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Introduction (1)

In Discrete Choice Dynamic Programming (DC-DP) models, agents
are forward looking and maximize expected intertemporal payo¤s.

The parameters to be estimated are structural in the sense that they
describe agents�preferences, beliefs and technological and
institutional constraints.

These parameters are estimated using micro data on individuals�
choices and outcomes and the principle of revealed preference.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 2 / 71



Introduction (1)

In Discrete Choice Dynamic Programming (DC-DP) models, agents
are forward looking and maximize expected intertemporal payo¤s.

The parameters to be estimated are structural in the sense that they
describe agents�preferences, beliefs and technological and
institutional constraints.

These parameters are estimated using micro data on individuals�
choices and outcomes and the principle of revealed preference.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 2 / 71



Introduction (1)

In Discrete Choice Dynamic Programming (DC-DP) models, agents
are forward looking and maximize expected intertemporal payo¤s.

The parameters to be estimated are structural in the sense that they
describe agents�preferences, beliefs and technological and
institutional constraints.

These parameters are estimated using micro data on individuals�
choices and outcomes and the principle of revealed preference.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 2 / 71



Introduction (2)

An attractive feature of these structural models is that they can be
used to predict the e¤ects of counterfactual policies.

They have been applied to evaluate a wide range of policies (with
important dynamic aspects) such as:

unemployment insurance;

social security and public pension;

education subsidies;

investment subsidies/taxes;

patent regulation;

land use;

Air Clean Act
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Introduction (3)

A well known impediment to the development of this literature has
been the computational complexity of solving DP problems.

Solving a DP problem can be a non-trivial numerical task, and
estimation typically requires the repeated computation of solutions
(or approximations) of the DP problem.

In this context, the recent development of estimation methods that
do not required the solution of the DP problem has expand
signi�cantly the range of models we can estimate.

These new methods can deal also with the problem of multiple
equilibria in the estimation of dynamic games.
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Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods

I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods

I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods

I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods
I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods
I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Outline of the Lecture

This lecture reviews recent developments in the econometrics of
Discrete Choice Dynamic Programming (DC-DP) models of individual
behavior, with special attention to Dynamic Games.

1 Model and Econometrics Issues

2 Estimation Methods
I Two-Step methods (with Moment Equalities and with Moment
Inequalities)

I Methods for Models with Permanent Unobserved Heterogeneity

3 Counterfactual Experiments

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 5 / 71



Model: A Dynamic Game of Market Entry/Exit

To illustrate econometric issues and estimation methods, I will use a
simple dynamic game of market entry/exit.

I will show how this model can be used to evaluate the e¤ects of
policies that a¤ect demand or costs parameters: e.g., the 1990
Amendments to the Clean Air Act (Ryan, 2006).

Taking into account �rms�forward-looking and strategic behavior
can lead to very di¤erent predictions on the e¤ects of these policies.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 6 / 71



Model: A Dynamic Game of Market Entry/Exit

To illustrate econometric issues and estimation methods, I will use a
simple dynamic game of market entry/exit.

I will show how this model can be used to evaluate the e¤ects of
policies that a¤ect demand or costs parameters: e.g., the 1990
Amendments to the Clean Air Act (Ryan, 2006).

Taking into account �rms�forward-looking and strategic behavior
can lead to very di¤erent predictions on the e¤ects of these policies.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 6 / 71



Model: A Dynamic Game of Market Entry/Exit

To illustrate econometric issues and estimation methods, I will use a
simple dynamic game of market entry/exit.

I will show how this model can be used to evaluate the e¤ects of
policies that a¤ect demand or costs parameters: e.g., the 1990
Amendments to the Clean Air Act (Ryan, 2006).

Taking into account �rms�forward-looking and strategic behavior
can lead to very di¤erent predictions on the e¤ects of these policies.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 6 / 71



Model: A Dynamic Game of Market Entry/Exit

Consider an industry characterized by:

1 Local competition. The industry can be divided into
isolated/independent local markets. The model is for a local market.

2 Oligopoly competition. Highly concentrated local markets

3 Entry costs which cannot be recovered upon exit (i.e., sunk entry
costs).

For the sake of simplicity in the presentation, I consider that only 2
�rms are potential entrants in the di¤erent local markets.

I index �rms by i , local markets by m, and time by t.
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A Dynamic Game of Market Entry/Exit

Every period, �rms decide whether to operate or not a plant in
the local market.

When �rms make this decision, they maximize expected intertemporal
pro�ts in that market:

Et

 
∞

∑
s=0

βs Πim,t+s

!

where β 2 (0, 1) is the discount factor.

This decision is forward-looking (because sunk entry costs) and
strategic (because future pro�ts depend on the opponent�s entry
decisions).
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Model: A Dynamic Game of Market Entry/Exit

Current pro�t of �rm i in a local market is equal to variable pro�ts,
VPimt , minus �xed costs of operating a plant, FCimt , and minus the
entry cost of setting up a plant by �rst time, ECimt .

Πimt = VPimt � FCimt � ECimt

In this example we will consider that the researcher does not observe
�rms�prices, quantities or even revenues at the level of local markets.

Even with these data limitations, information on �rms�entry/exit
decisions in local markets can identify demand, variable costs, �xed
costs and entry costs parameters for each �rm.

However, the speci�cation of demand and variable costs should be
relatively simple.
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Variable Pro�ts

aimt = Indicator of the event "�rm i has a plant in market m at
period t".

The variable pro�t function is:

VPimt =

8>>>><>>>>:
0 if aimt = 0

Smt θMi if aimt = 1 AND ajmt = 0

Smt θDi if aimt = 1 AND ajmt = 1

Smt is a measure of market size

ajmt = Indicator of �rm j (the opponent) has a plant in the market

θMi = Variable pro�ts per-customer if �rm i is a monopolist

θDi = Variable pro�ts per-customer if �rm i is a duopolist.
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Fixed Costs

The �xed cost is paid every year that the �rm has a plant in the
market.

FCimt = aimt (FCi + εimt )

εimt represents a �rm-idiosyncratic shock in �rm i�s �xed cost that is
iid over �rms and over time with a distribution N(0, σ2ε ).

We assume that εimt is private information of �rm i . There are two
main reasons to incorporate private information shocks.

