
 

 1

THE AMENITY COSTS OF OFFSHORE WIND FARMS:   
EVIDENCE FROM A CHOICE EXPERIMENT 

 
 

Sanja Lutzeyer, Daniel J. Phaneuf and Laura O. Taylor1 
 
 

Abstract 

We conduct a choice-experiment with individuals that recently rented a vacation property 
along the North Carolina coastline to assess the impacts of a utility-scale wind farm on 
their rental decisions.  Visualizations were presented to survey respondents that varied 
both the number of turbines and their proximity to shore.  Results indicate that there is 
not a scenario for which respondents would be willing to pay more to rent a home with 
turbines in view, as compared to the baseline view with no turbines in sight. Further, 
there is a substantial portion of the survey population that would change their vacation 
destination if wind farms were placed within visual range of the beach.  The rental 
discounts required to attract the segment of the survey population most amenable to 
viewing wind farms still indicate that rental value losses of five percent or more are 
possible if a utility-scale wind farm is placed within 8 miles of shore.   
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1) Introduction 

Wind power is a fast growing source of renewable energy in the United States.  Land-

based wind energy capacity has grown at an average rate of 25 percent per year, resulting in an 

installed base of over 66 gigawatts.2  While this growth places the US among the global leaders 

in installed capacity, offshore wind energy remains largely unexploited.  Estimates suggest that 

wind energy potential off US coastlines is more than 4,000 gigawatts – roughly enough to power 

2.8 billion homes for a year (Schwartz, et al., 2010).  To date, however, there are no utility-scale 

offshore wind facilities in the country.   

The absence of offshore wind development in the US can be explained by two factors.  

First, offshore wind costs are still substantially higher than land-based fossil-fuel alternatives.  

For example, the levelized cost of offshore electricity generation is currently estimated to be 

nearly twice that of an advanced natural gas-fired plant with carbon capture and storage (US 

EIA, 2015).  Second, local opposition to offshore wind farms can be a significant impediment.  

The best-publicized example of this is the Cape Wind project that called for a 130 turbine array 

covering 24 square miles in Nantucket Sound, Massachusetts.  The project attracted vigorous 

opposition from a wide range of stakeholders, including fishermen, local Native American tribes, 

high income oceanfront communities, and nearby inland townships where incomes closely match 

the state average.3  

One important driver of the opposition to offshore wind farms is concern about visual 

                                                 
2 US Department of Energy, Energy Efficiency and Renewable Energy, Wind Exchange, Installed Wind 

Capacity, http://apps2.eere.energy.gov/wind/windexchange/wind_installed_capacity.asp, last accessed July 30, 

2015. 
3 Eileen McNamara, “What Really Toppled Cape Wind’s Plans for Nantucket Sound,” January 30, 2015, 

accessed August 5, 2015, https://www.bostonglobe.com/magazine/2015/01/30/what-really-toppled-cape-wind-

plans-for-nantucket-sound/mGJnw0PbCdfzZHtITxq1aN/story.html.  
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disamenities.  To understand the potential visual impact of an offshore wind farm, it is important 

to recognize that the current vintage of offshore wind turbine extends over 500 feet above the 

water – approximately the height of a fifty story building.  The turbines are lit at night with red 

beacons that flash in unison every two seconds, and their height makes them technically visible 

out to thirty miles from shore.  Turbines are also spaced 0.5 miles apart from each other, so that 

even a medium sized array can have a large footprint.  For instance, a 144 turbine array laid out 

in a twelve by twelve grid, with the nearest row five miles from shore, would fill the peripheral 

vision of a person standing on the beach.  Thus different combinations of height, footprint, and 

distance from shore can lead to substantially altered viewsheds.   

In a benefit-cost evaluation framework, it is critical to understand how alternative 

placements of offshore wind turbines impact the welfare of both residents and visitors to the 

coast, where the latter drive local tourism-based economies.  While a number of studies in 

Europe have documented, through stated preference surveys, the negative visual impacts of 

offshore wind farms perceived by residents and tourists, there is little evidence on their welfare 

impacts in the US (see Ladenburg and Lutzeyer, 2012, for a review of European studies).  Two 

published exceptions are Landry et al. (2012) and Krueger et al. (2011), who explore the impacts 

of offshore wind development in North Carolina and Delaware, respectively.  Landry et al. 

consider recreation decisions over the number of day trips to a beach.  They find little sensitivity 

in trip taking to the presence of wind farms when people were queried without visualizations.  

For a subset of respondents who completed an internet component with visualizations, there is 

some evidence that turbines less than one mile from shore would affect recreation choices.4  

                                                 
4 In a recent working paper, Fooks et al. (2014) also examine how recreation beach visits are affected by 

wind turbines.  Using a sample of visitors intercepted at two Delaware beaches, they find that visitors are on average 
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Krueger et al. (2011), on the other hand, find that residents in Delaware are willing to pay higher 

electricity bills to move turbines further offshore.  The magnitude of their estimates are difficult 

to interpret, however, because the welfare measures confound reductions in visual disamenities 

with reductions in the carbon intensity of electricity produced for the state.5  Furthermore, the 

Krueger et al. study does not address how alterations in ocean viewsheds may impact the tourism 

markets that underpin coastal economies.  We fill this research gap by examining how offshore 

wind farms impact welfare through coastal property markets.  In this regard, the studies that 

come closest to ours use hedonic models to show that utility-scale land-based wind farms in 

close proximity can reduce residential property values by up to 14 percent (e.g., Sunak and 

Madlener, 2016; Gibbons, 2015; Heintzleman and Tuttle, 2012).6  Results from land-based wind 

farms may not transfer to the offshore context for a variety of reasons, however, including the 

unique nature of an expansive, unobstructed ocean view.  

We partner with three local vacation property rental agencies in North Carolina to 

conduct a choice experiment with their customers.  Vacationers that rented a beach home were 

surveyed to determine how a utility-scale offshore wind farm would affect their future vacation 

choices.  Respondents viewed images depicting wind farms of different sizes, arrayed at different 

distances from the shore, and were asked to select from rental properties that varied in their 

rental price and ocean viewshed.  Within this basic framework, we present several novel 

features.  First, the sample for our choice experiment consists of known beach house users.  We 

                                                                                                                                                             
relatively indifferent to turbines placed 2-3 miles offshore, but that a minority of people would alter their behavior in 

response to an offshore wind farm.   
5 This confounding arises because the alternative to building an offshore wind farm (at any distance from 

shore) is to increase fossil fuel production, thus making it impossible to econometrically identify willingness to pay 

to reduce visual disamenities as separate from willingness to pay for carbon reductions. 
6 Lang et al. (2014) examine the property value impacts of single turbines, and find no evidence of a 

statistically significant negative effect.   
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observe the specific property rented and the price paid, which allows us to ground our 

counterfactual options as deviations from the respondent’s revealed choice.  Second, our 

experimental design includes a treatment in which respondents are shown both daytime and 

nighttime images of wind turbines, which provides an important perspective absent in earlier 

work.  Third, our experimental design includes the same amount of aggregate wind energy 

produced in all of the scenarios – only the number of turbines visible from shore varies.  In this 

way, we are able to disentangle pure viewshed externalities from preferences people may have 

for renewable energy in general.  Finally, ours is the first choice experiment to focus on week-

long beach home renters, which is a critical segment of the mid-Atlantic coastal tourism industry.  

Our focus on North Carolina (NC) is also policy-relevant, as the Bureau of Ocean Energy 

Management (BOEM) includes the state among the most suitable regions for offshore wind 

development.  The NC coast has the best wind resources among all eastern states, with an 

estimated 300 gigawatts of potentially recoverable energy (Schwartz et al., 2010).  However, the 

NC coast is heavily reliant on tourism, and potential impacts of a near-shore wind farm have 

been the subject of local debates with townships along the entire coast expressing concerns about 

possible view shed impacts.  In this regard, our study area is representative of other regions 

facing tradeoffs between the climate change advantages of offshore wind development, and the 

negative local externalities that may arise.   

We find several striking results.  In general, renters have strong preferences for an ocean 

view at their rental location that does not include visible turbines, despite general support for 

wind energy among the sampled individuals.  There is no population segment that would be 

willing to pay more to rent a home with turbines in view.  At best, the results indicate that some 

respondents would not require a discount to rent a home with turbines in view, so long as the 
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farm is further than 8 miles from shore (20 percent of respondents fall into this category).  For 

other respondents, even large discounts would not be sufficient to induce them to accept a 

viewshed that included near or distant turbines.  Specifically, we find that 54 percent of existing 

customers would change their vacation location if wind turbines were placed offshore. Lastly, in 

a related context, less than half of respondents reported they would drive thirty minutes to see an 

offshore wind farm.  This indicates that wind farms are not likely to be a draw for daytrip 

tourism, given the distance of NC beaches from major population areas. 

