Groundwater Management Policy Evaluation with a Spatial-Dynamic Hydro-Economic Modeling Framework

Presented by Aaron Hrozencik

Dr. Dale Manning

Dr. Jordan Suter

Dr. Chris Goemans

Dr. Ryan Bailey

Motivation

Challenges associated with managing spatial and temporal dynamics in common pool resources

- Fisheries
- Ecosystem Biodiversity
- Wildlife

Research Question:

What is the value of spatially differentiated policies to reach common groundwater conservation goals?

Contribution to literature

- Nested governance, spatially explicit policies Dietz, Ostrom & Stern, 2003; Sanchirico & Wilen, 2005; Edwards, 2016
- Economic literature assessing gains to groundwater management Gisser & Sanchez, 1980; Feinerman & Knapp, 1983; Brill & Burness, 1994; Rubio & Casino, 2001
- Economics of spatially explicit groundwater utilizing insights from hydrology Saak and Peterson, 2007; Brozovic et al., 2010; Pfeiffer and Lin, 2012; Guilfoos et al., 2013, Foster et al., 2014

Groundwater Terminology

Saturated thickness –

vertical distance of aquifer permeated by water

Hydraulic conductivity –

potential velocity of lateral groundwater

Well capacity (yield) -

max flow rate that a well can sustain over a period of time (gallons per minute)

Microeconomic Foundations

Assumes inter-seasonal myopic behavior (Foster et al. 2014)

Stage 1: Planting Decision
$$\max_{A_{ij}} E\left[\sum_{j=1}^{J} p A_{ij} f_j \left(w_{ij} c_{it}, \theta_{it}, \phi_i, \sum_{j=1}^{J} A_{ij}\right) - A_{ij} r_{Aj} - A_{ij} w_{ij} r_w\right]$$

Stage 2: Groundwater Pumping Decision
$$\max_{\substack{W_{ij} \\ W_{ij}}} \left[\sum_{j \in R} p_j \overline{A}_{ij} f_j(w_{ij}; c_{it}, \widehat{\theta}_{it}, \phi_i, \overline{A}_{ij}) - A_{ij} w_{ij} r_w \right]$$

Microeconomic Foundations: Policy Options

Stage 1:

$$\max_{A_{ij}} E\left[\sum_{j=1}^{J} p_j A_{ij} f_j (w_{ij}; c_{it}, \theta_{it}, \phi_i, A_{ij}) - A_{ij} (r_{Aj} + \tau_A) - A_{ij} w_{ij} (r_w + \tau_w)\right]$$
subject to $\sum_{j=1}^{J} w_{ij} \leq \overline{W}$

- Planting Tax
- Pumping Tax
- Quota

Hydro-Economic Model

Dynamic Linking

Results: Profit Path for 25% Reduction in Groundwater Pumping

Results: Uniform Policy Costs and Benefits after 50 years

Results: Spatially Differentiated Policy Costs and Benefits after 50 years

GWMD Results

Discussion

How do results inform management strategies for spatially dynamic common pool resources?

- Hydraulic conductivity and initial average well capacity define which GWMDs are targeted in spatially differentiated policy
- Incentives and disincentives for cooperation among GWMDs

Future Work

- Distributional impacts of spatially differentiated policies.
- Utilize survey instrument to elicit groundwater user preferences over management policies.
- Efficiency of voting mechanisms in groundwater management policy selection.

• Appendix

Pumping by well capacity bins

Sandy Soil in North Region

Sandy Soil in South Region

Agronomic Model (AquaCrop)

Generates water-crop yield production functions for heterogeneous groundwater users accounting for variation in:

- Soil Type
- Climate Zone
- Weather Realization
- Well Capactiy

Well Capacity

• Maximum flow rate (gpm) that can be sustained over a period of time

Return

Source: United States Geological Survey

The Case for Spatially Differentiated Policies

Microeconomic Foundations: Policy Options

Stage 1:

$$\max_{A_{ij}} E\left[\sum_{j=1}^{J} p_j A_{ij} f_j (w_{ij}; c_{it}, \theta_{it}, \phi_i, A_{ij}) - A_{ij} (r_{Aj} + \tau_A) - A_{ij} w_{ij} (r_w + \tau_w)\right]$$
subject to $\sum_{j=1}^{J} w_{ij} \leq \overline{W}$

- Planting Tax
- Pumping Tax
- Quota

Three management policies to address overpumping of aquifer

- Qty restrict
- Uniform pumping tax
- Irrigated acreage fee

Table of policy type and levels

- What do the spatially differentiated policies look like?
- How did we characterize the heterogeneity of the spatial externality of pumping across GWMDs to inform the creation of the spatially differentiated policies