1 Existence of equilibrium

2 Convenient econometric errors: they can explain observed
heterogeneity in the data without generating endogeneity of
opponents�actions.
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Entry Costs

The entry cost, or cost of setting up a new plant, is paid only if
the plant was not currently active (if aim,t�1 = 0):

ECimt = aimt (1� aim,t�1) ECi

We might also incorporate a private information shock in entry costs.
Here I consider a simpler version.
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Markov Perfect Equilibrium (MPE)

Assumption (MPE): Firms�strategies depend only on payo¤
relevant variables.

The payo¤-relevant information of �rm i in market m at period t is
fxmt , εimtg where xmt is the vector of common knowledge state
variables:

xmt � fSmt , a1m,t�1, a2m,t�1g

Let σ � fσi (xmt , εimt ) : i = 1, 2g be a set of strategy functions, one
for each player.

σ is a MPE if, for each �rm i , the strategy σi maximizes the
expected value of �rm i at every state (xmt , εimt ) and taking as given
the opponent�s strategy.
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Markov Perfect Equilibrium (MPE)

It is convenient to represent a strategies and MPE in terms of choice
probabilities.

Let Pi (xmt ) represents �rm i 0s probability of being active in the
market given state xmt .

Pi (xmt ) is the integral of the strategy function σi (xmt , εimt ) over the
distribution of εimt .

We can represent a MPE as a set of probabilities
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expected value of �rm i at every state xmt taking as given the
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Equilibrium Mapping (1)
The equilibrium mapping in choice probabilities is the key part of the
dynamic game. It summarizes all the relevant structure of the model.

The form of this equilibrium mapping depends on the payo¤/pro�t
function, the transition rule of the state variables, and the distribution
of the private information shocks εimt .

In this model, the one-period expected pro�t of �rm i can be written
as:

ΠP
imt =

8<:
0 if aimt = 0

ZPimt θi � εimt if aimt = 1

where

ZPimt � f (1� Pj (xmt )) Smt , Pj (xmt )Smt , � 1 , � (1� aim,t�1) g

θi �
n

θMi , θDi , FCi , ECi
o0
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Equilibrium Mapping (2)
In a myopic version of the game (with β = 0), �rm i best response is:

faimt = 1g ,
n
ZPimt θi � εimt � 0

o

And in terms of choice probability, �rm i best response is:

Pr (aimt = 1 j xmt ) = Pr
�
ZPimt θi � εimt � 0 j xmt

�
= Φ

�
ZPimt

θi
σεi

�
where Φ (.) is the CDF of the standard normal.

A MPE in this static game is a pair of probabilities,
fP1 (xmt ) ,P2 (xmt )g that solves the system of equations:

P1 (xmt ) = Φ
�
ZP1mt

θ1
σε1

�

P2 (xmt ) = Φ
�
ZP2mt

θ2
σε2

�
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Equilibrium Mapping (3)

Note that for every value of xmt we have a di¤erent BNE. That is not
the case in the dynamic version of the game (see below).

By Brower�s Theorem, an equilibrium exits.

There may be multiple equilibria for some values of (xmt , θ).

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 17 / 71



Equilibrium Mapping (3)

Note that for every value of xmt we have a di¤erent BNE. That is not
the case in the dynamic version of the game (see below).

By Brower�s Theorem, an equilibrium exits.

There may be multiple equilibria for some values of (xmt , θ).

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 17 / 71



Equilibrium Mapping (3)

Note that for every value of xmt we have a di¤erent BNE. That is not
the case in the dynamic version of the game (see below).

By Brower�s Theorem, an equilibrium exits.

There may be multiple equilibria for some values of (xmt , θ).

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 17 / 71



Equilibrium Mapping (4)
For the dynamic game (with β > 0), it is possible to show that a MPE
is a pair of probability functions, P �fP1 (xmt ) ,P2 (xmt ) : xmt 2 Xg,
such that, for every �rm i and every state xmt :

Pi (xmt ) = Φ
�
~ZPimt

θi
σεi

+ ẽPimt

�
where

~ZPimt � ZPimt + E

 
∞

∑
s=1

βs aim,t+s ZPim,t+s j xmt , aimt = 1
!

� E

 
∞

∑
s=1

βs aim,t+s ZPim,t+s j xmt , aimt = 0
!

and

ẽPimt � E

 
∞

∑
s=1

βs aim,t+s εim,t+s j xmt , aimt = 1
!

� E

 
∞

∑
s=1

βs aim,t+s εim,t+s j xmt , aimt = 0
!
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Econometric Issues

There are several econometric issues we should deal with when doing
statistical inference with dynamic games.

1 Multiple Equilibria. Models with multiple equilibria do not have
unique predictions on the distribution of endogenous variables
conditional on exogenous variables and parameters. This can generate
problems with some estimation methods.

2 Computational burden. The dimension of the state space increases
exponentially with the number of heterogeneous �rms.

3 Endogeneity. Unobserved (for the researcher) market characteristics
are correlated with opponents�decisions.

4 Counterfactual experiment and multiple equilibria.
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Estimation: Introduction (1)

Suppose that we have a random sample of M local markets, indexed
by m, over T periods of time, where we observe:

Data = fSmt , a1mt , a2mt : m = 1, 2, ...,M; t = 1, 2, ...,Tg

We want to use these data to estimate the model parameters
θ =(θ1, θ2). Note: for notational simplicity, I use θi to represent
θi/σεi .

I will describe 5 groups of estimators:

1 Constrained MLE / Constrained GMM
2 Two-step methods (with moment equalities)
3 Estimators based on moment inequalities (MI)
4 Simulation-based estimation
5 Estimators for models with unobserved market heterogeneity.
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Estimation: Introduction (2)

The following assumption is maintained for some estimation methods.

Assumption: No-unobserved-market-heterogeneity. The only
unobservables from the point of view of the econometrician are the
private information shocks εimt .

The following assumption is common to the di¤erent estimation
methods that we will examine.

Assumption: One-MPE-in-the-data. De�ne
P0imt (x) � Pr(aimt = 1jxmt = x) and P0mt � fP0imt (x) : i = 1, 2;
x 2 Xg. Then, for any (m, t), P0mt = P0. Though the model has
multiple equilibria, in the population the same MPE is selected at
every market and every time period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 21 / 71



Estimation: Introduction (2)

The following assumption is maintained for some estimation methods.

Assumption: No-unobserved-market-heterogeneity. The only
unobservables from the point of view of the econometrician are the
private information shocks εimt .

