used in computing CV 

must take is: 
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𝑃̃ℎ𝑡𝑚 =
exp 𝛼𝑡ℎ

𝑚

∑ exp 𝛼𝑡ℎ
𝑚

ℎ∈𝐻̃𝑡

 
(9) 

where 𝐻̃𝑡 is some appropriately specified baseline set of all alternatives common to all classes. 

The only rule on 𝐻̃𝑡 required to maintain a finite CV estimate is that there are at least two 

alternatives in 𝐻̃𝑡 that are not in any of the exclusion sets ∅𝑚,𝑡 (i.e. which have a nonzero 

probability of selection by members of all latent classes).  

Model selection 

An additional consideration is how the econometrician should choose between competing 

specifications for the POLCA and LCA models. There is a growing literature on the unresolved 

question of how to choose the ‘right’ number of classes in LCA, as well as how to choose 

between an LCA specification or another parametric specification for preference heterogeneity 

(Strazzera et al. 2013). The approach continuing to prevail is to select the number of classes via 

information criteria statistics such as the AIC, CAIC and BIC (Morey et al. 2006; Rungie et al. 

2012). 

For the purposes of testing different specifications of POLCA, it is important to note that 

POLCA conditional logit model restricts a set of alternative-specific constants to −∞ within an 

LCA structure. Such an observation would motivate the use of a likelihood ratio (LR) test of the 

restricted POLCA specification against the more general (though possibly unidentified) LCA. 

Such a test applied to our case would take POLCA as the null hypothesis and test whether this 

could be rejected in favor of its unrestricted LCA counterpart. Unfortunately, the POLCA model 

restrictions lie at the boundary of the parameter space, making a standard LR test using a 𝜒2 
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distribution invalid (Greene 2011).4 Furthermore, using a standard 𝜒2 distribution in such a test 

has been found to be too conservative in structural equation models (Stoel et al. 2006). In our 

case this would mean that such a test would too frequently fail to reject POLCA. We therefore 

set aside for future work the derivation of the distribution of the LR statistic in this nonstandard 

case, and settle for comparing the log-likelihood and information criteria of POLCA against 

LCA.     

Empirical application: mosquito control in Madison, Wisconsin 

We demonstrate application of POLCA by analyzing data from a stated discrete choice 

experiment (DCE) analyzing the value of hypothetical mosquito control programs designed to 

reduce mosquito abundance in Madison, Wisconsin. In particular, the DCE was designed to 

measure the value of two types of mosquito-related disamenities: (1) nuisance and (2) disease 

risk associated with exposure to West Nile virus (WNV). The average risk of WNV in Madison 

at the time of data collection (2009) was one illness in 250,000 per year. Because nuisance and 

WNV-transmitting mosquitoes are distinct species in Madison, mosquito control programs could 

be designed to differentially target the different mosquito types. The DCE was conducted as part 

of a web-based survey of homeowners in six different neighborhoods in Madison in the summer 

of 2009. Mosquito abundance in the vicinity of the surveyed households was also measured. This 

mosquito exposure data, along with respondents’ characteristics in the survey, are used below as 

the predictor 𝑋𝑛 variables in the class membership model (according to equation 6 above). 

Complete data for 275 respondents was obtained, and this is the sample we analyze here. Details 

on the overall survey are included in the supplementary material of the paper. 

                                                 
4 A Vuong test (of the differences in BIC) could in principle be used to test between the POLCA and LCA 

without specifying either as the null or alternative, though a nonstandard distribution for this statistic would still be 

required.  
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 The format of the choice experiments was as follows. Respondents read a short 

background section informing them of the fact that there are multiple types of mosquitoes in 

Madison, some of which are simply a nuisance while others are capable of transmitting WNV.  

