

Strategic investment in renewable energy under technological change

Fanglin Ye Agricultural and Consumer Economics University of Illinois Camp Resource, Aug 8, 2016

- The renewable energy is underinvested
 - cellulosic ethanol in 2014
 - target: 1.75 billion gallons
 - actual: less than 1 million
- A key reason: existing technology is not cost competitive enough in this sector

 cellulosic ethanol: \$4 -\$5/gallon

- Government technology policy is necessary to promote investment in the renewable energy sector
 - technology-push: government R&D spending
 - target on new innovative technology or big improvements of existing technology through R&D efforts
 - demand-pull: subsidy, mandate, investment share
 - target on the use of existing technology, trigger learning by doing (including the scale of economies)

- What are the impacts of different types of technology policies on firms' optimal investment strategy in the renewable energy sector?
 - technology-push or demand-pull
- Breakthrough Energy Coalition
 - Bill Gates, Mark Zuckerberg and more than 20 billionaires
 - 20 countries pledge to double government investment in clean energy innovation

- What is most needed now is money for accelerated deployment and project financing of technologies that are now market-ready (DOE, 2015)
- The accelerated deployment created economies of scale and brought technologies rapidly down the learning curve
 - solar, wind, batteries, and LED lighting

- Most existing literature focuses on R&Dbased improvements or learning-by-doing for existing technologies (Löschel & Otto, 2009)
 - Similar effects, different policy efficiencies
- The cost savings from the policy-induced improvement of existing technologies may not reveal a firm's real incentive to invest

- Firms anticipate the irreversible investment in future technologies that are currently unavailable
 - solar photovoltaics (PV) (Baker et al.,2009)
 - silicon wafer cells, 36 cents/kWh
 - organic cells in 10 years, 5 cents/kWh
 - multi-junction cells in 20 years, 2.9 cents/kWh
- Government R&D spending most targets on the basic research to develop innovative technologies that are not available yet

• An upstream R&D industry that delivers a sequence of technological "innovations" stochastically with efficiency u and probability λ

- silicon cells, organic cells, multi-junction cells

- When each innovation arrives, a sequence of engineering "refinements" is triggered to complement the innovation efficiency w, probability μ
 - improvements on the inverter's conversion efficiency

- Firm's anticipations regrading technology
 - $\operatorname{E}(\lambda) = f_{In}(I_{RD}) + \varepsilon_{IN} \quad E(u) = g_{In}(I_{RD}) + \epsilon_{IN}$
 - $-\operatorname{E}(\mu) = f_{RE}(I_{RD}) + \varepsilon_{RE} \operatorname{E}(w) = g_{RE}(I_{RE}) + \epsilon_{RE}$
 - f and g: the innovation and refinement production function, increasing function
 - I_{RD} : government R&D spending
 - ε , ϵ : common errors in the anticipation
 - positive: optimism on future technology
 - negative: pessimistic opinion on future technology
 - affected by the policy signal and the technology information sent by the government

- After investment
 - triggering learning curve at $e^{-\gamma q}$
 - learning speed γ and capacity q
- Production cost: $C_t(q_t) = aq_t^2 + s\theta_t q_t$
 - θ_t is a function of all technology parameters
- Perfectly competitive market: the price P– subsidy: $P + \chi$
- Establish investment cost *Bq*
 - investment share: $Bq(1-\phi)$

The model

 Optimal solution: Investment scale q^{*} and timing θ^{*}

•
$$\frac{P+\chi}{\rho} - \frac{\left(\frac{P+\chi-aq^{*}}{\rho} - B(1-\phi)\right)\beta q^{*}\gamma e^{-\gamma q^{*}}}{\rho-e^{-\gamma q^{*}} + 1 + w\mu} = \frac{aq^{*}(2-\beta)}{\rho} + B(1-\phi)$$

•
$$\theta^{*} = \frac{\frac{1}{s}\left(\left(\rho - e^{-\gamma q^{*}} + 1 + w\mu\right)\right)}{\frac{\beta}{\rho-1}} \underbrace{\frac{\beta}{\beta-1}}_{\text{lag effect}} \underbrace{\left(\frac{P+\chi-aq^{*}}{\rho} - B(1-\phi)\right)}_{\text{scale effect}}\right)$$

- **Proposition 1.** A sufficiently large government R&D spending delays the investment but increases the investment scale
 - waiting for the technology breakthrough
 - choosing a larger investment scale under the more advanced technology

- **Proposition 2.** A sufficiently optimistic policy signal and technology information delays the investment but increases the investment scale
 - ambitious targets or optimistic estimation of technology progress
 - the firm deferring its investment may never see the promised technology arrive
 - the exaggeration of its real cost-efficiency results in a great profit loss after the production

- **Proposition 3.** A demand pull policy accelerates the investment and increases the investment scale
 - improves the profitability of using existing technologies
 - the shadow value of learning

- Any technology policy will stimulate a larger investment scale
- Large public R&D spending provides strong incentives to wait
- Subsidy and investment share stimulate an early investment and trigger learning-by-doing
- Policymakers should be more cautious in R&D spending and projecting future technology efficiency, and be careful not to let investors become complacent by deferring investments and just waiting for the advanced technology

- Social welfare impact
- What is the optimal policy portfolio?
- Questions?