The following assumption is common to the di¤erent estimation
methods that we will examine.

Assumption: One-MPE-in-the-data. De�ne
P0imt (x) � Pr(aimt = 1jxmt = x) and P0mt � fP0imt (x) : i = 1, 2;
x 2 Xg. Then, for any (m, t), P0mt = P0. Though the model has
multiple equilibria, in the population the same MPE is selected at
every market and every time period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 21 / 71



Estimation: Introduction (2)

The following assumption is maintained for some estimation methods.

Assumption: No-unobserved-market-heterogeneity. The only
unobservables from the point of view of the econometrician are the
private information shocks εimt .

The following assumption is common to the di¤erent estimation
methods that we will examine.

Assumption: One-MPE-in-the-data. De�ne
P0imt (x) � Pr(aimt = 1jxmt = x) and P0mt � fP0imt (x) : i = 1, 2;
x 2 Xg. Then, for any (m, t), P0mt = P0. Though the model has
multiple equilibria, in the population the same MPE is selected at
every market and every time period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 21 / 71



Estimation: Introduction (2)

The following assumption is maintained for some estimation methods.

Assumption: No-unobserved-market-heterogeneity. The only
unobservables from the point of view of the econometrician are the
private information shocks εimt .

The following assumption is common to the di¤erent estimation
methods that we will examine.

Assumption: One-MPE-in-the-data. De�ne
P0imt (x) � Pr(aimt = 1jxmt = x) and P0mt � fP0imt (x) : i = 1, 2;
x 2 Xg. Then, for any (m, t), P0mt = P0. Though the model has
multiple equilibria, in the population the same MPE is selected at
every market and every time period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 21 / 71



Estimation: Introduction (3)

For the description of the di¤erent estimators, it is convenient to
de�ne the following Pseudo Likelihood function:

Q(θ,P) =
M
∑
m=1

N
∑
i=1

T
∑
t=1
aimt lnΦ

�
~ZPimt θi + ẽPimt

�
+ (1� aimt ) lnΦ

�
�~ZPimt θi � ẽPimt

�

This pseudo likelihood function treats �rms�beliefs P as parameters
to estimate together with θ.

Note that for given P, the function Q(θ,P) is the likelihood of a
Probit model with the parameter of ẽPimt restricted to be one.
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Estimation: Introduction (4)

Similarly, for GMM estimation we can de�ne the following Pseudo
GMM Criterion: (note that there is a minus sign so the GMM
estimator maximizes this criterion):

Q(θ,P) = �c(θ,P) 0A c(θ,P)

where

c(θ,P) =
M
∑
m=1

264 ...

H(xmt )
n
aimt �Φ

�
~ZPimt θi + ẽPimt

�o
... for any (i , t)

375
and H(xmt ) is a vector of functions of xmt (instruments).

This pseudo GMM criterion function treats �rms�beliefs P as
parameters to estimate together with θ.
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Constrained MLE / Constrained GMM (1)

The MLE (the GMM) maximizes Q(θ,P) subject to the restriction
that P should be an equilibrium associated with θ.

The main issue for the implementation of the MLE (or the GMM) in
this model is that for some values of θ the model has multiple
equilibria.

The MLE (or GMM) is de�ne as:

θ̂ = argmax
θ

8<: max
P

Q(θ,P)

subject to: Pi (xmt ) = Φ
�
~ZPimt θi + ẽPimt

�
for every (i ,m, t)

9=;
Since P is a high-dimension vector, optimization with respect to P
can be very complicated.
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Constrained MLE / Constrained GMM (2)

Note that, without the one-equilibrium-in-the-data assumption,
the MLE (or the GMM) would be even more complicated to
implement.

In that case, the criterion function would be Q(θ,fPmtg), where
fPmtg represents the set of MPE, one for each market and time
period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 25 / 71



Constrained MLE / Constrained GMM (2)

Note that, without the one-equilibrium-in-the-data assumption,
the MLE (or the GMM) would be even more complicated to
implement.

In that case, the criterion function would be Q(θ,fPmtg), where
fPmtg represents the set of MPE, one for each market and time
period.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 25 / 71



Two-step methods (1)

Suppose that we knew the equilibrium in the population, P0.

Given P0 we can construct the variables ~ZP
0

imt and ẽ
P0
imt and then

obtain a very simple estimator of θ0.

θ̂ = argmax
θ

Q(θ,P0)

This estimator is root-M consistent and asymptotically normal under
the standard regularity conditions. It is not e¢ cient because it does
not impose the equilibrium constraints.

While equilibrium probabilities are not unique functions of structural
parameters, the best response probabilities that appear in Q(θ,P) are
unique functions of structural parameters and players�beliefs.
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Two-step methods (2)

The previous method is infeasible because P0 is unknown.

However, under the Assumptions
"No-unobserved-market-heterogeneity" and
"One-MPE-in-the-data" we can estimate P0 consistently and at
with a convergence rate such that the two-step estimator θ̂ is root-M
consistent and asymptotically normal.

For instance, a kernel estimator of P0 is:

P̂0i (x) =
∑M
m=1 ∑T

t=1 aimt K
�
xmt � x
b

�
∑M
m=1 ∑T

t=1 K
�
xmt � x
b

�
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Two-step methods (3)
Given P̂0, we can construct a consistent estimator of ZP

0

imt :

Z P̂
0

imt =
n �

1� P̂0j (xmt )
�
Smt , P̂0j (xmt )Smt , � 1 , � (1� aim,t�1)

o

And then, consistent estimators of Z̃P
0

imt and ẽ
P0
imt :

Z̃ P̂
0

imt = Z P̂
0

imt + β
�
F P̂

0

x (1, xmt )� F P̂
0

x (0, xmt )
�0 n

I� β FP̂
0

x

o�1 n
P̂0i � ZP̂

0

i

o
ẽP̂

0

imt = β
�
F P̂

0

x (1, xmt )� F P̂
0

x (0, xmt )
�0 n

I� β FP̂
0

x

o�1 n
P̂0i � eP̂

0

i

o

The two-step estimator is the value of θ that maximizes Q(θ, P̂0).

For instance, the two-step MLE is simply the MLE in a probit model
for aimt with explanatory variables Z̃ P̂

0

imt and ẽ
P̂0
imt .
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Two-step methods (4)

We will examine the following issues related to this class of two-step
estimators.

