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@ Among those of us with sufficient experience to have witnessed trends
in the profession (read: old folks like me), most would probably agree
that Bayesian methods have certainly become more popular over the
last 15-20 years.

e When presenting my work straight out of graduate school, I found
that many of those who had not yet fallen asleep proved to be totally
unfamiliar with Bayes - even Bayes theorem (!) - and were very
skeptical of my results (and me).
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Introduction

@ Now, | find that more are familiar with the basics of Bayes, yet most
continue to have an inherent distrust of priors (and me).

e The perceived growth in Bayes is certainly true within Statistics, also
true among Economics and Econometrics generally, and my priors
(coupled with a few data points) suggest that is is also true, though
perhaps to a lesser extent, within Environmental / Resource
Economics.

Justin L. Tobias (Purdue)
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Introduction Introduction

e Poirier (2006) offers some evidence that this has indeed been the case
in many fields.

[ Poirier, D.J. (2006). “The Growth of Bayesian Methods in
Statistics and Economics Since 1970,” Bayesian Analysis,
969-980.

@ He searches for the appearance of “"Bayes” or “Bayesian” in articles
and records the fraction of such articles by field and by journal over
time:

e Statistics (23 journals)

e Finance (4 Journals)

e Economics (41 Journals)
e Philosophy (24 Journals)

o Political Science (40 Journals) e 0 -
o Sociology (39 Journals) B b o
o General Science (7 Journals) E§ ¢ EEC 8 B3 ¢ 8B T EF PR}
YVear
@ The following figures are all taken from the Poirier article: S Ml 4Bl o MR - il A B 1 Gl e
s E— @ So, the material that | am about to review appears to be growing in
ox : i popularity, but a relevant question is why?
§i% Mo gl
£oa om0 "
P ok -~ . . .
oot i ANSW @ Within Economics and other fields, a key reason for the expansion of
FEREIERG EERIEERA Bayesian work is the development of Markov Chain Monte Carlo
Blometrika Journal of Econometrics (MCMC) methOdS
EE f‘-f' EE ’W*"J\.ﬂ A e Two key players here are the Gibbs Sampler and the
mm o0 il Metropolis-Hastings algorithm.
e 8883¢f 5EEIEELE
— o ot Aotiod omoratics [W Casella, G. and E. George (1992). "Explaining the Gibbs
om i Sampler.” The American Statistician, 167-174.
505 Som |
§§§ J,\I.ﬂ,y bl \JW 8 Chib, S and E. Greenberg (1995). “Understanding the
. el W Metropolis-Hastings Algorithm.” The American Statistician,
EEgfsagy GBEREEEEE 307-335
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Review of Basic Framework

Below are several other papers coincident with the start of the “MCMC
Revolution:”

[H Gelfand, A.E. and A.F.M. Smith (1990). “Sampling-Based Approaches
to Calculating Marginal Densities” Journal of the American Statistical
Association, 398-509.

[B Gelfand, A.E., S.E. Hills, A. Racine-Poon and A.F.M. Smith (1990).

e Quantities to become known under sampling are denoted by the
n-dimensional vector y.

‘lllustration of Bayesian Inference in Normal Data Models Using Gibbs e The remaining unknown quantities are denoted by the K-dimensional
Sampling'. Journal of the American Statistical Association, 412: vector § € © C RK,
972-85.
8 Chib, S. (1992), ‘Bayes Inference in the Tobit Censored Regression
Model'. Journal of Econometrics, 51: 79-99. @ Consider the joint density of observables y and unobservables 6:
8 Albert, J. and S. Chib (1993). ‘Bayesian Analysis of Binary and ply,0)

Polychotomous Response Data’. Journal of the American Statistical
Association, 88: 669-79.