At the beginning of the choice experiment exercise, respondents were told that one way to reduce 

mosquitoes in Madison would be through an expanded citywide control program, and that the 

purpose of this section of the survey was to gather information about Madison homeowners’ 

preferences for such a program.  Background information was provided on West Nile virus and 

the difference between nuisance and West Nile virus-transmitting mosquitoes.  Respondents 

were also told that the expanded control program would use a combination of environmentally 

safe control methods targeting breeding sites and mosquito larvae.  Regarding the program’s 

impacts, respondents were told that the program would reduce the number of mosquito bites a 

Madison resident receives by about 90% and were told that the cost of the program would be 

funded through an increase in annual property taxes of between $10 and $200 per household. We 

also told respondents the level of West Nile disease risk, set at the current level (pointed out to 

respondents) of 1 in 250,000 for a first set of choice tasks, then increased to a hypothetical 

background risk of 10 in 250,000 and then 100 in 250,000, asking respondents to choose 

between pairs of hypothetical control programs in each task. The attribute descriptions and levels 

are presented in Table 1. A representative choice task is shown in the supplementary material. 

Importantly, respondents were allowed to “opt out” and choose neither program, which defines 

the status quo (SQ) alternative.  

[ Table 1 here. ] 

Results from the survey pre-test and focus group discussion suggested that it was possible 

to conduct nine choice tasks with respondents in the final survey, where each task consisted of a 
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comparison of two hypothetical mosquito control programs under a specified disease risk level. 

To generate these choice sets, we used a fractional factorial design (Johnson et al. 2007). First, 

we constructed all of the unique programs consisting of 1) type of mosquito controlled, and 2) 

cost. Since there were three different mosquito types (nuisance, vector, both) and four cost 

levels, this produced 12 possible programs. The set of choice tasks was further reduced by 

eliminating dominated alternatives. This included eliminating tasks with any alternative which 

controlled all mosquitoes at lowest cost, as well as any tasks in which two alternatives were 

identical except for one being cheaper. This narrowed the number of unique, undominated 

program pairs down to 28. Of these, we selected 18 pairs in which 6 compared nuisance and 

WNV programs, 6 compared nuisance programs with programs controlling all mosquitoes, and 6 

compared WNV and all mosquito programs, and verified that the resulting attribute matrix had 

full rank and was orthogonal (Johnson et al. 2007).  We then interacted these 18 program pairs 

with the three WNV risk levels (current risk, slight increase, large increase) to create 54 total 

choice pairs, and divided these into six unique sets of nine choice tasks. That is, we created six 

different versions of the survey in which each version contained three choice tasks at each of the 

three West Nile risk levels.  Finally, in distributing the survey, we ensured that recruits from 

each of the six targeted neighborhoods were distributed across the six survey versions (described 

in the supplementary material). 

Summary inspection of respondents’ behavioral patterns (Figure 1) in the choice 

experiment reveal that 47% of the sample are potential serial participants: these respondents 

avoided the SQ in all nine of their choice tasks. Potential serial nonparticipants (always selecting 

the SQ) comprise 9% of the sample. However, an additional 6% always selected the SQ in the 

low- and medium risk scenarios (comprising six of the nine choice tasks), but did opt for some 
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control program in the three tasks pertaining to the high-risk scenario. This ‘quasi-SNP’ behavior 

is found to be important for reasons discussed below.  

[ Figure 1 here. ] 

Econometric analysis and estimation results 

Our recommended approach to implementing POLCA model is not only to visually 

inspect the data, but to also first conduct conventional LCA. Such estimation is exploratory. In 

considering POLCA, the researcher is searching the standard LCA for very large coefficient 

estimates (as well as nonconvergence of the estimation routine). A rigorous LCA is likely to be 

more systematic than ad hoc visual inspection at identifying segments of the population who 

appear to behave according to deterministic choice patterns. In point of fact, the non-logit choice 

patterns illustrated in Figure 1 were originally discovered in the dataset by estimating an LCA. 

Once these preference patterns are revealed, the POLCA model is implemented by imposing the 

implied restrictions on the excluded sets and reference alternatives. 