1 Asymptotic variance

2 2. E¢ cient two-step estimator

3 Finite sample properties

4 Dealing with unobserved heterogeneity

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 29 / 71



Two-step methods (4)

We will examine the following issues related to this class of two-step
estimators.

1 Asymptotic variance

2 2. E¢ cient two-step estimator

3 Finite sample properties

4 Dealing with unobserved heterogeneity

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 29 / 71



Two-step methods (4)

We will examine the following issues related to this class of two-step
estimators.

1 Asymptotic variance

2 2. E¢ cient two-step estimator

3 Finite sample properties

4 Dealing with unobserved heterogeneity

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 29 / 71



Two-step methods (4)

We will examine the following issues related to this class of two-step
estimators.

1 Asymptotic variance

2 2. E¢ cient two-step estimator

3 Finite sample properties

4 Dealing with unobserved heterogeneity

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 29 / 71



Two-step methods (4)

We will examine the following issues related to this class of two-step
estimators.

1 Asymptotic variance

2 2. E¢ cient two-step estimator

3 Finite sample properties

4 Dealing with unobserved heterogeneity

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 29 / 71



Two-step methods: Asymptotic variance

Let smt (θ0,P0) be the score for observation (m, t).

The asymptotic variance of the two-step MLE is:

V2S = Ω�1
θθ +Ω�1

θθ ΩθP Σ Ω0
θP Ω�1

θθ

Σ is the variance matrix of P̂0

Ωθθ � E (rθsmtrθs 0mt )

ΩθP � E (rθsmtrP s 0mt )

and rθ and rP represent partial derivatives w.r.t. θ and P,
respectively.
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Two-step methods: E¢ cient estimator (1)

These two-step estimators belong to the class of models de�ned in
terms of conditional moment restrictions.

E
�
aimt � P0(xmt ) j xmt

�
= 0

E
�
aimt �Φ

�
~ZP

0

imt θi + ẽP
0

imt

�
j xmt

�
= 0

Newey (1990) obtained the form of the optimal instruments
(unconditional moment restrictions) for this class of models:

E

0B@H�(xmt )
8><>:

aimt � P0(xmt ) for any i , t

aimt �Φ
�
~ZP

0

imt θ0i + ẽ
P0
imt

�
for any i , t

9>=>;
1CA = 0

where H�(xmt ) is the matrix of optimal instruments.
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P0
imt

�
for any i , t

9>=>;
1CA = 0

where H�(xmt ) is the matrix of optimal instruments.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 31 / 71



Two-step methods: E¢ cient estimator (2)
Given that the model has a triangular form (i.e., θ0 only enters in the
second group of conditional moment restrictions), the matrix of
optimal instruments is also triangular, such that the e¢ cient
estimator can be implemented in two steps.

Given P̂0, there is an optimal matrix of instruments, H�
θ,P̂0
(xmt ), such

that the GMM estimator of θ0 based on the unconditional moment
restrictions

E
�
H�

θ,P̂0
(xmt )

n
aimt �Φ

�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�
for any i , t

o�
= 0

has minimum asymptotic variance.

Pesendorfer and Schmidt-Dengler (REStud, 2008) derive the form of
H�

θ,P̂0
(xmt ).

When P0 is known (i.e., when we ignore the estimation error in the
�rst-step), the optimal estimator is the MLE based on probs

Φ
�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�
.
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Two-step methods: Finite sample properties (1)

The most attractive feature of two-step methods is their relative
simplicity.

However, they su¤er of a potentially important problem of �nite
sample bias.

The �nite sample bias of the two-step estimator of θ0 depends very
importantly on the properties of the �rst-step estimator of P0. In
particular, it depends on the rate of convergence and on the variance
and bias of P̂0.

It is well-known that there is a curse of dimensionality in the NP
estimation of a regression function such as P0.
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It is well-known that there is a curse of dimensionality in the NP
estimation of a regression function such as P0.
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Two-step methods: Finite sample properties (2)

In particular, the rate of convergence of P̂0 declines, and the variance
and bias increase, very quickly as the number of conditioning
regressors increases.

In our simple example, the vector xmt contains only three variables:
the binary indicators aim,t�1 and the (continuous) market size Smt . In
this case, the NP estimator of P0 has a relatively high rate of
convergence an its variance and bias can be small even with relatively
small sample.

However, there are applications with more than two (heterogeneous)
players and where �rm size, capital stock or other predetermined
continuos �rm-speci�c characteristics are state variables.

Even with binary state variables (aim,t�1), when the number of
players is relatively large (e.g., more than 10) .....
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Two-step methods: Finite sample properties (3)

In these situations, with a relatively large number of heterogeneous
players, even the best feasible estimator of P0 will be extremely
noisy/imprecise: large variance and/or bias.

Large variance and/or bias of P̂0 implies a large bias of the two-step
estimator of θ0.

To see this, note that the moment conditions at the true P0 hold:

E
�
HP0(xmt )

n
aimt �Φ

�
~ZP

0

imt θ0i + ẽ
P̂0
imt

�
for any i , t

o�
= 0

but the same moment conditions evaluated at P̂0 do not hold

E
�
HP̂0(xmt )

n
aimt �Φ

�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�
for any i , t

o�
6= 0
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Two-step methods: Finite sample properties (4)

There are two sources of �nite sample bias.

1 Both the matrix of "instruments" HP̂0(xmt ) and the "error"n
aimt �Φ

�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�o
depend on the random vector P̂0, and

this generates a �nite sample correlation between HP̂0(xmt ) andn
aimt �Φ

�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�o
.

2 Even when the instruments H(xmt ) do not depend on P̂0, we have
that the choice probabilities Φ

�
~ZP̂

0

imt θ0i + ẽ
P̂0
imt

�
are nonlinear

functions of the random vector P̂0, and the expected value of a
nonlinear function is not equal to the function evaluated at the
expected value.
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Two-step methods: Finite sample properties (5)

As argued by Pakes, Ostrovsky and Berry (RAND, 2007), the �rst
source of bias is present in the two-step MLE or in the
e¢ cient-two-step estimators, but not in a simpler method of moments
estimator where the matrix of instruments does not depend on P̂0.
They advocate this type of two-step estimator.

However, the second source of bias appears in all these two-steps
estimators and it can be very important.