Review of Basic Framework Review of Basic Framework
(Not sure to whom credit should be given for this, but it is not my own
creation:)

e Standard manipulations show:

[YET ANGTHER) HISTORY OF LIFE AS WE KNOW IT.. p(y, 9) = p(9)p(y|9) = p(y)p(9|y),
o -,.':.g'><|'-_-3.j ) Bee) where
s -,:_-_" - '_|><. o p(0) is the prior density
e T o p(fly) is the posterior density
. e p(y|0) is the likelihood function. [Viewed as a function of 6, we write
ﬁ % this as L(0)].
ilc;ﬁnp_lll‘_'. :‘S:gb\ 1Cms l?(lgr'glil‘_)l'll"--:-'lﬂ ?%?F‘?FHE; E:E?'J ARIS
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Preliminaries and Bayes Theorem Preliminaries and Bayes Theorem

Review of Basic Framework Bayes Theorem

Bayes' theorem for densities follows immediately:

0)L(0
p(0ly) = —p(pzyg )
We also note > p(B)L(0).
b(y) = /@ p(0)p(y10)d0
@ We focus on the posterior up to proportionality (o) on the right-hand
_ /@p(O)L(Q)dO e p p to prop y (oc) g

o Often, the kernel of the posterior will take on a familiar form, whence

is the marginal density of the observed data. the normalizing constant of the posterior can be deduced.

@ The shape of the posterior can be learned by plotting the right hand
side of this expression when k =1 or k = 2.

o In these cases, the normalizing constant [p(y)] ™! can be obtained
numerically (e.g., a trapezoidal rule or Simpson's rule).
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Preliminaries and Bayes Theorem Preliminaries and Bayes Theorem

Bayes Theorem

p(6ly) o« p(y|0)p(6).

@ In most non-trivial situations, the integration required to calculate

posterior statistics of interest cannot be performed analytically. The G|bbs Algonth m

e Enter MCMC: To calculate the desired quantities, we generate a
series of simulations which converge in distribution to the joint
posterior p(f]y).

@ We can then use the post-convergence simulations to calculate
posterior means, standard deviations, quantiles and entire marginal
posterior distributions.
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The Gibbs Algorithm

@ As analytic results are seldom available in problems of even moderate
complexity, we commonly rely on numerical strategies to generate
simulations from the joint posterior p(6|y). These simulations can
then be used to calculate the desired posterior features.

@ One such device is the Gibbs Sampler.

Let @ be a K x 1 parameter vector with associated posterior distribution

p(@ly) and write
0=1[0" 6% --- 6X].

(We use superscripts to denote elements of the parameter vector and will
employ subscripts to denote iterations in the algorithm.)
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The Gibbs Algorithm

@ Under standard regularity conditions, the sequence of draws produced
from this algorithm will act as (correlated) draws from p(fly).

[H Tierney, L. (1994). "Markov Chains for Exploring Posterior
Distributions” (with discussion and rejoinder). Annals of Statitics,
1701-1762.

[B Roberts, G.O. and A.F.M. Smith (1994). “Simple Conditions for
the Convergence of the Gibbs Sampler and Metropolis-Hastings
Algorithms” Stochastic Processes and their Applications,
207-216.

8 Geweke, J. (2005). Contemporary Bayesian Econometrics and
Statistics (section 4.5 in particular).

The Gibbs Algorithm

The Gibbs sampling algorithm proceeds as follows:

(i) Select an initial parameter vector 0 = [0} 02 --- 0K]. This initial
condition could be arbitrarily chosen, sampled from the prior, or
perhaps could be obtained from a crude estimation method such as
least-squares.

(1) Sample 6] from the complete posterior conditional density:
p(016? = 6032,0° =063,--- 0K =0f.y).
(2) Sample 62 from p(62|6* = 61,0° = 63,--- 0K = 0F.y)

(K) Sample 6K from p(6%|0 = 61,62 = 63,--- ,0K—1 = 9K~ y)
(i) Repeatedly cycle through (1) — (K) to obtain 6, = [0} 63 --- 6X],
03, etc., always conditioning on the most recent values of the

parameters drawn [e.g., to obtain 63, draw from
P(91|92 = 0]2.7 93 = 9%5 o HK = o]f(,}/), etc.].
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The Gibbs Algorithm

@ To implement the Gibbs sampler we require the ability to draw from
the posterior conditionals of the model.

@ Although the joint posterior density p(f|y) may often be intractable,
the complete conditionals {p(¢/10~/,y)}/<,;, (with 0~/ denoting all
parameters other than 91) prove to be of standard forms in many
cases!

August 7, 2012 20 / 101
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The Gibbs Algorithm The Gibbs Kernel

MCMC algorithms construct a transition kernel K to ensure that the
joint posterior is a stationary distribution of the Markov chain.

