#### Coal Mines and Property Values

#### Luke Fitzpatrick<sup>1</sup> Chris Parmeter<sup>2</sup>

<sup>1</sup>Department of Economics, Ohio University fitzpatl@ohio.edu

<sup>2</sup>Department of Economics, University of Miami cparmeter@bus.miami.edu

August 9, 2016

### Coal mining disamenties of interest to homeowners



#### WV DEP

## Coal mining disamenties of interest to homeowners



### Coal mining disamenties of interest to homeowners



#### PA DEP

- Coal mines pose threats to the environment, health, and structures
- Problems remain after productive life ends
- OSMRE: regulate active mines, distribute funds for AML cleanup
- \$4 billion coal-related cleanup remains (excluding self-bonded mines)
- Few studies quantify price impacts in local housing markets
  - Williamson, Thurston, Heberling (2008); Williams (2011)

**1** Do active and abandoned mining operations affect property values?

2 Which properties are treated by their presence?

3 Do property owners benefit from reclamation projects?

- Use hedonics to value a LULU that's received little attention thus far
- Sales of single family homes in three Appalachian counties over 7 years
- Sub-unit level coal mine production data from MSHA
- Applied new method of coding which sales are treated

# Belmont County, Ohio



# Belmont County, Ohio



Distance to mining operation

- Pre-specify distance used before, or use repeat sales (which we lack)
- Shale wells, Superfund sites, wind turbines: all < 3 miles
- Problem: sign and magnitude can be unstable when varying buffer size
  - For several reasons, not obvious what the "correct" buffer is

$$\ln P_{ijt} = \beta_0 + X_{ijt}\beta_1 + \mathbb{1}(d_{ijt} < w)\gamma + tract_j + year_t + \epsilon_{ijt} \qquad (1)$$

| Buffer ( <i>w</i> km) | Belmont, OH | Fayette, PA | Monongalia, WV |
|-----------------------|-------------|-------------|----------------|
| 1                     | -0.03       | -0.13       | 0.01           |
|                       | (.05)       | (.05)       | (.07)          |
| 3                     | -0.04       | 0.03        | -0.08          |
|                       | (.04)       | (.03)       | (.04)          |
| 5                     | 0.04        | -0.00       | -0.13          |
|                       | (.03)       | (.03)       | (.04)          |

Use distribution of distance-to-nearest-mine

$$\ln P_{ijt} = \beta_0 + X_{ijt}\beta_1 + \mathbb{1}(d_{ijt} < w_b)\gamma + tract_j + year_t + \epsilon_{ijt} \qquad (2)$$

- 1 Estimate model 2 omitting sale k
- 2 Predict log price of k using estimated coefficients
- **3** Repeat 1-2 for all sales
- 4 Repeat 1-3 for all buffers
- **5** Define treatment using buffer that minimizes SSE

- 2 of 3 counties demonstrate similar treatment buffers (6.5 7.5 km)
- "Treated" properties sell at discounts of around 12%
- Discounts driven primarily by surface mines
- Third county: large discounts for homes near prep. plants
- Next: individual disamenities, synthesize reclamation spending