These findings have several policy implications.  First, we find that placement of turbines 

further out to sea to eliminate their negative visual impacts could very well pass a benefit-cost 

test.  We find that the welfare gains of moving wind farms as little as 3 miles further from shore 

(from 5 to 8 miles) can outweigh the increased capital costs of doing so for an area with as few 

as 1,000 rental homes (200 oceanfront, 800 non-oceanfront).7  Since no actual proposals exist in 

our study area, our cost estimates are speculative and we only consider the capital costs of 

increased cabling, holding constant the cost of constructing the individual turbines.  Second, we 

find that the negative effects of wind farms are primarily attributable to proximity of the farm to 

shore, rather than the number of turbines.  With the exception of distances of 5 miles or less, 

images showing more than double the number of turbines did not result in statistically significant 

changes in demand.  This fact, combined with our finding that the negative effects of any size 

turbine array diminish rapidly once placed more than 8 miles from shore, implies that wind farm 

developers can take advantage of economies of scale with large arrays, while avoiding negative 

                                                 
7 The average number of rental units in our study area that lie within a 2-mile radius of the center point of a 

turbine array proposed in our survey is 200 oceanfront and 800 ocean-side homes.  We conservatively assume these 

to be the “impacted” homes since the leading edge of our turbine array has twelve turbines, and thus creates a 5.5 

mile wide facing edge for the wind farm as seen from shore. 
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external costs, by placing large wind farms more than 8 miles from shore. 

 

2) Study Area and Choice Experiment Design 

North Carolina has over 300 miles of shoreline, much of which is barrier islands.  

Developed shorelines are dominated by single-family residential dwellings that serve as vacation 

rental properties.  Indeed, North Carolina beaches are known for their unique ‘cottage-only’ 

development patterns, which have long attracted repeat visits from extended-family parties.  This 

‘attachment to place’ is an important component of visitors’ experience, and hence an asset to the 

local economy.  

We sample visitors from three regions of the NC coast:  the northern Outer Banks, the 

southern Outer Banks, and the southern Brunswick County islands.8  These three regions span 

the NC shoreline, and importantly, each of the sample regions has been identified as feasible for 

utility-scale, offshore wind farm development.  Two of the three areas were included in the 

Bureau of Ocean Energy Management’s call for expressions of interest for commercial leasing 

(BOEM, 2012), and continue to be considered for potential leasing (BOEM, 2015). 

A mail survey of households that rented a beach home along the NC coast during the 

summer of 2011 was conducted in January 2012.  Mailing addresses for renters of specific, 

oceanfront and non-oceanfront (but ocean view) properties were obtained from three realty 

agencies, serving the three different regions of the NC coastline described above.  The sample 

was evenly split among the three locations.  In addition, we over-sampled oceanfront rentals by 

splitting oceanfront and non-oceanfront rentals evenly to ensure sufficient responses from the 

                                                 
8 Specifically, we sampled visitors to the towns of Corolla to Nags Head in the Northern Outer Banks, 

Emerald Isle in the southern Outer Banks area, and Ocean Isle Beach representing the southern Brunswick County 

islands. 
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important oceanfront category of renters.   

We designed our choice experiment to be relatively simple, so as to directly focus on the 

viewshed impacts of offshore wind energy development.  Our objective was to measure the 

demand for vacation beach homes with different configurations of visible wind turbines.  For this 

we generated high quality images of different beach views, which varied in the number and 

distance from shore of visible turbines, and asked about rental choices, conditional on the views.  

Specifically, survey participants considered a beach home rental scenario designed around their 

actual rental choice from the previous summer.  They compared the cottage they rented to two 

counterfactual alternatives, which were described by three attributes: (i) the number of turbines 

visible from shore; (ii) the distance of the visible turbines from shore; and (iii) the rental price of 

the beach house.  The levels for each attribute are presented in Table 1.9  The number of turbines 

and their distance from shore together form the basis for the specific wind farm visualizations 

that we created.  Figure 1 shows two examples of images used in the survey.   

Our images depict five-megawatt (MW) turbines, which were thought to be the most 

likely turbines for offshore deployment at the time of our survey.  Images included either 64, 

100, or 144 turbines placed between 5 and 18 miles from shore, which overlaps the policy-

relevant ranges for the size and location of potential offshore wind farms in the eastern US.10  In 

                                                 
9 Four focus groups, each comprised of individuals who had vacationed along the North Carolina coastline 

in the past five years, were conducted between March and September of 2011 to determine the appropriate levels for 

the choice question attributes, and to ensure that instructions were clear and that respondents understood all aspects 

of the survey and choice task. 
10 Communication with industry experts suggested initial projects are not likely to be smaller than 350MW 

(70 turbines) in North Carolina, due to economies of scale in production, which guided our choice of the lower-

bound visible array (64 turbines).  Our upper-bound is similar to current projects in various stages of development in 

Massachusetts, including the Cape Wind project, with 130 turbines placed as close as 5.6 miles from Cape Cod 

(www.capewind.org) and the Deepwater ONE project, with 150 to 200 turbines placed 15 miles from Martha’s 
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NC, wind turbines are feasible as close as 5 miles from shore in one of the three areas being 

proposed for lease sale (UNC, 2009).  Furthermore, visualizations used in public engagement 

forums in NC by BOEM used 7 MW turbines placed 10 miles from shore; our 5MW turbines at 

5 miles from shore are visually indistinguishable from the larger turbines at greater distance.11   

Our images show turbines that are spaced 0.5 miles apart, and laid out in a square grid, 

which is considered one of the least visually intrusive layouts (UK DTI, 2005).  For perspective, 

if a person were standing on the beach at the center of a 144 turbine farm placed 5 miles from 

shore (the most visually intrusive image used in our survey), the turbines would completely fill 

her peripheral vision while looking out to sea.  In contrast, if there is no haze, 144 turbines at 18 

miles from shore would appear as a small, unified object on the horizon.  Visualizations were 

developed using the software WindPRO (version 2.7), which allows users to insert scale-accurate 

wind turbines into digital photographs.  The photographs used to construct our images were 

taken in May 2010 from the beach at one of the study areas by a professional photographer.  A 

generic seascape was used, and for scale, two people are shown in the foreground sitting on 

beach chairs.  In order to construct both day and night wind turbine visuals, photos were taken at 

noon and late dusk; these provided the background images for the daytime and nighttime 

visualizations.  The day and night photos were taken at the same location, with the same two 

people in the same two chairs, which had not been moved.  In the nighttime visualizations, the 

perimeter turbines are lit with a red beacon.   

As part of our experimental design, half of the surveyed households received a booklet 

                                                                                                                                                             
Vineyard (www.dwwind.com).  In addition, the distances of turbines from shore in our survey are similar to those 

used in previous studies (Krueger et al. 2011; Ladenburg, 2007). 
11 Visualizations from the public forums are available at www.boem.gov/Renewable-Energy-

Program/State-Activities/NC/003-Kitty-Hawk-Afternoon.aspx.  Last accessed June 2015.   
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containing only daytime images of wind turbines, and the other half received both day- and 

nighttime images.  For ease of exposition, we refer to the survey that includes both day and night 

images as the nighttime treatment, and the survey with only day images as the daytime treatment.  

All participants received a description in the survey that turbines are lit at night and flash in 

unison every two seconds, regardless of whether or not nighttime visualizations were included.   

The distance from shore and turbine count attributes (and associated visualizations) were 

combined with a change in the rental price of the beach home that the person had previously 

visited.  Specifically, people were asked to interpret the visualizations as the view that they 

would have when standing on the beach, after walking from their rental unit.  Thus people were 

asked to consider configurations of a familiar property that varied only in the rental price and the 

view from the beach near the unit.  Seven levels were used for the price change attribute, ranging 

from a 5 percent increase to a 25 percent decrease (see Table 1 for the levels).12  Though we used 

percentage change in our design, survey respondents were given the actual dollar amount of the 

rental increase/reduction implied by the percentage change.  Rental rates for our sampled 

properties ranged from $2,000 to $10,000 per week, which is the typical range along the NC 

coast during peak summer season.13   

Figure 1 shows an example choice question.  Each choice task paired two designed 

alternatives with a status quo or ‘baseline’ option.  The baseline included 144 turbines placed out 

of visible range and no change in rental price.  This was done so the amount of wind energy 

                                                 
12 Focus groups and the previous literature have suggested that visible offshore wind turbines are a negative 

amenity, and so only one rental price increase was considered (Krueger et al. 2011; Ladenburg and Dubgaard, 2007; 

Westerberg, Jacobsen and Lifran, 2011). 
13 Survey respondents were also asked to report the rental price for their recent trip, both as a reminder of 

the baseline cost and as a device for us to check that the rental prices we have on record match the renter’s recall.  

Respondents’ answers almost always matched our records. 
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produced was identical across all choices, which allows us to isolate the impact of the viewshed 

change, without the confounding effect of preferences people may have for renewable wind 

energy production.  The designed scenarios paired visible wind turbines with rental price 

changes.  Subjects were asked to rank each alternative from best to worst, which is equivalent to 

a best-worst scaling design when there are only three alternatives (Finn and Louviere, 1992; 

Marley and Louviere, 2005).  

To control the visual cues that respondents received, the survey was professionally 

printed on high-quality paper.  An internet survey was ruled out because wind turbines are small 

features in a photographic context, and the visual impact varies dramatically across computers, 

depending on the monitor size, type and quality, as well as the viewing angle.  Instead, each 

choice question was presented on an 8.5 by 11 inch (letter size) page, which contained images 

for the two designed alternatives as well as the attribute levels.  The baseline image (no turbines 

in view) was included as a separate photo that was clipped to the page with the sample choice 

question.  Respondents were asked to remove the image and place it next to the booklet as they 

made their choice decisions.  All images in the survey, including the baseline image, were 4 by 6 

inches.  In the nighttime treatment, day and night images were paired with each other by placing 

them on facing pages, with a connecting line placed between them.  A Bayesian efficient design 

(Hensher et al., 2005; Ferrini and Scarpa, 2007) was used to construct the choice tasks presented 

to respondents.  The final main effects and interactions design consisted of 16 choice questions 

divided into two blocks, so that each respondent completed eight choice tasks.  