@ The Gibbs Sampling algorithm constructs this transition kernel by
sampling from the conditionals of the target (posterior) distribution.

e To provide a specific example, consider a bivariate distribution
p(y1,y2).
e Further, apply the transition kernel

K(x1, %2, y1,¥2) = Py o1 1x2) P31 (v2y1)-

e That is, if you are currently at (xi,x2), then the probability that you
will be at (y1,y2) can be surmised from the conditional distributions
of p, p;‘|2(Y1|Y2 = xp) and p§|1(Y2|y1) (where y; refers to the value
realized from the first step).
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The Gibbs Algorithm Example: Simple Bivariate Normal Sampling

Simple Bivariate Normal Sampling

@ We now turn to, perhaps, the simplest example of the Gibbs sampler,
and illustrate how the algorithm is implemented within the context of
this model.

@ We suppose that some problem of interest generates a posterior
distribution of the form:

p(91,92|Y)NN([8}’{/1) fl)D

where p is known.

@ We will illustrate how the Gibbs sampler can be employed to fit this
model (even though sampling from a bivariate normal is a trivial thing
to do!)
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The Gibbs Algorithm The Gibbs Kernel

It is reasonably straightforward to show that the target distribution
p(y1,y2) is a stationary distribution under this transition kernel:

To this end, note

[ Kotz = [ [eiatnbe)pintebnpta x)dude

- / / P 1) (valya )i o ot Jx2) P () b o

/ Pl (v lx2) 2 (valya )3 (x ) o

Pfu(yz |y1) / Pf\z(}ﬁ |X2)P; (Xz)dxz

P21 (y2ly1)pi (»1)
p(y1,y2)-
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The Gibbs Algorithm Example: Simple Bivariate Normal Sampling

Simple Bivariate Normal Sampling

@ To begin, we must set a starting value for either 61 or 6.

@ |t doesn't matter which we choose - the algorithm will work either
way. So, let's say that we set #, = ¢ to start.

@ To implement the Gibbs sampler, we must derive the conditional
posterior distributions p(601]02,y) and p(62|601,y). These are readily
available using properties of the multivariate normal distribution:

91’027}/ ~ N(p027 1- p2)7

and
92|91,y ~ N(pel, 1-— pz).

Justin L. Tobias (Purdue)
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The Gibbs Algorithm Example: Simple Bivariate Normal Sampling The Gibbs Algorithm Example: Simple Bivariate Normal Sampling

Simple Bivariate Normal Sampling

@ One needs to get rid of some of the initial simulations and use the
latter set of simulations to calculate quantities of interest.
So, the first iteration of the Gibbs sampler will proceed as follows:

Q Set 0, = c. @ Remember that this is an iterative algorithm - we must first converge

@ Sample to the target (posterior) distribution, and once we have arrived at this
0 ~ N(pe,1— p?). target distribution, the subsequent draws will be draws from p(6|y).

© Sample . . ) @ This “pre-convergence” period is called the burn-in, and the burn-in
05 ~ N(pf1,1 - p°). draws should be discarded.

@ A sketch of a MATLAB program that does all of these things is

Thus, (607, 63) denotes our Gibbs sample after the first iteration. . :
provided on the following page:
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The Gibbs Algorithm Example: Simple Bivariate Normal Sampling The Gibbs Algorithm Example: Simple Bivariate Normal Sampling
rho = c;
iter = 1000;
burn = 100;

thetalkeep = zeros(iter-burn,1);
theta2keep = thetalkeep;
theta2draw = 4;
for i=1:iter;
thetaldraw = rho*theta2draw + sqrt(1-rho?)*randn(1,1);
theta2draw = rho*thetaldraw + sqrt(1-rho?)*randn(1,1);
if i > burn;
thetalkeep(i-burn) = thetaldraw;
theta2keep(i-burn) = theta2draw;
end;
end;

-2 I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Iteration, p = .9
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The Gibbs Algorithm Example: Simple Bivariate Normal Sampling

Gibbs in the Linear Regression Model

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012 29 / 101
Gibbs Sampling in a Linear Regression model

Gibbs Sampling in the Linear Regression Model

Consider the regression model
yIX,B,0% ~ N(XB,0%I,)

under the priors
B~ N(ug, V), o*~1G(a,b).

o We seek to show how Gibbs sampling can be used to calculate
features of the joint posterior distribution.
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Gibbs Sampling in a Linear Regression model

Gibbs Sampling in the Linear Regression Model

Consider the regression model (where y is n x 1)

y|X, B, X ~ N(XB,X)

under the proper prior
B~ N(ug, Vs), p(¥)

One can show (completing the square on § plus a bit of algebra):
BIx,y ~ N(Dgds, Dg)

where

~1
Dy=(XT X+ V1) . de=XT Ty + Vilu

[@ Lindley, D.V. and A.F.M. Smith (1972). “Bayes Estimates for the
Linear Model” JRSS B 1-41.