Table 2 presents the regression diagnostics for the standard LCA (along with those for 

POLCA models, which are discussed below). These diagnostics suggest that the three- and four-

class specifications, according to the AIC, CAIC and BIC, provide the best balance between 

model fit and parsimony. In choosing between the three and four class model, we opt for 

parsimony and focus on the three-class specification, buoyed by support from the CAIC and BIC 

criteria (which both give more weight to model parsimony).  

[ Table 2 here. ] 

Coefficient estimates from the three-class LCA are shown in the first three columns of 

Table 3. Roughly speaking, coefficient magnitudes greater than three or four in our experiment 

raise concerns that the LCA is converging to a boundary solution, suggesting deterministic 
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choice patterns.5 Class 1 in the LCA, estimated to comprise 35% of the sample, appears to 

exhibit continuous preferences that are well-captured by a conditional logit representation. Class 

2 (estimated at 48% of the sample) appears to exhibit preferences suggesting serial participation: 

all alternative-specific constants (ASCs) are greater than four. Moreover, the ASCs for the low 

WNV risk scenarios are essentially unbounded, suggesting a flat likelihood function, difficulty in 

the convergence of the optimization routine and a lack of identification.6 Similarly, Class 3 (18% 

of the sample) suggests serial nonparticipation, except in the high-risk scenarios, where there 

appears to be a slight preference for programs which reduce abundance of both nuisance and 

WNV-transmitting mosquitoes.  Note how closely the estimated class shares for this model 

correspond to the raw frequencies of these behaviors observed in the data (Figure 1).   

[ Table 3 here. ] 

The LCA results therefore suggest three behavioral patterns, two of which are 

deterministic and not representable by a conditional logit model. The first class contains serial 

participants (SPs). The second contains serial nonparticipants (SNPs), except evidently in 

situations of high WNV risk (where the coefficient magnitudes are within normal ranges).   

Table 4 shows how these patterns lend themselves to a POLCA. First, we specify the 

exclusion sets ∅𝑚,𝑡 for each class 𝑚 and then specify the reference alternatives as needed (i.e. 

when the SQ alternative is excluded). For example the excluded set pertaining to the SP class is 

                                                 
5 For example, an alternative-specific constant (ASC) equal to four implies behavior in which that 

alternative is selected relative to the SQ option 98% of the time. Statistically, such an individual would need to be 

observed 50 times before one selection of the SQ is observed, whereas respondents in the analyzed DCE only 

completed nine choice tasks. An ASC equal to three would imply the alternative is selected over the SQ 95% of the 

time so that a task would need to be repeated 20 times before observing one SQ selection.  
6 All estimates shown in this paper are generated from the authors’ own Matlab code, provided as 

supplementary material to this paper. The LCM code was compared to estimation output from standard software 

packages, such as the ‘lclogit’ package in Stata (Pacifico & Hong il Yoo 2013). The Matlab output was identical 

with the Stata output in all cases, except when the models had trouble converging (though when either the Matlab or 

the Stata implementation did not converge, neither did the other).   
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∅𝑆𝑃,𝑡 = {𝑆𝑄} ∀𝑡, i.e. the SQ option is by assumption selected with probability zero by members 

of this class. Furthermore, since the subsequent conditional logit model for this model is 

estimated without the SQ alternative, a new reference alternative must be specified by the 

researcher. We specify the ‘Nuisance-only’ program as the reference alternative whenever the 

SQ is excluded, in which case its ASC is restricted to zero (e.g. 𝛼𝑁𝑢𝑖𝑠,𝑡
𝑆𝑃 = 0 ∀𝑡 for the SP class).    

[ Table 4 here. ] 

Results from this estimation are presented in Table 3, alongside the POLCA model 

estimates. Based on the regression diagnostics in Table 2, we present estimates for the best-

performing, three-class POLCA specification, with one class corresponding to ‘normal’ CL 

preferences over all alternatives, the second class corresponding to SPs and the third 

corresponding SNPs except in the high-risk scenario. For robustness we perform a POLCA, 

assuming SNPs over all scenarios. The summary statistics for this regression are presented in the 

last column of Table 2, which shows (based on all three reported information criteria) that this 

specification is overly restrictive.  