The survey booklet contained five main sections.  To begin, respondents reported their 

visitation patterns to the North Carolina coast, and their experience with both onshore and 

offshore wind energy.  An introduction to offshore wind energy was also given, consisting of a 
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discussion of wind turbine size and design, wind farm layouts, and the technical visibility 

parameters of wind farms, including a description of how they are lit at night.  Following the 

wind energy introduction, attributes of the choice questions and their levels were described, and 

respondents were shown an example question.  They then completed the eight choice tasks and 

several debriefing and attitudinal questions.  Finally, a set of demographic questions ended the 

survey.14   

 

3) Summary statistics 

A total of 792 surveys were mailed in January, 2012 and 484 completed, usable surveys 

were ultimately returned, implying a response rate of 62.27 percent.  There are no statistically 

significant differences in the response rates by rental location along the coast, by daytime or 

nighttime treatments, or between oceanfront versus non-oceanfront homes.   

Table 2 presents characteristics of our sample.  Beach home renters are a relatively 

homogeneous group of white, highly-educated, high-income, working-age adults who are either 

somewhat or very interested in environmental issues (98 percent).  The majority of vacationers 

are residents of North Carolina (26 percent) or neighboring Virginia (30 percent).  Additional 

summary statistics show that respondents have a strong affinity for vacationing at North Carolina 

beaches.  Over half of respondents have visited the North Carolina coast every year since 2007.  

Eighty percent indicated they usually visit the same general location, and nearly a third of 

respondents report renting the same house from year to year.  Additionally, 99 percent of 

respondents indicated that their vacation time is mainly spent on the beach in front of, or within 

walking distance of, their rental unit (not reported in the table).  

                                                 
14 Complete survey booklets for both the daytime and nighttime treatments are available as online 

supplemental material.   
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Respondents indicated reasonable levels of prior experience with wind farms, in that 53 

percent reported having seen a wind farm with more than ten turbines.  Not surprisingly, 

however, only 18 people (less than 4 percent) indicated that they had seen an offshore wind farm.  

After reviewing the survey’s technical information on wind energy and viewing the images, 

respondents were asked to report how they thought an offshore wind farm in North Carolina 

would impact the environment and economy.15  Survey participants first filled out a five-point 

Likert scale indicating if they believed offshore wind would have a positive, neutral or negative 

effect on marine life, bird life, recreational boating and fishing, and climate change.  Figure 1A 

in the appendix presents a summary of these responses.  The largest proportion of respondents 

were unsure about the environmental impacts of offshore wind energy, with the exception of 

climate change, where 47 percent of respondents answered there would be no impact.16  Among 

the environmental impacts listed, respondents thought that bird life would be most negatively 

impacted (47 percent indicated a somewhat negative or negative impact), followed closely by 

recreational boating and fishing (43 percent expected a somewhat negative or negative impact).   

Survey participants also completed a Likert scale recording their beliefs about how an 

offshore wind farm might impact coastal tourism, coastal property values, and electricity prices 

in North Carolina.  Fifty-five percent of respondents felt electricity prices in North Carolina 

would at least somewhat decrease as a result of offshore wind energy development, which is 

contrary to international experience thus far.  Very few respondents felt there would be an 

increase in coastal tourism (<6 percent) or property values (<5 percent) as a result of developing 

                                                 
15 During the technical discussion of wind turbines, potential impacts on environmental outcomes were not 

discussed.  
16 This latter result is sensible, since the survey focused on the development of a single offshore wind farm, 

and not national-scale energy policy.   
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offshore wind energy, and the majority thought coastal tourism and property values would 

decline at least somewhat (44 and 58 percent, respectively). 

 

Choice question summary 

Figure 2 presents a summary of answers to the choice questions for the entire sample 

(first row) and for separate subsamples of the respondents.  Several clear patterns emerge.  First, 

a plurality of respondents (42 percent of the sample) revealed a strong preference for not seeing 

wind turbines by always selecting the option with all 144 wind turbines placed out of visual 

range and no change in rental price.17  Approximately 40 percent of the people in this group 

indicated in follow-up questions that the rent reduction was not important in their choices, and 

that they would not select a wind farm view even if the price decrease was larger than presented 

in the survey.  Figure 2 also shows that 47 percent of nighttime treatment respondents always 

chose the baseline scenario with no turbines visible.  This is statistically different from the 38 

percent of daytime treatment respondents who always chose the baseline scenario.  There is also 

a significant difference in the proportion of respondents always choosing the baseline scenario 

for oceanfront home renters (47 percent), and those renting non-oceanfront homes (37 percent).   

Figure 2 further shows that 17 percent of the full sample always chose an alternative with 

visible wind turbines, and there is no statistical difference in this proportion across the sample 

segments.  Of the 80 individuals always choosing an alternative with visible wind turbines, 61 

percent reported that they did not mind seeing turbines so long as they also received a price 

discount, 15 percent indicated they did so because they liked the way wind turbines look, and 41 

percent reported they did so because they were strong supporters of wind energy.  Finally, Figure 

                                                 
17 The summaries that follow use 476 respondents because eight people left more than two choice tasks 

blank or answered the choice questions incorrectly. 
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2 also indicates that 41 percent of respondents selected status quo and visible turbine options at 

some point in their sequence of choices (the ‘Mixed Choices’ category in Figure 2), and there is 

not a statistical difference in this proportion across the sample segments.   

Table 3 presents an additional summary of choice question responses, examining 

instances when a respondent had the opportunity to pay more for a wind turbine view, or could 

select a wind turbine view with no price change.  Across all surveys, there were 1,849 completed 

choice questions that included an option with a wind farm view, and no change in rental price or 

a five percent increase in rental price.  Overall, these alternatives were ranked first by 

respondents only 5.6 percent of the time.  The last column indicates that just over 15 percent of 

respondents ranked a view first when it included a view of turbines without a price discount.  

These summaries support the notion that wind turbines are a visual disamenity, and that the 

majority of vacationers surveyed have an unambiguous preference for viewsheds that do not 

include offshore wind turbines.   

 

4) Econometric model 

The summary statistics in the previous section suggest the likelihood of heterogeneity in 

preferences regarding offshore wind farms, and so our empirical approach should accommodate 

this.  There are two dimensions to consider.  The first is preference heterogeneity, which is our 

primary interest.  Different types of people are likely to experience differential impacts from 

wind turbine views, and so our estimates need to reflect variation in the marginal utilities 

associated with the different levels of our choice experiment attributes.  The second is scale 

heterogeneity, which is important insofar as it affects our ability to estimate preference 

heterogeneity.  In the discrete choice econometric models used with choice experiments, it is 
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common practice to assume that the random component of utility has a normalized variance that 

is equal for all decision makers.  This normalization implies that any variation in utility function 

parameter estimates is attributed to preference heterogeneity.  However, the relative precision 

(‘scale’) of respondents’ answers may vary, even when preferences are homogenous.  To identify 

preference heterogeneity that is not confounded with scale heterogeneity, we need to explicitly 

incorporate both into our analysis.  For this reason we apply a scale-adjusted latent class model.18   

We begin by specifying the utility a person n receives from alternative j during choice 

situation c as 

  (1) 

where q is a vector of utility function parameters, and Xnjc is a vector that includes 

characteristics of the individual and the choice alternative.  The index q denotes membership in 

one of q=1,…,Q preference classes, and the index s denotes membership in one of s=1,…,S scale 

classes.  Thus heterogeneity in preferences is given by the discrete range of values that q and s 

can take, where s is the scale parameter associated with the type I extreme value distributed 

random variable njc|q,s.  This distributional assumption implies we are working with the logit 

class of discrete choice models.  For estimation, it is necessary to normalize one of the scale 

parameters to one.  Without loss of generality, we assume that 1=1, so that scale classes 

s=2,…,S are relative to scale class s=1.   

If we know the preference and scale classes to which each person belongs, as well as the 

                                                 
18 The use of latent class discrete choice models for preference heterogeneity is now fairly common; see 

Train (2009, p. 365) for a textbook discussion.  Latent class models that accommodate both preference and scale 

heterogeneity are newer and less common.  Thiene et al. (2015) include a detailed discussion of modeling preference 

and scale heterogeneity, and Thiene et al. (2012) provide an application valuing forest biodiversity that estimates 

both types.  Other examples of studies examining scale and preference heterogeneity include Flynn et al. (2010), 

Fiebig et al. (2010), and Burke et al. (2010).   

| , | , ,njc q s q njc njc q sU X  
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number of classes Q and S, estimation is via the usual conditional logit framework, which gives 

rise to probabilities of the form 

 

| ,

1

| ,

1

exp( )
Pr , 1,

exp( )

exp( )
Pr , 2,..., ,

exp( )

q njc
njc q s J

q nkck

s q njc
njc q s J

s q nkck

X
s

X

X
s S

X





 

 






 




 







 (2) 

where J is the number of choice alternatives.  Full sample maximum likelihood estimation based 

on these probabilities allows identification of preference class-specific utility parameters, which 

are not confounded with any potential scale differences.   