Monte Carlo experiments of several papers (see the Monte Carlo
experiments in Hotz et al., 1994, Aguirregabiria and Mira, 2002 and
2007, Kasahara and Shimotsu, 2006) illustrate that this bias is very
serious even in relatively simple models.
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Recursive K-step estimator
K-step extension of the 2-step estimator. Given an initial consistent
(NP) estimator P̂0, the sequence of estimators fθ̂

K
, P̂K : K � 1g is

de�ned as:

θ̂
K

= argmax
θ

Q
�

θ, P̂
K�1�

P̂Ki (xmt ) = Φ
�
~ZP̂

K�1
imt θ̂

K
i + ẽ

P̂K�1
imt

�

Aguirregabiria and Mira (2002, 2007) present Monte Carlo
experiments which illustrate how this recursive estimators can have
signi�cantly smaller bias than the two-step estimator.

Kasahara and Shimotsu (2007) derive a second order approximation
to the bias of these K-stage estimators. They show that, if the
equilibrium in the population is stable, then this recursive procedure
reduces the bias.
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Estimation using Moment Inequalities (1)
Remember that:

~ZPimt θi + ẽPimt �
�
~ZPimt (1)� ~ZPimt (0)

�
θi +

�
ePimt (1)� ePimt (0)

�
where ZPimt (ai )θi + e

P
imt (ai ) is the value of choosing alternative ai

today, given that �rms behave in the future according to the
probabilities in P.

Then, the value V Pimt is:

V Pimt = (1� Pi (xmt ))
�
~ZPimt (0)θi + e

P
imt (0)

�
+ Pi (xmt )

�
~ZPimt (1)θi + e

P
imt (1)

�
= W P

imt

�
θi
1

�
where W P

imt is a vector�
(1� Pi (xmt ))~ZPimt (0) + Pi (xmt )~ZPimt (1) ; (1� Pi (xmt )) ePimt (0) + Pi (xmt )ePimt (1)

�

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 39 / 71



Estimation using Moment Inequalities (1)
Remember that:

~ZPimt θi + ẽPimt �
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Estimation using Moment Inequalities (2)

Let�s split the vector of choice probabilities P into the sub-vectors Pi
and P�i ,

P � (Pi , P�i )
where Pi are the probabilities associated to player i and P�i contains
the probabilities of players other than i .

P0 is an equilibrium associated to θ0. Therefore, P0i is �rm i�s best
response to P0�i . This implies that for any Pi 6= P0i the following
inequality should hold:

W
(P0i ,P0�i)
imt

�
θ0i
1

�
� W (Pi ,P

0
�i)

imt

�
θ0i
1

�

We can de�ne an estimator of θ0 based on these (moment)
inequalities.
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Estimation using Moment Inequalities (3)

There are in�nite alternative policies Pi , and therefore there are
in�nite moment inequalities. For estimation, we should select a �nite
set of alternative policies. This is a very important decision for this
class of estimators (more below).

Let H be a (�nite) set of alternative policies for each player.

De�ne the following criterion function:

R
�
θ,P0,H

�
� ∑

i ,m,t
∑
P2H

�
min

�
0 ;

�
W
(P0i ,P0�i)
imt �W (Pi ,P

0
�i)

imt

� �
θi
1

���2
This criterion function penalizes departures from the inequalities.
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Estimation using Moment Inequalities (4)

Then, given an initial NP estimator of P0, say P̂0, we can de�ne the
following estimator of θ0 based on moment inequalities (MI):

θ̂ = argmin
θ
R
�

θ, P̂0,H
�

or

θ̂ = argmin
θ

∑
i ,m,t

∑
P2H

�
min

�
0 ;

�
W
(P̂0i ,P̂0�i)
imt �W (Pi ,P̂

0
�i)

imt

� �
θi
1

���2

There are several relevant comments to make on this MI estimator:

1 Point identi�cation / Set identi�cation
2 Properties (relative to two-step estimators using moment equalities)
3 Continuous dependent variables
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Then, given an initial NP estimator of P0, say P̂0, we can de�ne the
following estimator of θ0 based on moment inequalities (MI):

θ̂ = argmin
θ
R
�

θ, P̂0,H
�

or
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�
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�
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W
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MI Estimator: Point / Set identi�cation

This estimator is based on exactly the same assumptions as the 2-step
moment equalities (ME) estimator. We have seen that θ0 is point
identi�ed by the moment equalities of the ME estimators (e.g., by
the pseudo likelihood equations).

Therefore, if the set H of alternative policies is large enough, then θ0

is point identi�ed as the unique maximizer of R
�
θ,P0,H

�
.

However, it is very costly to consider a set H with many alternative
policies. For the type of sets H which are considered in practice,
R
�
θ,P0,H

�
does not have a unique maximizes and therefore θ0 is

set identi�ed.
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Properties of MI estimator (relative to ME) (1)

Why to use an estimator that only set-identi�es θ0 when we
have alternative estimators which point identi�ed θ0? The
Moment Inequalities (MI) estimator should have other advantages.
Let�s start examining which ARE NOT the advantages.

The MI estimator is not more �robust�than the ME estimator.
Both estimators are based on exactly the same model and
assumptions.

Asymptotically, the MI estimator is less e¢ cient than the ME
estimator. The e¢ cient 2-step Moment Equalities (ME) estimator
has lower asymptotic variance than the MI estimator, even as the set
H becomes very large.
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Properties of MI estimator (relative to ME) (2)

Computationally, the MI estimator is more costly than the ME
estimator. The main computational cost of implementing the MI
and ME estimators comes from obtaining the vectors of values
fW P

imtg. The 2-step ME estimators has to compute fW P
imtg only

once: at the estimated W P̂0
imt . Instead, the MI estimator has to

calculate also W
(Pi ,P̂0�i)
imt at the di¤erent alternative policies in H.

Furthermore, the MI estimator needs an algorithm for set
optimization.
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Properties of MI estimator (relative to ME) (3)
There are two potential advantages of MI against ME estimator:

1 �nite sample bias;

2 estimation of models with continuous decision variables.

In terms of �nite sample bias, the MI estimator may have lower bias
than ME estimators. Exploiting the information in the alternative
policies might be useful to reduce the bias. However, there is very
little evidence on this point.