Gibbs Sampling in a Linear Regression model

@ To implement the sampler, we need to derive two things:
o
p(5|02,y).
(2]
p(o?18, ).

The first of these can be obtained by applying our previous theorem
(with ¥ = 021,). Specifically, we obtain:

Blo?,y ~ N(Dsdg, Dg),

where

-1
Dy = (X'X/o*+ Vi) . ds=X'y/o® + Vs

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012



Gibbs Sampling in a Linear Regression model

As for the posterior conditional for o2, note

p(B8,0°ly) o p(B)p(c?)p(y|8,0?).

Since p(0?|83,y) is proportional to the joint posterior above, it follows that

p(c®|B,y) o p(c®)p(y|B,0?)
x [0?]” (a+1)exp( T )
2] e (5 ly = X8) (s~ X5))
o2y
cep (2 |67+ 50 - X0 1y - x5)
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Gibbs Sampling in a Linear Regression model

Thus, to implement the Gibbs sampler in the linear regression model, we
can proceed as follows.

© Given a current value of o2
Q Dﬁ(O‘Z) and dg =
© Draw f from a N[Dg(o?
Q

Draw &2 from an

IG <g+a,

distribution.

d5(0'2).
)ds(0?), Dg(0?)] distribution.

Calculate Dg =

57+ 5 - XB) (s - XB) )

O Repeat this process many times, updating the posterior conditionals
at each iteration to condition on the most recent simulations
produced in the chain.

O Discard an early set of parameter simulations as the burn-in period.
@ Use the subsequent draws to compute posterior features of interest.

Gibbs Sampling in a Linear Regression model

The density on the last page is easily recognized as the kernel of an inverse
gamma density:

n
G| =
G<2+

e Drawing from the Inverse Gamma is easy - if a routine for the
generation of Gamma variates is available, you can simply invert them
(but be careful about parameterization!!)

s[5 50— X6) 0 - x9) )

density.
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Gibbs Sampling in a Linear Regression model

Illustrative Application with Wage Data

Application to Wage Data

We apply this Gibbs sampler using a small sample of 1985 outcomes
from the NLSY.

We consider the model

log Wage; = By + B1Education; + ¢;, €|Ed ~ N(0,5°1,).

The following estimation results are obtained under the prior

B~ N(0,4h), o*~IG[3,(1/[2*.2])].

We obtain 5,000 simulations, and discard the first 100 as the burn-in
period.
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Gibbs Sampling in a Linear Regression model lllustrative Application with Wage Data Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

Posterior Prediction

Posterior Calculations Using the Gibbs Sampler The method of composition can also prove to be a very valuable tool for
Bo b1 o? problems of (posterior) prediction.

E(-ly) 1.18 .091  .267
Std(-|y) | .087 .0063 .0011

To this end, consider an out-of-sample value yr which is presumed to be
generated by our regression model:

@ Posterior means are virtually indistinguishable from OLS estimates. vy = XeB+ ur, uf| Xg ~ N(0702).

e In addition, we calculate, say,

Pr(8: < .10]y) = .911 (1] N;)te that yr|3, 02 does not depend on y. (But does through 3 and
oc.)
to illustrate how the simulations can be used to calculate a variety of © The goal is to simulate draws from the posterior predictive:
quantities of interest (and to contrast interpretations with the
frequentist case). p(yfly).

which does not depend on any of the model's parameters.
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Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

Posterior Prediction

Note

plyr,B.0°ly) = plyelB,0° y)p(B,0°y)

To generate draws from this posterior predictive, we first consider the joint
posterior distribution:

2
plyr. B.cy). . : .
( ) This suggests that draws from the marginal can be obtained by

@ Drawing a (52, 3) from p(B,02%|y). [We have these from the Gibbs

If we can draw from this distribution, we can use only the yr draws (and Sampler]

ignore those associated with 5 and 02) as draws from the marginal .
p(yrly). @ Drawing yr from a N(X;(,0?) distribution.

R © Note, of course, this requires that X is known.
How can we do this?