Of course, we do not know the total number of preference and scale classes, nor the 

specific classes to which each person belongs.  Class membership is therefore latent, and needs 

to be estimated as part of the model.  To this end, we assume that the probability that person n 

belongs to latent preference class q is determined according to the expression 

  (3) 

where q0 is a scalar, Zn is a vector of individual covariates (referred to as ‘active covariates’), 

and q=(q1,…qR) is a vector of coefficients that is compatible with Zn.  For identification we 

use the common restrictions 

  (4) 

Likewise, membership in a latent scale class s is determined by 

  (5) 
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  (6) 

 The expressions in (2) are conditional probabilities.  To derive estimating equations we 

need to state the unconditional probabilities and a person’s contribution to the likelihood 

function.  Since the probability of membership in a latent preference and scale class are 

independent, conditional on values for Q and S, the probability of observing person n choosing 

alternative j on choice occasion c is: 

  (7) 

To derive the likelihood for person n, let ynjc=1 indicate that the person chose alternative j on 

occasion c, with ynjc=0 otherwise.  Conditional on the model parameters and structure, the 

likelihood of observing person n’s sequence of choices is 

  (8) 

From this we can see that the log-likelihood function for a sample of N people has the form 
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Estimation of the parameters in (2), (3), and (5) is by maximum likelihood, though the 

nonlinearities inherent in (9) preclude the use of standard numerical search routines.  As such, it 

is now standard to estimate latent class models using the expectation-maximization (EM) 

algorithm (see Train, 2009, chapter 14).  Routines for estimating latent class models are available 

in commercial software packages; for this study we used Latent Gold Choice Version 4.5.19   

                                                 
19 The user manual for Latent Gold, available from http://www.statisticalinnovations.com/user-guides/, 

contains technical descriptions of the model and estimation.  Thiene et al. (2015) and Burke et al. (2010) provide 

accessible descriptions on how estimation of the scale adjusted latent class model proceeds.   
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 The estimation routine just described is conditional on values for Q and S (the number of 

preference and scale classes).  Ideally the estimation routine would search for the optimal 

number of classes, but this is not computationally or practically feasible, given the large number 

of possible combinations.  Instead, researchers estimate several models conditional on specific 

assertions for the class sizes, and then use information criteria, such as AIC and BIC, along with 

intuition and knowledge of the needs of the study, to select the best model.  We discuss the 

specifics of our selection criteria in the next section.   

 

5) Estimation and Results 

Specification 

The conditional utility function specification we use is 
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where dist and size denote the distance from shore and visible turbine attribute values. 

Specifically,  and  are effects-coded discrete variables indicating the attribute levels 

presented to person n for alternative j on choice task c.  In addition, pnjc is the rent for alternative 

j on choice task c, calculated based on a percentage adjustment from the actual price paid during 

the previous summer and recorded as a continuous dollar value for each survey respondent (see 

Table 1 for the attribute levels for distance, visible turbine, and price). The term ASCj is a 

dummy variable equal to one if alternative j is a turbines-visible designed option and equal to 

zero if the alternative is the baseline with no turbines in view and no change in rental price.  We 

refer to this term as the alternative-specific constant, or ASC.  Finally, OFn is a dummy variable 

equal to one if the person rented an oceanfront home.   

d
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For each preference class q, we are interested in estimating the attribute main effects 

 attribute interactions effects ,( , ),d l d
q q   the ASC parameter q  for options with 

viewable turbines, and a term  that shifts the ASC if the person rented an oceanfront 

property.20  Identification of effects-coded variables requires normalization; we follow 

convention and use 

 

4 3 4

1 1 1

3
,

1

0, 0, 0,

0, 1,..., 4.

d l d
q q q

d l d

d l
q

l

d

  



  



  

 

  


 (11) 

Latent class analysis requires decisions on which covariates to use for parameterizing the 

probabilities of class membership (the active covariates).  Researchers often use socio-

demographic variables for this, but the homogeneity of our sample in standard socio-

demographic measures (see Table 2), and our preliminary examination of observable 

heterogeneity, suggested these were not likely to be important for distinguishing among classes.  

Instead, we use the survey questions on respondents’ beliefs about the environmental and 

economic impact of offshore wind farms in North Carolina, to construct our active covariates 

(see section 3 and appendix Figure 1A).  Specifically, we use factor analysis to reduce the 

                                                 
20 We arrived at this specification via a systematic process of starting with the simplest models and 

gradually adding additional complexity.  Comparison of a conditional logit model with main effects and a 

conditional logit model with main effects and interactions confirmed that interactions were important for both our 

daytime and nighttime treatments.  Staying with the conditional logit model, we then examined observable 

preference heterogeneity via interactions between the main effects and ASC, and household/survey 

design/household activity characteristics.  While interactions in general did not reveal substantial observable 

heterogeneity, there was some indication that oceanfront property renters reacted differently to visible turbines than 

non-oceanfront renters.  Since the simple models suggested the important heterogeneity was likely to be unobserved, 

we pursued latent class analysis within a relatively parsimonious parametric utility function.  A detailed record of 

our specification analysis is provided in Lutzeyer (2013, pp. 184-188). 
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information contained in the Likert scale questions down to a two factor variables, which we 

then employ as active covariates.  Appendix Table 1A shows factor loadings from our analysis, 

which reflect correlations between the constructed factors and respondents’ Likert scale answers.  

For reasons described in the notes to Table 1A, we refer to Factors 1 and 2 as the ‘environmental 

factor’ and ‘public factor’, respectively.  Scores for the two factor variables are calculated for 

each individual in the sample, yielding two variables for use as active covariates in the latent 

class models.  Specifically, we use the environmental and public factors as covariates explaining 

preference class membership, and do not use active covariates for the scale class membership.21   

The final specification decision concerns the number of preference and scale classes.  As 

is standard for latent class models, we explored a series of models with an incrementally 

increasing number of preference classes, where each model was estimated multiple times using 

randomly generated starting values.  To determine our final number of classes, we used 

comparisons based on information criterion, the stability of models to different starting values, 

and intuition.  Appendix Table 2A presents information statistics for the nighttime and daytime 

treatments for models with two to five preference classes and two scale classes.  Based on these 

statistics and other criterion described in the table notes, we use three preference and two scale 

classes for our primary models. 

 

Model Estimates 

In this subsection we present parameter estimates for our primary nighttime treatment 

                                                 
21 In preliminary analysis we examined models that included the constructed factors as well as other 

household characteristics as active predictors of preference class membership.  We consistently found that the 

environmental and public factors were strong predictors of class membership, and that other variables were not 

significant.  Details on our factor analysis and specification decisions are provided in Lutzeyer (2013, pp. 135-138).    
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model.22  We first describe the general composition and choice behavior of respondents in each 

latent class.  Individuals are assigned to one of the three classes based on their largest class 

membership probability.  Table 4 reports summary statistics describing respondents’ choices and 

demographic characteristics by each latent class.  Panel A indicates that latent class 1 (LC1) 

captures almost 87 percent of respondents that always chose a view with visible turbines as their 

most preferred scenario.  We refer to this group as the All View class.  Latent class 2 (LC2), 

referred to as the Some View class, contains the majority of respondents that sometimes picked a 

view of turbines as their most preferred scenario, as well as 13 percent of those who always did.  

Finally, latent class 3 (LC3) captures the respondents that always ranked the baseline view as 

their most preferred scenario, as well as 17 percent of those who occasionally chose a view of 

turbines as their most preferred scenario.  The LC3 respondents reveal a strong preference for the 

status quo and accordingly are referred to as the Never View class.  The final row in Panel A 

reports that 54.4 percent of respondents are in the Never View class, indicating a strong 

preference among the majority of respondents for a view from their rental property that is free 

from turbines.  Panel B of Table 4 presents the membership in each latent class by household 

characteristics.  The proportion of people in each latent class is not statistically different across 

the different socioeconomic profiles.  This confirms that class membership is generally 

determined by unobserved preferences, rather than observable individual characteristics.   

The utility function parameter estimates are presented in Table 5.  Panel A presents 

estimates of the utility parameters for each class.  The first two columns show that only the price 

coefficient and turbine distance main effects for 5, 8, and 12 miles from shore are significant for 

                                                 
22 The latent class models and membership probabilities are very similar across the daytime and nighttime 

treatments, and so for succinctness we only discuss parameter estimates for the nighttime treatment.  Parallel results 

for the daytime treatment are presented in Appendix Tables A3 and A4 and are briefly described in the next section.   
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the All View class.  The distance main effects indicate that utility increases monotonically when 

visible turbines are moved further offshore, out to 12 miles.  For this class, the number of 

turbines does not influence choice, and there is no utility gained when visible turbines are moved 

from 12 to 18 miles offshore.  Finally, the price coefficient for the All View class is an order of 

magnitude larger than for the other two classes, suggesting members of this latent class are the 

most price conscious respondents.23 

The last two columns of Table 5 contain estimates for the Never View class.  The estimate 

for the ASC is large, negative, and significant, which stands in dramatic contrast to the ASC 

estimate for the All View class.  This implies a strong preference for the status quo with no 

visible turbines, and a large disutility associated with the choice of any designed scenario.  The 

price coefficient estimate, though negative and significant, is the smallest among the three 

groups, suggesting that rental price is comparatively unimportant for this class of respondents.  