This may dependent very much on the choice of the set H. Typically,
H contains only a few alternative policies (e.g., 5, 10, 20). The
selection of these alternative policies should be very careful, and there
should be some intuition of how the inequalities associated with an
alternative policy can help to identify a particular parameter or group
of parameters.
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Properties of MI estimator (relative to ME) (4)

BBL show that, when combined with simulation techniques to
approximate the values fW P

imtg, this method can be easily extended
to the estimation of dynamic games with continuous decision
variables.

In fact, the BBL estimator of a model with continuous decision
variable is basically the same as with a discrete decision variable.

The ME estimator of models with continuous decision variable may
be more complicated.
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Simulation-Based Estimation (1)

Though two-step methods (with either ME or MI) are computationally
much cheaper than full solution-estimation methods, they are still
impractical for applications where the dimension of the state space X
is very large, e.g., a discrete state space with millions of points or a
model in which some of the observable state variables are continuous.

To deal with this problem, Hotz, Miller, Sanders and Smith (REStud,
1994) proposed an estimator that uses simulation techniques to
approximate the values ZPimt (ai ) and e

P
imt (ai ), or similarly the vector

of values W P
imt .

In the context of dynamic games, Bajari, Benkard and Levin (BBL)
have proposed to used this simulation and have extended it to models
with continuous decision variables.
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Simulation-Based Estimation (2)
Remember that:

~ZPimt (ai ) � ai ZPimt + E

 
∞

∑
s=1

βs aim,t+s ZPim,t+s j xmt , aimt = ai

!

and

ẽPimt (ai ) � E

 
∞

∑
s=1

βs aim,t+s εim,t+s j xmt , aimt = ai

!

The expectations E (.) are taken over all the possible future paths of
actions and state variables conditions on (xmt , aimt = ai ) and
conditional on future behavior P.

The simulators of ~ZPimt (ai ) and ẽ
P
imt (ai ) are obtained by replacing the

true expectations E (.) by Monte Carlo approximations to these
expectations.
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Simulation-Based Estimation (3)

For every value of xmt in the sample and every choice alternative ai
(in the sample or not), we consider (ai , xmt ) as the initial state for
player i and then we use the probabilities in P, and the transition
probabilities of x , to generate R simulated paths of future actions and
state variables from period t + 1 to t + T � (i.e., T � periods ahead).

We index simulated paths by r 2 f1, 2, ...,Rg. The r � th simulated
path associated with the initial state (ai , xmt ) is

fa(r ,ai )im,t+j , x
(r ,ai )
m,t+j : j = 1, 2, ...,T �g
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Simulation-Based Estimation (4)

A simulated path fa(r ,ai )im,t+j , x
(r ,ai )
m,t+j : j = 1, 2, ...,T �g is obtained as

follows.

Given (ai , xmt ), we use the transition probability function

Fx (.jai , xmt ) to obtain a random draw x (r ,ai )m,t+1.

Given x (r ,ai )m,t+1, we use the choice probability Pi (x
(r ,ai )
m,t+1) to obtain a

random draw a(r ,ai )i ,m,t+1.

Given (a(r ,ai )i ,m,t+1, x
(r ,ai )
m,t+1), we use the transition probability function

Fx (.ja(r ,ai )i ,m,t+1, x
(r ,ai )
m,t+1) to obtain a random draw x (r ,ai )m,t+2.

And so on.
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Simulation-Based Estimation (5)

Then, given the simulated paths fa(r ,ai )im,t+j , x
(r ,ai )
m,t+j : j = 1, 2, ...,T �g,

we construct the simulator of ~ZPimt (ai ) as:

~ZP,simimt (ai ) = ai ZPimt+
1
R

R

∑
r=1

"
T �

∑
j=1

βj a(r ,ai )im,t+j Z
P
i

�
x (r ,ai )m,t+j

�#

And similarly for the simulator of ~ePimt (ai ).

The simulator of W P
imt is W

P,sim
imt =�

(1� Pi (xmt ))~ZP,simimt (0) + Pi (xmt )~Z
P,sim
imt (1) ; (1� Pi (xmt )) e

P,sim
imt (0) + Pi (xmt )e

P,sim
imt (1)

�

If the DP problem has �nite horizon, or if T � is large enough such
that the approximation error associated with the truncation of paths
is negligible, then these simulators are unbiased.
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that the approximation error associated with the truncation of paths
is negligible, then these simulators are unbiased.
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Simulation-Based Estimation (6)

This simulators can be used either for ME or for MI estimation.

The simulation-based ME estimator is the value of θ that solves
the system of equations:

E
�
H(xmt )

n
aimt �Φ

�
~ZP̂

0,sim
imt θi + ẽ

P̂0,sim
imt

�
for any i , t

o�
6= 0

The simulation-based MI estimator is the value (or set of values)
of θ that minimizes the criterion function:

∑
i ,m,t

∑
P2H

�
min

�
0 ;

�
W
(P̂0i ,P̂0�i),sim
imt �W (Pi ,P̂

0
�i),sim

imt

� �
θi
1

���2
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Simulation-Based Estimation (7)
These estimators are consistent only as the number of simulated
paths, R, goes to in�nity.

Note that there are three sources of error in (W P̂0,sim
imt �W P0

imt ):

1 Estimation error: because P̂0 6= P0

2 Simulation error: because the expectation is not taken over all the
possible future histories but only over the simulated paths.

3 Approximation error: because T � 6= ∞

(3) can be negligible if T � is not too small or β too close to one.

(1) can be very important: curse of dimensionality in NP estimation.

(2) can be very important. Even with millions of simulated histories
we may have a very small proportion of all possible histories.
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Estimation of models with unobserved market
heterogeneity

Unobserved market heterogeneity. Ignoring persistent market
heterogeneity, if present, can generate important biases in the
estimation of structural parameters of dynamic oligopoly games.

Here I describe three approaches which have been proposed to
estimate dynamic games where unobserved market heterogeneity
is model as �nite mixture model.