A number of insights emerge from Table 3, comparing POLCA with LCA. In qualitative 

terms, Class 1 in the LCA corresponds most closely to the unrestricted class in the POLCA 

specification (the ‘CL group’). For example, in the tasks with low WNV risk, both of these 

classes value the ‘nuisance only’ program more than the ‘WNV only’ program, which is in turn 

valued more than the ‘Both’ program. This preference ordering essentially reverses in the high-

risk choice tasks.  

Class 2 in the LCA is comparable to the SP class in the POLCA. Note that the SP class 

specification in the POLCA model uses the ‘nuisance only’ program as the reference alternative, 

so that the coefficient estimates in this column are only interpretable relative to this program. 
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Seen from this perspective, the results are in fact similar to the Class 2 estimates: For example, if 

we look at the high-risk scenarios and look at the difference between the ‘WNV only’ and 

‘Nuisance only’ programs (5.46 – 5.05 = 0.41), we see that the coefficient estimate lines up 

nicely with the GLC-SP ‘WNV only’ estimate of 0.426. Similar patterns emerge in comparing 

the other coefficient estimates, though clearly the lack of identification in LCA with respect to 

Class 2 warrants caution in any interpretation of these coefficients (which is precisely the 

motivation for the POLCA model). Also that in both POLCA and LCA, the SP class is the only 

one for which the program cost attribute is statistically insignificant (though still negatively 

signed).  

The last column in the POLCA model corresponds to the class whose preferences are 

most akin to a serial nonparticipant, the only difference being that this class does appear to 

participate in high-risk scenarios (a specification supported by the model fit comparisons in 

Table 2). As such we can only estimate logit preference parameters for the high-risk choice tasks 

(hence the blank entries for all the parameters in the low- and medium-risk scenarios). This 

‘quasi-SNP’ class is most comparable to Class 3: both classes appear to prefer the ‘Both’ 

program over either the ‘WNV only’ or ‘Nuisance only’ programs, though these differences are 

not statistically significant. Even in this scenario with high WNV risk, support for any of the 

programs among members of this class appears weak.  

Comparing the class membership probabilities between LCA and POLCA also confirms 

the clear mapping of classes between the two models. The class membership shares (the means 

of the posterior class membership variables in eq. 4) in the LCA classes and their counterparts in 

the POLCA model are within a few percentage points of each other. Notably, the POLCA model 

produces class membership shares which are respectively 2% smaller for the SP class (class 2 in 
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the LCM) and 4% smaller in the quasi-SNP class (class 3 in the LCA). This arises precisely 

because of the partial observability of class membership in POLCA. For example, respondents 

who select the SQ in any of their nine choice tasks are excluded from the SP class with certainty, 

whereas respondents who do appear to behave as SPs still have some small positive probability 

in POLCA of belonging to the ‘well-behaved’ CL class (class 1 in the LCA). Examining the full 

distribution of the posterior class membership variables (Figure 2), we again see an extremely 

tight parallel between LCA (panel a) and POLCA (panel b). However, we can also see that 

POLCA produces posterior membership variables which convey greater certainty. Only 16% of 

respondents in the POLCA have posterior membership probabilities which are between 0.01 and 

0.99, compared to 23% of respondents in the LCA. 

Valuation 

We compute mean CV from the results of POLCA, LCA and a standard conditional logit 

model. Results are presented in Figure 3. As noted above, computing a valuation estimate for the 

full sample requires care, because values can only be estimated relative to a reference alternative 

not excluded by any classes. We therefore estimate CV for the addition of a ‘WNV only’ or 

‘Both’ program as an option in the choice set, relative to a baseline situation in which a 

‘Nuisance only’ program is in effect. Across all three choice contexts (low, medium and high 

risk) and models (CL, LCA and POLCA), the mean CV for the ‘Both’ alternative is always 

greater than the ‘WNV only’ alternative. Relative to the basic conditional logit model, the 

POLCA’s CV estimates are significantly lower in all programs and contexts. Relative to the 