This finding is driven by the fact that the members of the Never View class almost always chose 

the baseline option as most preferred, even when the price discount for a designed scenario was 

substantial.  Importantly for our interpretations, it also means that utility function parameters for 

the array size and distance attributes for this latent class are estimated from respondents’ 

rankings of non-preferred options (i.e. their second and third place choices), an important point 

we return to when describing welfare measure results in the next section.  Nonetheless, several of 

the size and distance main effects and interactions are statistically significant for the Never View 

class.  For a given wind farm size, utility increases monotonically in the distance of visible 

                                                 
23 The magnitudes of marginal utilities are not formally comparable across latent classes due to the scale 

normalization.  However, a comparison of the size of the price effect for LC1 relative to the size of the other 

marginal utilities in LC1 supports the assertion that the All View respondents are the most attentive to price.  Similar 

logic suggests that respondents in the Never View class are the least price responsive.   
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turbines from shore.  Similarly, for a given distance from shore, utility is decreasing in the size of 

the wind farm.  The results also indicate that the oceanfront location impacts preferences, in that 

respondents who rented an oceanfront property generally have a stronger preference for moving 

wind farms further offshore.  The exception is for turbines placed five miles out, for which the 

disutility is not statistically different among oceanfront and non-oceanfront renters. 

Table 5 also shows that the ASC for the Some View class is negative and significant, 

suggesting this class also prefers a viewshed without visible turbines.  However, the magnitude 

of the ASC suggests that preferences are more nuanced for this group, as compared to the Never 

View class.  As with the other classes, Some View respondents have a clear preference for 

moving visible turbines further offshore, and they prefer smaller farms.  The negative and 

significant estimate on the interaction term 5miles×oceanfront indicates that the disutility from 

close-in wind farms is larger for oceanfront renters in the Some View class, relative to those who 

rented further inland.  Moreover, the negative and significant interaction between the ASC and 

an oceanfront location suggests that respondents in this class who had rented an oceanfront 

property are less likely to choose a designed scenario as their most preferred scenario as 

compared to non-oceanfront renters.   

Finally, panels B and C in Table 5 show estimates for the class membership probabilities.  

Panel B indicates that people who believe wind energy will have a positive impact on 

environmental and public factors were significantly more likely to be in the All View class and 

significantly less likely to be in the Never View class.  Only the environmental factor was 

significant in determining class assignment for the Some View class, where the estimate indicates 

that respondents who believe offshore wind energy would have positive environmental impacts 

are somewhat less likely to be in the Some View class.  Panel C presents estimates for the two 
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scale classes.  Each preference class can contain respondents belonging to either scale class.  

Here we see that the relative scale parameter is significantly smaller for respondents in the 

second scale class (SC2), indicating that they have a higher error variance than the reference 

scale class (SC1), and the sample is split approximately equally among the two scale classes. 

 

Welfare Estimates for Changes in the Viewshed 

We use the parameter estimates from Table 5 to compute point estimates and 90 percent 

confidence intervals for the marginal willingness to accept (MWTA) among the three preference 

classes for a range of changes in viewsheds.24  In what follows we first summarize estimates for 

the nighttime treatment as our main findings, and then discuss comparisons with the daytime 

treatment below.  Figures 3 and 4 present our estimates for the nighttime treatment respondents 

who either rented oceanfront or non-oceanfront (‘ocean side’) homes, respectively.  The figures 

show the price discount needed to rent the same property, with visible turbines moved 

incrementally closer to shore (i.e., the marginal willingness to accept a price discount).  

Estimates for three scenarios that change turbine distance from 18 to 12 miles, 12 to 8 miles, or 8 

to 5 miles, are presented by latent class and number of turbines visible.   

Inspection of Figures 3 and 4 reveals several patterns.  First, MWTA is always positive 
                                                 

24 Point estimates for MWTA are computed as the ratio of estimated coefficients for the characteristics of 

interest, and the estimated coefficient for the price variable.  Specifically, the MWTA for latent class q for a change 

from distance d to distance e for a given number of visible turbines l is 
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Note that, although utility parameter estimates are not directly comparable across latent classes due to the scale 

parameter, MWTAs are comparable, because the scale parameter drops out when taking the ratio of parameters (see 

Phaneuf and Requate, 2016, chapter 16 for a discussion of the MWTA derivation within this context).  Confidence 

intervals are computed using the Krinsky and Robb (1986) procedure, where the 5th and 95th percentiles of the 

resulting empirical distribution are used to construct 90 percent confidence intervals.   
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when it is statistically significant.  There are no wind farm scenarios, for any of the latent classes, 

in which respondents indicated they would be willing to pay more to rent a property with 

turbines in view (i.e., have a statistically significant negative MWTA).  At best, some 

respondents under some scenarios would not require a discount to rent a home with turbines in 

view.   

Second, the point estimates imply an ordering in which 

 NeverView SomeView AllViewMWTA MWTA MWTA   

holds for almost all combinations of turbine distance change, array size, and property location 

(oceanfront or ocean side).  However, the estimates for the All View and Some View classes are 

much more precise than the estimates for the Never View class.  This is due to the fact that 

respondents in the latter category almost always selected the status quo option as their most 

preferred alternative, and thus there is little response to price and view changes upon which the 

coefficients are identified.  Instead, identification comes from the respondents second and third 

choices, which are expected to be noisier given the strong preference for not viewing turbines.   

The third pattern that emerges is that the Never View respondents would likely exit the 

rental market if turbines were present, rather than make intensive margin tradeoffs among rental 

price and characteristics of the viewshed.  This follows from the large point estimates, wide 

confidence intervals, and strong preference for the status quo among this class of respondents.  In 

contrast, the estimates suggest that the All View and Some View classes would, in some scenarios, 

stay in the market in exchange for small to moderate sized reductions in rent.  Lastly, conditional 

on a preference class, the MWTA for a distance change scenario is not statistically different 

across the number of visible turbines.  Similarly, comparisons of Figure 3 to Figure 4 indicate 

that, with some exceptions, the estimates are not statistically different for oceanfront and ocean 
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side rental locations, though the magnitude differences are often economically important.  See 

appendix Figure 2A for a side-by-side comparison of MWTA for oceanfront and ocean side 

renters, for the All View and Some View preference classes. 

Overall, the combined results suggest the negative visual effects lie in the existence of 

turbines and their distance from shore, rather than the array size.  Further, they imply that the 

oceanfront versus ocean side (near-beach) distinction may matter, but to a lesser extent than 

distance from shore.  These general patterns can be further appreciated via reference to specific 

estimates.  The figures show that the All View class would not require a discount for the 

scenarios moving turbines 18 to 12 miles or 12 to 8 miles, but nor would they pay extra to see 

turbines closer to shore.  For the more intrusive case of moving turbines from 8 to 5 miles from 

shore, ocean side renters continue to have zero MWTA, while oceanfront renters would require a 

small discount.  For example, a discount of $300 is required for a 144 turbine array at five miles 

(as compared to eight miles), which is approximately six percent of the average rental price of 

$4,700.  In contrast, there are no scenarios in which the Never View respondents would accept an 

economically plausible discount to stay in the market:  the point estimates for moving 144 visible 

turbines from 18 to 12 miles distance from shore are close to $3,000 for both the oceanfront and 

ocean side renters in this class.  Since the Never View class predominantly chose the baseline 

view as the most preference choice, these figures indicate this group is not making choices at the 

intensive margin between rental price and viewshed characteristics.  Instead, they are more likely 

to make an extensive margin decision to exit the local market by vacationing at a substitute 

beach town. 

The estimates for the Some View class indicate that large, but in some cases plausible, 

discounts are needed for these respondents to stay in the market.  Discounts of nearly $1,500 and 
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$500 are required for oceanfront and ocean side renters, respectively, to re-rent their unit with 

144 visible turbines brought from 8 to 5 miles of shore.  Given that the estimates are not 

sensitive to the number of visible turbines, the figures suggest oceanfront renters in the Some 

View class are likely to exit the market if any number of visible turbines were placed 5 miles 

from shore.  In contrast, discounts in the ten percent range may be sufficient for ocean side 

renters to continue in the market.   

For distances of eight miles or greater, smaller discounts are required for the Some View 

class to re-rent with turbines in the viewshed.  For example, oceanfront renters would require an 

average discount centered around $500 to rent a home with 144 visible turbines 12 miles from 

shore, as compared to 18 miles.  If the comparison is between homes with 144 turbines 8 miles 

from shore rather than12 miles, they would require a $900 discount to rent the home.  For the 

100 and 64 turbine scenarios, these point estimates fall to $250 and $400, respectively (see 

appendix Figure 2A).   

 

Nighttime versus daytime treatments 

The results for the daytime treatment are qualitatively similar to the nighttime treatments, 

and so the parallel estimates are presented in appendix Tables A3 and A4.  Inspection of the 

estimates suggests the same pattern of choices across three latent classes as for the nighttime 

treatment, and the proportion of respondents in each of the three latent classes is similar for the 

two treatments.  Furthermore, the proportion of people in each latent class for the daytime 

treatment does not vary across the different socioeconomic profiles, again suggesting that class 

membership is determined by unobserved preferences, rather than observable individual 

characteristics.  Finally, the daytime treatment utility parameter estimates reveal similar patterns 
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as their nighttime treatment counterparts.  Parameter estimates again imply that turbines further 

offshore are preferred by all latent classes, and that smaller turbine arrays are preferred to larger 

arrays, although the coefficient estimates are not significant for the All View class.25 

Appendix Figures 3A and 4A present MWTA estimates for the daytime treatment that are 

akin to those presented for the nighttime treatment in Figures 3 and 4.  A comparison indicates 

that the MWTA estimates are generally larger for the nighttime treatment, with most substantial 

differences found in the Some View class – especially as turbines are moved closer to shore.  In 

two of the three distance changes considered, the discounts required by the Some View class in 

the nighttime treatment were nearly twice as large as those from the daytime treatment.  