1 Two-step method: Kasahara and Shimotsu (2007)

2 Nested Pseudo likelihood (NPL): Aguirregabiria and Mira (2007)

3 NPL + Sequential EM algorithm: Arcidiacono and Miller (2008)
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Finite mixture model (1)
Consider the dynamic game of market entry/exit in local markets
(with MD and BK as global players). Remember that the expected
pro�t of �rm i is:

ZPimt θi

where
ZPimt � f (1� Pj (xmt )) Smt , Pj (xmt )Smt , � 1 , � (1� aim,t�1) g

θi �
n

θMi , θDi , FCi , ECi
o0

Now, suppose that we relax the assumption that θi is invariant across
markets. That is, we consider that expected pro�ts are ZPimt θim ,
where:

θim = θi + Σi ωm =

0BB@
θMi
θDi
FCi
ECi

1CCA+ Σi

0BB@
ωM
m

ωD
m

ωFC
m

ωEC
m

1CCA
where ωm is a the vector of random variables with zero means and
unit variances, and Σi is a diagonal matrix of �rm-speci�c parameters.
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Finite mixture model (2)

In a �nite mixture model, we assume that ωm is a vector of random
variables

with discrete and �nite support Ω =
�

ω1,ω2, . . . ,ωL
	
;

i.i.d. across markets with probability mass function
π` � Pr(ωm = ω`).
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Finite mixture model (3)

The introduction of unobserved market heterogeneity also implies that
we can relax the assumption of only �One MPE in the data� to allow
for di¤erent market types to have di¤erent equilibria.

Let P0mt � fPr(aimt = 1jxmt = x ,m, t) : i = 1, 2; x 2 Xg be the
distributions of aimt conditional on xmt in market m at period t.

We assume that P0mt = P0` , where ` is the type of market m.

Each market type has its own MPE. Though we still assume that only
one equilibrium is played in the data conditional on market type, the
data generating process may correspond to multiple equilibria.
Markets which, in term of exogenous characteristics, are
observationally equivalent to the econometrician may have di¤erent
probabilities of entry and exit because the random e¤ect component
of pro�ts ω is di¤erent.
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Nested Pseudo Likelihood (NPL) (1)
The vector of structural parameters θi now includes Σi .

It is convenient to represent �rm i�s expected pro�t (under type `) as:

ZP`imt θi

where now:

ZP`imt =

0BBBBBBBBBB@

(1� Pj (xmt )) Smt
Pj (xmt )Smt
�1
�(1� aim,t�1)
(1� Pj (xmt )) Smt ωM

m
Pj (xmt )Smt ωD

m
�ωFC

m
�(1� aim,t�1) ωEC

m

1CCCCCCCCCCA
; θi =

0BBBBBBBBBBB@

θMi
θDi
FCi
ECi
σMω
σDω
σFCω

σECω

1CCCCCCCCCCCA
The vector of present values ~ZP`imt has a similar de�nition as before,
but now it corresponds to the vector ZP`imt above.
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Nested Pseudo Likelihood (NPL) (2)
The (conditional) pseudo likelihood function has the following �nite
mixture form:

Q (θ, fP`g) =
M

∑
m=1

ln Pr (History of market m j xm1)

=
M

∑
m=1

ln

 
L

∑
`=1

Pr
�
ωm = ω` j xm1

�
Pr
�
History of market m j ωm = ω`, xm1

�!

=
M

∑
m=1

ln

 
L

∑
`=1

π`jxm1

�
T
∏
t=1

N
∏
i=1

Φ
�
~ZP`imtθi + ẽ

P
imt

�aimt
Φ
�
�~ZP`imtθi � ẽPimt

�1�aimt�!

where π`jxm1 is the conditional probability Pr(ω
`jxm1).

π`jxm1 is not equal to the unconditional probability π`. Incumbent
statuses at period 1, which are components of the vector xm1, are not
independent of market type, i.e., more pro�table markets according to
ωm tend to have more incumbent �rms.
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Nested Pseudo Likelihood (NPL) (2)
The (conditional) pseudo likelihood function has the following �nite
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M

∑
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ln Pr (History of market m j xm1)
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M

∑
m=1

ln

 
L
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`=1

Pr
�
ωm = ω` j xm1

�
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�
History of market m j ωm = ω`, xm1

�!

=
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�
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Φ
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P
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�aimt
Φ
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Nested Pseudo Likelihood (NPL) (3)

Under the assumption that xm1 is drawn from the stationary
distribution induced by the MPE, we have that π`jxm1 depend only on
choice probabilities in P` and the (known) unconditional probabilities
fπ`g.

Let p�(P`) � fp�(x jP`) : x 2 Xg be the stationary distribution of x
induced by the equilibrium P` and the transition fx (.j., .).

This stationary distribution can be very simply obtained as the
solution to the system of linear equations:

p�(x jP`) = ∑
x 02X

p�(x 0jP`)
 

∑
a2AN

"
N
∏
j=1
P`j (aj jx)

#
fx (x 0ja, x)

!
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Nested Pseudo Likelihood (NPL) (4)

Then, by Bayes�rule, we have that:

π`jxm1 =
π` p�(xm1jP`)
L
∑
`0=1

π`0 p�(xm1jP`0)

Therefore, given fP`g (and the known unconditional probabilities
π`), the conditional probabilities π`jxm1 are known.

Furthermore, for any fP`g, Q(.) is globally concave in θ. This is a
very convenient feature of this model and of the NPL method.
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Nested Pseudo Likelihood (NPL) (4)
An NPL �xed point is de�ned as a pair

�
θ̂, fP̂`g

�
that satis�es two

conditions:

(1) θ̂ = argmax
θ

Q
�

θ, fP̂`g
�

(2) P̂`,i (xmt ) = Φ
�
~ZP̂`imt θ̂i + ẽ

P̂`
imt

�
for any ` and (i ,m, t)

A simple procedure to obtain an NPL �xed point is the following. We
start with L arbitrary vectors of players�choice probabilities, one for
each market type: fP̂0` : ` = 1, 2, ..., Lg.

1 Step 1: Obtain the probabilities fπ`jxm1g.
2 Step 2: Obtain θ̂

1
= argmax

θ
Q
�

θ, fP̂0`g
�

3 Step 3: Update the vector of players�choice probabilities using the best
response probability mapping. That is,

P̂1`,i (xmt ) = Φ
�
~Z
P̂0`
imt θ̂

1
i + ẽ

P̂0`
imt

�
4 If, for every type `, jjP̂1` � P̂0` jj is smaller than a predetermined small
constant, then stop the iterative procedure. Otherwise, repeat steps 1
to 3 using fP̂1`g.
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P̂`
imt

�
for any ` and (i ,m, t)

A simple procedure to obtain an NPL �xed point is the following. We
start with L arbitrary vectors of players�choice probabilities, one for
each market type: fP̂0` : ` = 1, 2, ..., Lg.