© Doing this many times will produce a set of draws from the posterior
predictive yr|y.
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Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

Gibbs Sampling in a Linear Regression model lllustrative Application with Wage Data

e Let's apply this method to generate draws from the posterior
predictive using our log wage example:

log(wage); = Bo + B1Education; + u;.

@ The method just described could be applied directly to sample from
the predictive distribution of (log) hourly wages.

@ However, the wage density itself is actually more interpretable.

e To sample from the posterior predictive of wages (in levels), we can
consider drawing from an augmented density of the form:

p(wr, yr, B,°|y)

where
wr = exp(yf).
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p(wr, yr, B,°|y)

We can write this joint distribution as follows:

p(Wf,yf,ﬁ,a-Zb/) = p(va.yf|B7o-27.y)p(Ba0-2|y)
P(Wf|)/f,5,Uz,y)P()/fW,Uz,y)P(ﬁ,U2|}/)
= P(Wf|}/f)P()/f|ﬂa‘72)P(5702|)’)

where the last line follows since the distribution of wf only depends on yr
and, in fact,

p(welyr) = I[wr = exp(yf)].

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012 42 / 101

Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

Thus, within the context of our example, we can generate draws from the
posterior predictive distribution of hourly wages wy as follows:

@ Generate (2, 8) from p(3,02]y).

@ Generate N
e ~ N(X¢B.5%).

@ Calculate
wr = exp(yr).

Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

@ We apply this technique to our data set and generate 10,000 draws
from the posterior predictive distribution of hourly wages for two
cases: Ed = 12 and Ed = 16.

@ The 10,000 draws are then smoothed nonparametrically via a kernel
density estimator.

@ Graphs of these densities are provided on the following page.
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Gibbs Sampling in a Linear Regression model lllustrative Application with Wage Data Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data

0.09-

The (posterior predictive) mean hourly wage for high school
graduates is (approximately) $11.07.

0.08 Education =12

0.07-

The mean hourly wage for those with a BA is (approximately) $15.88

0.06 @ The posterior probability that a high school graduate will receive an
.Z? 005l  tusaion = 16 hourly wage greater than $15 is
; 004} Pr(ws > 15|Edr = 12,y) = .19
0.03 @ The posterior probability that an individual with a BA will receive an
0.02 hourly wage greater than $15 is
001

Pr(ws > 15|Edr = 16,y) =~ .44

20 30 40 50
Hourly Wage

If you are curious, doing the same exercise for someone with a Ph.D.,
i.e., Ed = 20, gives Pr(ws > 15|Edf = 20,y) =~ .72

Figure : Posterior Predictive Hourly Wage Densities Don't worry - this is old datall!
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Gibbs Sampling in a Linear Regression model Illustrative Application with Wage Data Binary Choice Model
Probit Model

Consider the following latent variable representation of the probit model:

zi = xi0 + €;, 6,'|)<I;i\(/j/\/(o,].)7

Gibbs Sampling in a Probit { L 20
Yi =

0 ifz<O0

The value of the binary variable y; is observed, as are the values of the
explanatory variables x;. The latent data z;, however, are unobserved.
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Binary Choice Model

e Tanner and Wong (1987) and Albert and Chib (1993) describe the
idea of data augmentation.

[@ Tanner, M. and W. Wong (1987). ‘The Calculation of Posterior
Distributions by Data Augmentation’. Journal of the American
Statistical Association, 82: 528-49.

3 Albert, J. and S. Chib (1993). ‘Bayesian Analysis of Binary and
Polychotomous Response Data’. Journal of the American
Statistical Association, 88: 669-79.

e For many microeconometric models the idea is that, conditioned on
suitably defined latent data, the models are effectively linear, so all of
the usual Lindley-Smith (1972) mechanics apply.

e That is, instead of working with p(f]y), we might try to implement a
Gibbs algorithm on p(0, z|y) since p(6|z,y) might be much easier to
deal with than p(@ly).
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Binary Choice Model

To characterize this density in more detail, note

p(y;z|B) = p(y|z, B)p(z|B).

Immediately, from our latent variable representation, we know
n
p(z|8) = [ [ ¢(z:: i3, 1).
i=1

As for the conditional for y given z and 3, note that when z; > 0 then y;
must equal one, while when z; < 0, the y; must equal zero.
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Binary Choice Model

To derive the augmented joint posterior for the probit, note that

p(y,z|B8)p(B)

p(B,zly) = o)

Y

implying
p(B,zly) < p(y. z|B)p(B)-

e The term p(f) is simply our prior, while p(y, z|3) represents the
complete or augmented data density.