LCA specification, the POLCA estimates are qualitatively similar for most risk-program 

combinations, with around a 10-20% difference in magnitude (the POLCA estimate being 

sometimes higher or lower than the LCA estimate for different alternatives).  An exception to 
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this pattern is in the low-risk, ‘WNV only’ program. In this scenario the LCA CV estimate is 

nine times higher than the POLCA estimate. Looking back at the regression results in Table 3, 

we can see that this discrepancy is most likely related to the very large (and clearly poorly 

identified) regression estimates for LCA in the low-risk scenario, the result of the serial 

participation behavior of this class. Examining the 90% confidence intervals around the mean 

CV estimates in Figure 3, we also see that mean CV estimates for the POCM are more precise 

than the conditional logit model.  

[ Figure 3 here. ] 

Predicting class membership with respondent characteristics 

We also perform a POLCA otherwise identical to that in Table 3, but which uses 

respondent characteristics as regressors in the class membership model. This model uses a 

multinomial logit specification for predicting class membership, as in equation (6). Table 5 

presents multinomial logit coefficients from this class membership model (the choice 

coefficients are omitted because they are nearly the same as the last three columns of Table 3). 

Only two characteristics are found to predict class membership (and only at a statistical 

significance of 10%). These are the number of hours the respondent spent outside on a typical 

day in the summer and mosquito abundance, as measured via entomological sampling in the 

respondent’s neighborhood, as well as the interaction of hours outside with mosquito abundance. 

In general, respondents who spend more time outside and who have more mosquitoes around 

their homes are more likely to belong to be serial participants who generally have a higher 

relative WTP for mosquito control across all programs. The estimated average marginal effect of 

a 1% change in hours spent outside is estimated at roughly a $0.70 increase in the CV associated 

with the ‘Both’ alternative, relative to the ‘Nuisance only’ program in the low-risk scenario (for 
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example). Similarly, an increase in mosquito abundance of 1% is associated with an increase of 

$0.60 increase in CV for the ‘Both’ alternative in the low-risk scenario (again, relative to a 

‘Nuisance only’ program).7 There is also some evidence for a negative interaction effect between 

outdoor time and mosquito abundance, with the effect of mosquito abundance on SP class 

membership and relative WTP decreasing with greater outdoor time. This interaction effect may 

seem paradoxical, but could reflect heterogeneity in individuals’ tolerance for different levels of 

mosquito abundance.  

Discussion  

 This paper develops and demonstrates the POLCA for dealing with and identifying 

behavioral patterns reflecting a variety of deterministic decision rules in discrete choice data. The 

core element of the proposed methods lies in permitting the analyst to restrict the modelled 

choice probabilities for some respondents to zero for a subset of alternatives. By first conducting 

an exploratory estimation of a standard LCA and conjecturing from the results as to which 

alternatives are systematically avoided by some individuals, our proposed model can then be 

estimated to overcome the identification problem. In the application to the mosquito control 

choice experiment in Madison, our results first imply that overall, population mean valuations 

for specific programs can only be accurately obtained from these data relative to a non-SQ 

program, since the valuation estimates for the serial participants are effectively unindentified. 

Moreover, while following the same qualitative pattern across programs, even the relative 

valuation estimates differ significantly in magnitude between POLCA and LCA. Given the 

identification challenges for LCA, we argue that it is preferable to use the POLCA estimates and 

                                                 
7 The details on this computation and full table of average marginal effects for alternative-specific CV are 

available on request to the authors. 
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to take seriously the apparent lack of identification of mean absolute program values (i.e. relative 

to the ‘no program’ status quo option).      
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Tables 

Table 1: Mosquito program attribute descriptions and levels 

Attributes Description Levels 

Mosquitoes Targeted 

Type(s) of mosquitoes that would 

be targeted by the mosquito control 

program 

All 

Nuisance only 

WNV vectors only 

 

Cost 

Increase in annual property taxes 

used to fund the mosquito control 

program 

$10 

$50 

$100 

$200 

 

West Nile Virus risk 

(task-spanning 

attribute) 