Although 90 percent confidence intervals for many MWTA estimates overlap, the economic 

differences are significant.  The results suggest that past studies may have understated the 

potential impact of wind farms in tourism settings, since all previous surveys only consider 

daytime images of turbines (e.g., Ladenburg and Dubgaard 2007; Ladenburg and Dubgaard 

2009; Krueger 2007; Westerberg et al. 2011; Landry et al. 2012). 

 

6) Conclusions 

Offshore wind energy development can create global public benefits by offsetting 

carbon-intensive energy sources, yet these benefits come with locally-borne costs.  Our choice 

experiment with customers renting coastal vacation properties unambiguously indicates that 

viewing a utility-scale offshore wind farm from a beach rental property is a disamenity for these 

individuals.  There was no wind farm scenario, for any group of respondents, in which visitors to 

the coast indicated that they would be willing to pay more to rent a property with turbines in 

                                                 
25 The nighttime and daytime latent class and utility parameters comparisons are based on information in 

Tables 4 and A3 and Tables 5 and 4A, respectively.   
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view, as compared to one with no turbines in sight.  Even more striking is that over 50 percent of 

those surveyed indicated they would not return to the same beach for their next rental should a 

utility-scale wind farm be placed offshore.  This is true despite wide-spread support for wind 

energy development among these same respondents. 

Although our results are broadly consistent with the majority of stated and revealed 

preference studies, our respondents exhibit a more pronounced negative reaction to altering the 

viewshed than has been reported in the past.26  Three main factors likely contribute to this result.  

First, our survey design holds constant the amount of wind energy produced in all scenarios, 

including those where all turbines are too far out to see.  As such, we are able to distinguish pure 

viewshed preferences from preferences for green energy in a way past studies have not (e.g., 

Krueger et al., 2011).  Second, the North Carolina beaches, like many eastern US coastal 

communities, enjoy a loyal customer base that engages in repeat visitations.  Fifty-five percent of 

respondents indicated that they had rented a home in the same area each summer for the past five 

years.  Given this strong affinity for the in-situ amenities at these communities, it is not 

surprising that respondents indicated a strong preference for the status quo.  Lastly, we are the 

first to include nighttime images of turbines whose nacelles are lit, presented side-by-side with 

daytime images of the same turbines.  In a split-sample design, we find that individuals react 

more negatively to wind farms when nighttime images are included in the survey (as compared 

to just a verbal description of the turbines being lit at night). 

What do our results imply for actual rental prices in that event that a utility scale wind 

farm were constructed?  The answer depends on how the different preference classes in the 

renting population re-sort in response to a wind farm, and how far out from shore the turbines are 

                                                 
26 For example, Krueger et al. (2011).  
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placed.  If the turbines are further than 8 miles from shore, our results suggest rental demand by 

one segment of the population will not be affected (the All View class).  The other segments may 

exit the market, perhaps causing the rental price to fall.  However, other potential renters similar 

to the All View group will be attracted by these lower prices and will sort into the affected local 

market.  If the wind farm effect is localized, this re-sorting – small in comparison to the overall 

NC coastal rental market – will result in unchanged equilibrium prices.  In this scenario, the 

welfare effects consist of adjustment costs to the new equilibrium:  property owners may need to 

incur costs to attract new customers, and long-time renters will need to bear search costs when 

selecting an alternative vacation home.   

If turbines are built closer than eight miles from shore, our results indicate that rental 

rates will decrease by five percent in equilibrium since a five percent discount is the average 

discount required by the All View latent class to accept a view of turbines 5 miles from shore as 

opposed to 8 miles from shore.  Our assumption here is that demand among existing and 

potential All View renters in the local market is affected by the altered viewshed and that the 

overall number of affected rental homes is small relative to the overall NC market.  Thus there is 

re-sorting among different preference classes, with All View renters remaining in, or sorting to, 

the affected area and requiring a discount to rent a home.  Once again, property owners and 

renters will bear non-zero transactions costs during the adjustment to the new equilibrium.   

From a state or national policy perspective, the welfare losses associated with a single 

wind array close to shore will be small.  However, from a local jurisdictional perspective, the 

losses could be substantial.  A review of coastal townships in North Carolina indicates that the 

majority are small jurisdictions with less than six square miles of land within their municipality 

borders.  For context, the first row of a 144 turbine array set in a twelve by twelve grid pattern 
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would span 5.5 linear miles.  When placed five miles from shore directly in front of a 

jurisdiction, the turbine array would imply significant viewshed impacts for most of the 

properties in an average-sized NC beach town.  A five percent reduction in rental value, and 

commensurate reductions in property values, occupancy taxes, and property taxes, would apply 

to most of the rental properties located within the jurisdiction’s borders.   

The potential for high localized costs leads naturally to the question of whether moving 

visible turbines further offshore would pass a benefit-cost test.  Given the minimal price impacts 

for arrays further than eight miles from shore, it is unlikely that moving turbines beyond eight 

miles will generate net benefits from this baseline.  However, for projects that are proposing 

distances closer than 8 miles from shore, things may be different.  As a first order approximation 

exploring this issue, we use tax parcel maps for the northern North Carolina coastline to 

determine the average number of rental properties that would be directly impacted by a 144 

turbine array placed five miles from shore.  We compute the average number of oceanfront 

homes and the average number of non-oceanfront homes within a two-mile radius of the center-

point of the array, and assume they are directly impacted by the viewshed change.  Rental 

discounts required to move an array from eight miles to five miles from shore are then applied to 

the average rental prices for these homes, and we compute the net present value of the total 

annual rental losses using an eight percent discount rate over 20 years.27  Our calculations 

suggest estimated losses for a beach community of average development density are $31 million.   

To pass a benefit-cost test, the upfront capital costs associated with moving 144 turbines 

three miles further out to sea would need to be less than $31 million.  Myhr (2014) suggests that 

export cables bringing offshore energy to shore cost approximately $782,000 per mile, on 

                                                 
27 An eight percent discount rate and 20 year time horizon was chosen to be consistent with recent estimates 

that calculate the costs of moving wind farms further from shore (Myhr, 2014). 
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average, with lower and upper bounds of $626,000 to $938,000.  Without other changes in costs, 

it is clear that moving turbines from five to eight miles would generate positive net benefits.  Of 

course, there are many factors that impact siting decisions, including water depth, seabed 

materials and topography, access to onshore support facilities, and potential locational conflicts 

such as interference with shipping lanes.  Nonetheless, our results plausibly suggest the potential 

for both efficiency and distributional gains from the reduction of visual impacts of near-shore 

wind farms. 

Our results are likely to apply beyond North Carolina.  As Bennett (2013) demonstrates, 

most of the US Atlantic coast has seasonal vacation rental homes as the dominant development 

pattern, similar to in North Carolina.  To the extent that coastal communities share the same 

characteristics as those along the NC coast – i.e. dominated by vacation rental homes with a 

significant base of repeat customers – our estimates are likely to be transferable.  Indeed, the 

local opposition to every proposed offshore wind project thus far in the US is indicative that our 

results may be representative for households that rent weekly vacation homes along the eastern 

seaboard.  Of course, similar studies in other locations would need to be conducted to conclude 

this with confidence. 
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Table 1. Attributes and attribute levels used in choice experiment 

Attribute Levels Status Quo 

Distance of turbines from the shore 5, 8, 12, 18, 30a miles 30a miles 

Total number of turbines built 144b 144 

Number of turbines visible from the shore 
(implied number built too far out to see) 

64 (80), 100 (44), 144 (0) 0 (144) 

Change in rental pricec 
+5%, 0%, 5%, 10%,  

15%, 20%, 25% 
0% 

aTurbines 30 miles from shore are not visible.   

bThe total number of turbines built does not vary across choices, only the number visible from shore. 

cPercentages are used to generate the experimental design.  The percentages were converted into absolute 

price changes for respondents in the choice questions, based on each home’s actual rental price. 
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Table 2: Summary statistics of demographic characteristics 

Variable (definition) 
Count 

(Total Responses) Percent 

College = 1 (four-year college degree or higher)  408 (465) 87.7 

White = 1 (Caucasian, not of Hispanic origin) 445 (462) 96.5 

Working age = 1 (age between 26 and 65)  353 (463) 76.3 

Female = 1 270 (465) 58.1 

Employed = 1 (employed, including self-employed) 298 (462) 64.5 

Retired = 1 (retired or not working by choice) 163 (462) 35.3a 

Environmental =1 (somewhat interested or interested in 
environmental issues) 

456 (465) 98.0 

Household income:   

less than 70,000 = 1 47 (432) 10.9 

$70,000 to $100,000 = 1 94 (432) 21.8 

$100,000 to $150,000 = 1 115 (432) 26.6 

greater than $150,000 = 1 176 (432) 40.7 

State of residence:   

North Carolina = 1 127 (484) 26.2 

Virginia =1 144 (484) 29.8 

Owner = 1 (own a beach house along the NC coast) 13 (465) 2.8 

Always rent = 1 (visited NC coast each year since 2007) 270 (484) 55.7 

Same area = 1 (when at NC coast, usually vacation in the 
same township or locality) 

386 (484) 79.7 

Same house = 1 (when at NC coast, rent same house 
each vacation) 

150 (484) 31.0 

aThe categories ‘employed’ and ‘retired’ do not sum to 100, as 2 percent of respondents indicated they 

were unemployed seeking work. 
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Table 3.  Summary of question responses when a wind turbine viewshed was accompanied by a 
price increase or no price discount 

Rental price 
change 

# of choice 
questions 

# of times option was 
ranked highest (%) 

Individuals 
ranking the option first 

(% of sample) 

+ 5 percent 913 36 (3.8%) 28 (6.1%) 

No price 
change 

1,080 76 (7.0%) 61 (13.3%) 

Totala 1,849 112 (5.6%) 77 (16.8%) 
aTotal includes all questions containing a view of turbines paired with price a price increase or no change.  