1 Step 1: Obtain the probabilities fπ`jxm1g.

2 Step 2: Obtain θ̂
1
= argmax

θ
Q
�

θ, fP̂0`g
�

3 Step 3: Update the vector of players�choice probabilities using the best
response probability mapping. That is,

P̂1`,i (xmt ) = Φ
�
~Z
P̂0`
imt θ̂

1
i + ẽ
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Nested Pseudo Likelihood (NPL) (5)

If there is a unique NPL �xed point, then
�

θ̂, fP̂`g
�
is a consistent

estimator of
�

θ̂
0
, fP̂0`g

�
.

Otherwise, if there are multiple NPL �xed points, then the consistent
NPL estimator is the NPL �xed point that provides the maximum
value of the likelihood Q

�
θ, fP̂`g

�
.

Therefore, it is important to check for multiple NPL �xed points by
applying the recursive procedure to di¤erent initial vector of
probabilities fP̂0`g.
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Counterfactual Experiments with Estimated Model (1)

One of the most attractive features of structural models is that they
can be used to predict the e¤ects of new policies or changes in
parameters (counterfactuals).

However, this a challenging exercise in a model with multiple
equilibria.

The data can identify the "factual" equilibrium. However, under the
counterfactual scenario, which of the multiple equilibria we should
choose?
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Counterfactual Experiments with Estimated Model (2)

Di¤erent approaches have been implemented in practice.

1 Select the equilibrium to which we converge by iterating in the
(counterfactual) equilibrium mapping starting with the factual
equilibrium P0

2 Select the equilibrium with maximum total pro�ts (or alternatively,
with maximum welfare).

3 Taylor approximation: Aguirregabiria and Ho (2007)
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Counterfactual Experiments: Aguirregabiria-Ho (2007)

Let θ be the vector of structural parameters in the model. An let
Ψ(θ,P) be the equilibrium mapping such that an equilibrium
associated with θ can be represented as a �xed point:

P = Ψ(θ,P)

The model could be completed with an equilibrium selection
mechanism: i.e., a criterion that selects one and only one equilibrium
for each possible θ.

Suppose that there is a "true" equilibrium selection mechanism in the
population under study, but we do not know that mechanism.

Our approach here (both for the estimation and for counterfactual
experiments) is completely agnostic with respect to the equilibrium
selection mechanism.
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Counterfactual Experiments: Aguirregabiria-Ho (2007)

We only assume that there is such a mechanism, and that it is a
smooth function of θ.

Let π(θ) be the (unique) selected equilibrium, for given θ, if we
apply the "true" selection mechanism.

Since we do not know the mechanism, we do not know π(θ) for
every possible θ.

However, we DO know π(θ) at the true θ0 because we know that:

P0 = π(θ0)

and both P0 and θ0 are identi�ed.
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Counterfactual Experiments: Aguirregabiria-Ho (2007)

Let θ0 and P0 be the the population values. Let (θ̂0, P̂0) be our
consistent estimator.

We do not know the function π(θ). All what we know is that the
point (θ̂0, P̂0) belongs to the graph of this function π.

Let θ� be the vector of parameters under a counterfactual scenario.

We want to know the counterfactual equilibrium π(θ�).
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Counterfactual Experiments: Aguirregabiria-Ho (2007)

A Taylor approximation to π(θ�) around our estimator θ̂0 implies
that:

π(θ�) = π
�

θ̂0
�
+

∂π
�

θ̂0
�

∂θ0

�
θ� � θ̂0

�
+O

�


θ� � θ̂0




2�

= P̂0 +
∂π
�

θ̂0
�

∂θ0

�
θ� � θ̂0

�
+O

�


θ� � θ̂0




2�

To get a �rst-order approximation to π(θ�) we need to know

∂π
�

θ̂0
�

∂θ0
.
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∂θ0
.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 70 / 71



Counterfactual Experiments: Aguirregabiria-Ho (2007)

We know that π
�

θ̂0
�
= Ψ(θ̂0, P̂0), and this implies that:

∂π
�

θ̂0
�

∂θ0
=

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

Then:

π(θ�) = P̂0+

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

�
θ� � θ̂0

�
+O

�


θ� � θ̂0




2�

Therefore, P̂0 +
�
I � ∂Ψ(θ̂0,P̂0)

∂P0

��1
∂Ψ(θ̂0,P̂0)

∂θ0

�
θ� � θ̂0

�
is a �rst-order

approximation to the counterfactual equilibrium P�.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 71 / 71



Counterfactual Experiments: Aguirregabiria-Ho (2007)

We know that π
�

θ̂0
�
= Ψ(θ̂0, P̂0), and this implies that:

∂π
�

θ̂0
�

∂θ0
=

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

Then:

π(θ�) = P̂0+

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

�
θ� � θ̂0

�
+O

�


θ� � θ̂0




2�

Therefore, P̂0 +
�
I � ∂Ψ(θ̂0,P̂0)

∂P0

��1
∂Ψ(θ̂0,P̂0)

∂θ0

�
θ� � θ̂0

�
is a �rst-order

approximation to the counterfactual equilibrium P�.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 71 / 71



Counterfactual Experiments: Aguirregabiria-Ho (2007)

We know that π
�

θ̂0
�
= Ψ(θ̂0, P̂0), and this implies that:

∂π
�

θ̂0
�

∂θ0
=

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

Then:

π(θ�) = P̂0+

 
I � ∂Ψ(θ̂0, P̂0)

∂P0

!�1
∂Ψ(θ̂0, P̂0)

∂θ0

�
θ� � θ̂0

�
+O

�


θ� � θ̂0




2�

Therefore, P̂0 +
�
I � ∂Ψ(θ̂0,P̂0)

∂P0

��1
∂Ψ(θ̂0,P̂0)

∂θ0

�
θ� � θ̂0

�
is a �rst-order

approximation to the counterfactual equilibrium P�.

Victor Aguirregabiria () Empirical Dynamic Games CAMP RESOURCES 2008 71 / 71


	Introduction
	Outline
	Model: A Dynamic Game of Market Entry/Exit
	Econometric Issues

	Estimation Methods
	Introduction
	Constrained MLE / Constrained GMM
	Two-step methods
	Recursive K-step estimator
	Estimation using Moment Inequalities
	Simulation-based estimation

	Estimation of models with unobserved market heterogeneity
	Finite mixture model
	Nested Pseudo likelihood (NPL) method

	Counterfactual Experiments with Estimated Model