Risk of contracting West Nile virus 

in Madison, WI 

Low risk (Madison status quo): 1 in 

250,000, or 1 case per year 

Medium risk: 10 in 250,000, or 10 cases 

per year 

High risk: 100 in 250,000, or 100 cases 

per year 
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Table 2: Regression summary statistics 

 

Conditional 

logit 

 

LCA 

 POLCA 

 

  with serial 

participants 

(SPs) 

with SPs & 

Quasi-SNPs  

with SPs & 

SNPs 

Number of Classes 1  2 3 4  3 3 3 

Log-likelihood -2,405  -1,960 -1,847 -1,829  -1,849 -1,851 -1,877 

Deg. of freedom 10  21 32 43  29 23 20 

Respondents 257  257 257 257  257 257 257 

Respondents X Tasks 2,313  2,313 2,313 2,313  2,313 2,313 2,313 

AIC 4,790  3,878 3,630 3,572  3,640 3,656 3,714 

CAIC 4,875  4,051 3,890 3,920  3,875 3,840 3,872 

BIC 4,866  4,037 3,872 3,897  3,859 3,830 3,936 
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Table 3: POLCA, LCA and conditional logit choice model estimates, 3 classes. Robust standard errors, clustered at the individual 

level, in parentheses. SP = serial participant, SNP = serial nonparticipant. For the POLCA, see companion Table 4 on the restriction 

of reference alternatives. Class membership probabilities here estimated with a constant-only model. *, ** and *** indicate statistical 

significance respectively at the 10%, 5% and 1% levels. 

WNV 

risk level 

Program 

alternative 

 
Conditional 

logit 

 LCA  POLCA 

  
Class 1 Class 2 Class 3  

CL group (all 

alternatives)  
SPs Quasi-SNPs 

Low risk 

1/250K 

WNV only  0.014   0.52** 236 -2.66**  0.342 -1.05*** -- 
  (0.144)  (0.229) (1.78 x 103) (1.31)  (0.216) (0.177)  

Nuisance only  0.956***  1.5*** 237 -14.4***  1.26*** - ref. alt. - -- 
  (0.144)  (0.261) (1.78 x 103) (0.842)  (0.236)   

Both  0.732***  0.0557 237 -14.6***  0.209 -0.159 -- 
  (0.187)  (0.508) (1.78 x 103) (2.84)  (0.411) (0.232)  

Medium 

risk 

10/250K 

WNV only  0.491***  1.05*** 4.3*** -2.31***  0.842*** 0.187 -- 
  (0.139)  (0.218) (1.16) (0.794)  (0.195) (0.156)  

Nuisance only  0.35**  0.813*** 4.14*** -3.09***  0.662*** - ref. alt. - -- 
  (0.146)  (0.235) (1.15) (1.12)  (0.207)   

Both  1.25***  1.84*** 5.24*** -13.0***  1.71*** 1.01*** -- 
  (0.181)  (0.378) (1.08) (1.08)  (0.317) (0.188)  

High risk 

100/250K 

WNV only  0.928***  1.3*** 5.46*** -0.896  1.21*** 0.426*** -1.97 
  (0.152)  (0.287) (1) (0.618)  (0.263) (0.152) (1.87) 

Nuisance only  0.676***  1.31*** 5.05*** -0.982*  1.15*** - ref. alt. - -1.34** 
  (0.160)  (0.27) (1.01) (0.508)  (0.234)  (0.522) 

Both  1.59***  2.68*** 5.89*** 0.998  2.49*** 0.829*** 0.116 
    (0.181)  (0.31) (1.03) (0.753)  (0.284) (0.24) (0.604) 

Program cost ($)  -0.00593***  -0.0177*** -0.00243 -0.0218***  -0.0172*** -0.00206 -0.0134** 
   (0.001)  (0.0021) (0.00151) (0.00667)  (0.00202) (0.00143) (0.0052) 

Predicted class prob.  --  0.32 0.49 0.19  0.36 0.48 0.15 

Imputed class shares  --  34% 48% 19%  39% 46% 15% 
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Table 4: POLCA parameterization for behaviors observed in the choice experiment 