Total for number of choice questions is less than the sum of individual categories because a price increase could be 

paired with an option having no change in price, with both having visible turbines.   
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Table 4.  Summary of latent classes by choices and characteristics 

Panel A: Number of Individuals in Each Category 

Frequency a turbine 
view is most preferred 

All View 
(LC1) 

Some View 
(LC2) 

Never View 
(LC3) 

Total 

Always  26 4 0 30 

(percent of total) (86.7) (13.3) (0) (100) 

Sometimes  17 51 14 82 

(percent of total) (20.7) (62.2) (17.1) (100) 

Never  0 0 103 103 

(percent of total) (0) (0) (100) (100) 

Total 43 55 117 215 
(percent) (20.0) (25.6) (54.4) (100) 

Panel B: Proportion of individuals in each class by respondent characteristics 

 
All View 
(LC1) 

Some View 
(LC2) 

Never View 
(LC3) 

 

Area rented     

No. Outer Banks 0.20 0.24 0.56  

So. Outer Banks 0.19 0.27 0.55  

So. Brunswick 0.21 0.26 0.52  

Gender     

female 0.18 0.30 0.53  

male 0.25 0.19 0.56  

Residence     

Outside NC 0.21 0.26 0.53  

NC 0.18 0.24 0.58  

Retirement status     

Not retired 0.19 0.26 0.55  

Retired 0.23 0.25 0.51  

Annual Income:     

≤ $150,000 0.18 0.28 0.54  

> $150,000 0.23 0.22 0.55  
.
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Table 5.  Final scale adjusted latent class model (nighttime treatment) 

 All View (LC1) Some View (LC2) Never View (LC3) 
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Panel A: Preference classes 

5 miles 1( )   -2.032** 0.878 -7.401*** 1.166 -4.956*** 0.911 

8 miles 2( )  0.665** 0.337 0.345 0.431 -0.527 0.366 

12 miles 3( )  1.049* 0.584 2.365*** 0.409 1.398*** 0.295 

18 miles 4( )  0.319 0.404 4.692*** 0.535 4.085*** 0.776 

64 turbines 1( )  -0.080 0.326 0.626** 0.307 0.612* 0.335 

100 turbines 2( )  -0.020 0.411 -0.080 0.388 0.365 0.222 

144 turbines 3( )  0.100 0.391 -0.546 0.369 -0.977*** 0.329 

5miles 64 turbines 1,1( )  0.285 0.59 1.434* 0.766 1.718** 0.839 

5miles 100 turbines 1,2( )  0.226 0.856 -2.248** 0.917 -0.723 0.551 

5miles 144 turbines 1,3( )  -0.511 1.079 0.814 1.265 -0.995* 0.546 

8miles 64 turbines 2,1( )  -0.114 0.526 0.726* 0.420 -0.747 0.735 

8miles 100 turbines 2,2( )  -0.829 0.694 1.391** 0.604 1.692*** 0.641 

8miles 144 turbines 2,3( )  0.943 0.863 -2.117*** 0.819 -0.945 0.783 

12miles 64 turbines 3,1( )  0.033 0.580 -1.25*** 0.430 -0.777 0.940 

12miles 100 turbines 3,2( )  -0.141 1.020 0.745* 0.438 0.195 0.565 

12miles 144 turbines 3,3( )  0.108 0.772 0.506 0.391 0.582 0.635 

18miles 64 turbines 4,1( )  -0.204 0.600 -0.909** 0.377 -0.193 0.438 

18miles 100 turbines 4,2( )  0.744 0.868 0.112 0.398 -1.165* 0.696 

18miles 144 turbines 4,3( )  -0.540 0.728 0.798 0.506 1.358** 0.586 

5miles oceanfront 1( )  -0.716 0.761 -2.953*** 1.069 -0.616 0.688 

8miles oceanfront 2( )  0.380 0.356 0.238 0.413 -0.931*** 0.341 

12miles oceanfront 3( )  -0.174 0.467 1.044*** 0.375 0.416* 0.225 

18miles oceanfront 4( )  0.510 0.337 1.671*** 0.490 1.131** 0.525 

Price ( )  -0.017*** 0.003 -0.006*** 0.001 -0.002*** >0.001 
ASC ( )  -0.264 0.535 -5.324*** 0.699 -19.336*** 3.286 
ASC oceanfront ( )  -0.467 0.357 -1.699*** 0.530 -2.408 1.628 

Panel B: Active Covariates 
Environmental Factor 0.713*** 0.181 -0.217* 0.125 -0.496*** 0.133 
Public Factor 0.655*** 0.159 0.113 0.134 -0.768*** 0.142 

Panel C: Scale classes 

 Est. Std. Err. Class size  
Scale(1) 1 Fixed 0.51  
Scale(2) 0.224*** 0.032 0.49  
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Figure 1.  Example choice question 
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Figure 2.  Percent of Respondents Who Always/Never/Sometimes Chose the Baseline Scenario 
as the Most Preferred Optiona 

 

aTotal number of respondents by category are given in parentheses. 
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Figure 3.  Marginal willingness to accept (in rental discounts) for oceanfront renters to move turbines closer to shore, by number of 
turbines visible and latent class categorya 

 

 
 

aPoint estimates are based on ratios of parameters shown in Table 5.  The MWTA for latent class q for a change from distance d to distance e for a given 
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d e l q q q q q q qMWTA               Confidence intervals are computed using the Krinsky and Robb (1986) 

procedure, where the 5th and 95th percentiles of the empirical distribution are used to construct 90 percent confidence intervals.   

 

-$1,000
-$500

$0
$500

$1,000
$1,500
$2,000
$2,500
$3,000
$3,500
$4,000
$4,500
$5,000
$5,500
$6,000
$6,500
$7,000
$7,500

64 100 144 64 100 144 64 100 144 64 100 144 64 100 144 64 100 144 64 100 144 64 100 144 64 100 144

All View Some View Never View All View Some View Never View All View Some View Never View

Turbines move 18 to 12 miles Turbines move 12 to 8 miles Turbines move 8 to 5 miles



 

 47

Figure 4.  Marginal willingness to accept (in rental discounts) for non-oceanfront renters to move turbines closer to shore, by number 
of turbines visible and latent class categorya 

 

 
 

aPoint estimates are based on ratios of parameters shown in Table 5.  The MWTA for latent class q for a change from distance d to distance e for a given 

number of visible turbines l is    , ,
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d e l q q q q q q qMWTA               Confidence intervals are computed using the Krinsky and Robb (1986) 

procedure, where the 5th and 95th percentiles of the empirical distribution are used to construct 90 percent confidence intervals.   
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Table 1A.  Likert scale questions and factor loadingsa 

 Factor 1b 
“Environmental 

Factor” 

Factor 2b 
 

“Public Factor” 
Effect on…(positive, no impact, negative impact) 
Marine life 0.7524 -0.0212 
Bird life 0.6062 0.1005 
Recreational boating & fishing  0.7996 -0.12 
Climate change 0.1561 0.0842 
Effect on…(increase, no impact, decrease) 
Coastal tourism 0.6289 0.3794 
Creation of permanent jobs 0.1826 0.5706 
Electricity prices in NC 0.1213 -0.7293 
Coastal property values 0.602 0.4115 
Commercial fishing revenues 0.7296 0.0675 
Government spending -0.1529 -0.4435 

aFactor loadings computed using principle components analysis with varimax rotation, conducted using the 

factor command in Stata.  Two factors were retained based on a Cattell (1966) scree plot (see Lutzeyer, 2013, p. 