Class / Behavior Exclusion sets (∅𝑡,𝑚) Identification restrictions 

Standard conditional 

logit (CL) behavior 
∅𝐶𝐿,𝑡 = ∅ ∀𝑡 𝛼𝑆𝑄,𝑡

𝐶𝐿 = 0 ∀𝑡 

Serial participants (SPs) ∅𝑆𝑃,𝑡 = {𝑆𝑄} ∀𝑡 𝛼𝑁𝑢𝑖𝑠,𝑡
𝑆𝑃 = 0 ∀𝑡 

Serial nonparticipants 

(SNPs) 
∅𝑆𝑁𝑃,𝑡 = {ℎ ≠ 𝑆𝑄} ∀𝑡 (degenerate case) 

SNPs, except in high-

risk scenarios 

∅𝑆𝑁𝑃,𝑙𝑜𝑤 = {ℎ ≠ 𝑆𝑄} (degenerate case) 

∅𝑆𝑁𝑃,𝑚𝑒𝑑𝑖𝑢𝑚 = {ℎ ≠ 𝑆𝑄} (degenerate case) 

∅𝑆𝑁𝑃,ℎ𝑖𝑔ℎ = ∅ 𝛼𝑆𝑄,ℎ𝑖𝑔ℎ
𝑆𝑁𝑃 = 0 
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Table 5: POLCA class membership model with covariates. POLCA estimated as in Tables 3 and 4, but additionally including 

respondent covariates in a multinomial logit class prediction model (choice model coefficients from this specification not presented 

but very similar to POCM presented in Table 3, available from authors on request). *, ** and *** indicate statistical significance 

respectively at the 10%, 5% and 1% levels. Statistical significance of the log-likelihood value obtained from a likelihood ratio test of 

this model against the POCM specification in Table 3 (which contains a constant-only model for class membership).  

 POLCA classes 

  All alternatives class SP class 

 Coeff. (Std. Err.) Coeff. (Std. Err.) 

Constant -3.68 -9.56* 

 (5.49) (5.50) 

Kids 0.206 0.313 

 (0.55) (0.50) 

Female 0.202 0.487 

 (0.42) (0.40) 

Married -0.489 -0.238 

 (0.58) (0.60) 

Age 0.0231 0.00239 

 (0.02) (0.02) 

log(income) 0.309 0.322 

 (0.38) (0.37) 

Post-secondary degree 0.0536 0.422 

 (0.56) (0.53) 

log(1 + hours outside) 0.253 3.45* 

 (1.86) (2.02) 

log(1 + mosquitoes) 0.261 1.54* 

 (0.74) (0.79) 

log(1 + hours outside) 

X log(1 + mosquitoes) 

-0.219 -0.821* 

(0.46) (0.48) 

Log likelihood (full model) -1,835** 

Deg. of freedom (full model) 41 
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Figures 

Figure 1: Frequency of different choice patterns in the sample data 
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Figure 2: Posterior class membership probabilities 

a) LCA (3 classes) 

 

b) POLCA (3 classes) 
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Figure 3: Compensating variation (CV) estimates. Alternative-specific estimates presented 

relative to a condition in which the nuisance only program is already assumed available. 90% 

confidence intervals presented in brackets.  

  
 $-  $25  $50  $75  $100  $125  $150  $175  $200  $225

CL

LCA

POLCA

CL

LCA

POLCA

CL

LCA

POLCA

CL

LCA

POLCA

CL

LCA

POLCA

CL

LCA

POLCA

W
N

V
 o

n
ly

B
o
th

W
N

V
 o

n
ly

B
o
th

W
N

V
 o

n
ly

B
o
th

L
o

w
 r

is
k

 (
1

/2
5
0

K
)

M
ed

iu
m

 r
is

k

(1
0

/2
5

0
k

)
H

ig
h

 r
is

k
 (

1
0
0

/2
5

0
K

)


	WP-2016-015 Cover page
	Brown et al 2016 POLCA