213).  Factor variables for inclusion in the latent class specification were computed for each respondent based on 

linear combinations of the factor loadings and respondents’ Likert scale answers.   
bFactor loadings reflect correlations between individuals’ Likert scale answers and the constructed 

variables.  For example, the perceived impact on marine life has correlation with the Factor 1 variable of 0.75, and 

the perceived impact on electricity prices has correlation with the Factor 2 variable of 0.73.  Since Factor 1 is 

correlated with perceptions of wind farms related to environmental outcomes, we refer to it as the ‘environmental 

factor’.  Likewise, since Factor 2 is correlated with perception of wind farms related to fiscal and economic 

outcomes, we refer to it as the ‘public factor’.   
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Table 2A.  Information criteria values of estimated modelsa,b 

Classes 
Log 

Likelihood BIC AIC AIC3 CAIC Parameters R² 
Nighttime Treatment 
Preference heterogeneity and covariates 

2 -1638.8 3476.3 3351.5 3388.5 3513.3 37 0.54 
3 -1413.7 3133.5 2941.3 2998.3 3190.5 57 0.69 
4 -1366.0 3145.5 2886.0 2963.0 3222.5 77 0.72 
5 -1318.0 3157.0 2830.1 2927.1 3254.0 97 0.73 

Preference- and two scale heterogeneity and covariates 
2 -1522.8 3255.1 3123.7 3162.7 3294.1 39 0.61 
3 -1369.8 3056.4 2857.6 2916.6 3115.4 59 0.73 
4 -1318.0 3060.2 2793.9 2872.9 3139.2 79 0.74 
5 -1271.4 3074.5 2740.8 2839.8 3173.5 99 0.76 

Preference- and two scale heterogeneity 
2 -1647.0 3494.3 3368.0 3405.0 3531.3 37 0.61 
3 -1493.7 3285.0 3097.4 3152.4 3340.0 55 0.72 
4 -1442.8 3280.6 3031.6 3104.6 3353.6 73 0.73 
5 -1398.0 3288.4 2977.9 3068.9 3379.4 91 0.75 

Daytime Treatment 
Preference heterogeneity and covariates 

2 -2079.3 4361.8 4232.5 4269.5 4398.8 37 0.55 
3 -1839.9 3992.9 3793.8 3850.8 4049.9 57 0.66 
4 -1754.1 3931.1 3662.2 3739.2 4008.1 77 0.69 
5 -1692.1 3917.0 3578.1 3675.1 4014.0 97 0.72 

Preference and two scale heterogeneity and covariates 
2 -1968.3 4150.8 4014.5 4053.5 4189.8 39 0.59 
3 -1756.1 3836.3 3630.2 3689.2 3895.3 59 0.69 
4 -1693.6 3821.2 3545.3 3624.3 3900.2 79 0.72 
5 -1635.3 3814.4 3468.6 3567.6 3913.4 99 0.76 

Preference- and two scale heterogeneity 
2 -2062.3 4329.3 4198.7 4235.7 4366.3 37 0.5897 
3 -1850.1 4004.2 3810.1 3865.1 4059.2 55 0.6949 
4 -1787.4 3978.4 3720.8 3793.8 4051.4 73 0.7161 
5 -1726.1 3955.4 3634.2 3725.2 4046.4 91 0.7351 
aInformation criteria (IC) include Bayesian (BIC), Akaike (AIC), Akaike-3 (AIC3), and corrected-AIC 

(CAIC).  Values are presented for models that only include preference heterogeneity, and preference and scale 

heterogeneity, distinguished by treatment.  For both treatments, including preference and scale heterogeneity with 

active covariates leads to the lower (preferred) IC values for any number of preference classes.   
bFor models that include scale and preference heterogeneity with covariates, BIC and CAIC criteria 

indicate 3 latent classes are preferred for the nighttime treatment, while a higher number is preferred based on AIC 

and AIC3 measures.  For the daytime treatment, the criteria generally decrease with additional classes.  However, 
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for both treatments, we found that models with four or more classes are not robust to starting values, while three 

class models are always robust.  Based on (a) the BIC and CAIC tests for the nighttime treatment; (b) the numerical 

instability of models with more than 3 classes; and (c) our goal of representing heterogeneity in an intuitive and 

interpretable way, we settled on 3 latent preferences classes as our preferred specification.  Additional details on the 

iterative process used to evaluate different class structures is given in Lutzeyer (2013, pp. 140-141).   
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Table 3A.  Summary of latent classes by choices and characteristics (daytime treatment) 

Panel A: Number of Individuals in Each Category 

Frequency a turbine 
view is most preferred 

All View 
(LC1) 

Some View 
(LC2) 

Never View 
(LC3) 

Total 

Always  41 3 0 44 

(percent of total) (93.18) (6.82) (0) (100) 

Sometimes  27 55 24 106 

(percent of total) (25.47) (51.89) (22.64) (100) 

Never  0 0 93 93 

(percent of total) (0) (0) (100) (100) 

Total 68 58 117 243 
(percent) (27.98) (23.87) (48.15) (100) 

Panel B: Proportion of individuals in each class by respondent characteristics 

 
All View 
(LC1) 

Some View 
(LC2) 

Never View 
(LC3) 

 

Area rented     

No. Outer Banks 0.26 0.26 0.48  

So. Outer Banks 0.29 0.22 0.49  

So. Brunswick 0.29 0.24 0.47  

Gender     

female 0.3 0.23 0.48  

male 0.27 0.25 0.48  

Residence     

Outside NC 0.26 0.23 0.51  

NC 0.35 0.27 0.38  

Retirement status     

Not retired 0.26 0.23 0.51  

Retired 0.33 0.27 0.4  

Annual Income:     

≤ $150,000 0.31 0.23 0.45  

> $150,000 0.24 0.24 0.52  
.
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Table 4A.  Final scale adjusted latent class model (daytime treatment) 

 All View (LC1) Some View (LC2) Never View (LC3) 
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Panel A: Preference classes 

5 miles 1( )   -0.396*** 0.131 -1.77*** 0.652 -0.883*** 0.188 
8 miles 2( )  0.039 0.068 -0.133* 0.076 -0.122* 0.063 
12 miles 3( )  0.21*** 0.069 0.717*** 0.169 0.258*** 0.087 
18 miles 4( )  0.147*** 0.051 1.187** 0.485 0.747*** 0.174 
64 turbines 1( )  0.041 0.047 0.292* 0.151 0.088** 0.043 
100 turbines 2( )  0.062 0.115 0.161* 0.087 0.057 0.039 
144 turbines 3( )  -0.103 0.129 -0.453** 0.223 -0.145*** 0.054 

5miles 64 turbines 1 ,1( )  0.168 0.182 0.429** 0.193 0.241** 0.097 
5miles 100 turbines 1, 2( )  0.023 0.376 -0.125 0.088 0.066 0.079 
5miles 144 turbines 1,3( )  -0.192 0.265 -0.304* 0.164 -0.306** 0.122 

8miles 64 turbines 2 ,1( )  0.203** 0.102 0.07 0.095 -0.035 0.096 
8miles 100 turbines 2 , 2( )  -0.1 0.103 0.187** 0.091 0.038 0.082 
8miles 144 turbines 2 ,3( )  -0.103 0.147 -0.258** 0.128 -0.003 0.096 

12miles 64 turbines 3 ,1( )  -0.276* 0.165 -0.182 0.168 -0.114 0.102 
12miles 100 turbines 3 , 2( )  0.124 0.222 -0.029 0.149 -0.008 0.086 
12miles 144 turbines 3 ,3( )  0.152 0.106 0.211** 0.099 0.122 0.079 

18miles 64 turbines 4 ,1( )  -0.096 0.083 -0.317*** 0.104 -0.092 0.095 
18miles 100 turbines 4 , 2( )  -0.047 0.157 -0.034 0.14 -0.095 0.114 
18miles 144 turbines 4 ,3( )  0.143 0.156 0.351** 0.156 0.187 0.116 

5miles oceanfront 1( )  0.144 0.137 -0.176 0.217 -0.117 0.1 
8miles oceanfront 2( )  -0.029 0.062 0.027 0.102 -0.018 0.043 
12miles oceanfront 3( )  -0.012 0.146 0.024 0.118 0.043 0.065 
18miles oceanfront 4( )  -0.103** 0.042 0.126 0.175 0.092 0.091 
Price ( )  -0.003* 0.002 -0.002* 0.001 -0.0003*** 0.0001 
ASC ( )  -0.033 0.103 -1.325* 0.707 -3.08*** 0.687 
ASC oceanfront ( )  0.07 0.08 -0.068 0.243 0.541 0.652 

Panel B: Active Covariates 
Environmental Factor 0.598*** 0.147 0.027 0.148 -0.625*** 0.128 
Public Factor 0.38*** 0.129 0.141 0.147 -0.522*** 0.16 

Panel C: Scale classes 

 Est. Std. Err. Class size  
Scale(1) 1 Fixed 0.65  
Scale(2) 0.272*** 0.047 0.35  
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Figure 1A.  Respondent Attitudes Towards Wind Energya 

 
 

a Between 473 and 478 respondents answered each question.  Bar heights represent the proportion of 
respondents choosing each point on the 1 to 5 Likert scale indicated on the horizontal axis in each panel. 
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Figure 2A.  Marginal willingness to accept (in rental discounts) for All View and Some View latent classes (nighttime treatment), to 
move turbines closer to shore, by number of turbines visible and by whether they rented an oceanfront home (F) or non-oceanfront 
home (oceanside, S).a 
 

 
 
aMWTA point estimates and confidence intervals are computed as described in footnote a to Figure 3. 
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Figure 3A.  Marginal willingness to accept (in rental discounts) for oceanfront renters receiving daytime images of turbines only, to 
move turbines closer to shore, by number of turbines visible and latent class categorya 
 

 
aPoint estimates are based on ratios of parameters shown in Table 5.  The MWTA for latent class q for a change from distance d to distance e for a given 

number of visible turbines l is    , ,
| / .q d l d l e l e l

d e l q q q q q q qMWTA              Confidence intervals are computed using the Krinsky and Robb (1986) 

procedure, where the 5th and 95th percentiles are used to construct 90 percent confidence intervals. 
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Figure 4A.  Marginal willingness to accept (in rental discounts) for non-oceanfront renters receiving daytime images of turbines only, 
to move turbines closer to shore, by number of turbines visible and latent class categorya 
 

 
 

aPoint estimates are based on ratios of parameters shown in Table 5.  The MWTA for latent class q for a change from distance d to distance e for a given 

number of visible turbines l is    , ,
| / .q d l d l e l e l

d e l q q q q q q qMWTA              Confidence intervals are computed using the Krinsky and Robb (1986) 

procedure, where the 5th and 95th percentiles are used to construct 90 percent confidence intervals. 
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