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012 50 / 101
Binary Choice Model

In other words, the sign of z; perfectly predicts the value of y. Hence, we
can write

p(ylz,8) = [[I(zi > 0)I(y; = 1) + I(z: < 0)I(yi = 0)].
i=1

Putting the pieces together, we obtain the augmented data density
p(y,z|B). We combine this with our prior to obtain

p(B,2ly) o< p(B) [ [ 1z > 0)I(yi = 1) + I(z < 0)I(yi = 0)] ¢(zi, xi3, 1).

i=1

Justin L. Tobias (Purdue)
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Binary Choice Model Binary Choice Model

It might be useful to see what we get when we integrate out the latent
data:
@ Note that this is exactly the prior times the likelihood that one would
p(Bly) = /P(ﬂaZb’)dz produce without the introduction of any latent variables.
x p(pB) /H [I(zi >0)l(yi =1) + I(zi < 0)I(y;i = 0)] ¢(zi,xiB8,1)dz1 - - - dzn
Zj=1 . . . .
n ~ e What is important to note is that the posterior of 5 is unchanged by
= pB)]] [/ [[(zi > 0)I(yi = 1) + (z < 0)I(yi = 0)] ¢(zi, i3, 1)d2f] the addition of the latent variables.
i=1 —o0
n 0 &9
= p(ﬁ)H [/ I(yi = 0)¢(zi; xiB,1)dz +/ 1(yi = 1)¢(zi; xi B, l)dz,-]
=1 20 0 e So, augmenting the posterior with z will not change any inference
_ p(ﬁ)H[/(yi —0)[1 — ®(xB)] + I(yi = 1) (x:8)] regarc_ilng I} - |t_|s the same as if we wo.uld have worked with the
i—1 (nonlinear) likelihood directly - though it does make the problem
z . _, computationally easier, as we will see below.
= ()] ®0aBY[1 — o (B P Y
i=1

Suppose a prior of the following form is employed:

B ~ N(ug, Vg). As for the complete conditional for z, first note that the independence
across observations implies that each z; can be drawn independently.
The complete conditional for 3 given z and the data y follows directly

from standard results from the linear regression model We also note that

zj|B,y o< I(zi > 0)p(zi; x;B,1) if y; =1
mZ,}/NN(DBdB,D,B)a Zl_w’yo( /(Zi §0)¢(Z;;X;ﬁ, 1) ify,-:0.

where
Ds=(X'X+ V) dg=Xz+ Vg
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Ordered Probit Model

Thus,

ind { TN(—oo0(xi8,1) ify; =0 Consider a latent variable representation of the ordered probit model:

zi|B,y ~ :

107 = TN ay(xiB.1) iy =1 __
Zi:Xi6+€ia ei”r\‘JjN(())l)?
o The notation TN&a’b](u,az) denotes a Normal distribution with mean

p and variance o“ truncated to the interval [a, b]. and _
1 if g <z < op
@ To generate draws from the Truncated Normal one can use the B 2 ifoar <z <
method of inversion - there are all kinds of m-files or R programs out Yi= : :
there that do this! M ifay 1<z <ay
o So, to fit a probit, you just need to be able to sample from a The latent variable z is not observed.
multivariate normal and univariate truncated normal. For identification purposes, we set ag = —o0, a; = 0 and ap = oo. The

«; are often called cutpoints.
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Ordered Probit Model Reparameterization in the Ordered Probit
data sets, standard Gibbs in the ordered probit suffers from slow Nandram and Chen (1996).
mixing.

To fix ideas, let us consider the case where M = 3 and so there is only one

e Part of the reason for this slow mixing is the result of high correlation unknown cutpoint a;

between the simulated cutpoints o and latent data z. [H Cowles, M.K. (1996). “Accelerating Monte Carlo Markov Chain
convergence for cumulative-link generalized linear models.” Statistics

o Cowles (1996), for example, recommends employing a blocking step and Computing 6, 101-111.
(where the o and z are drawn together in a single block.) This [H Nandram, B. and M-H Chen (1996). “Reparameterizing the
blocking procedure uses an M-H step to sample the cutpoints from a generalized linear model to accelerate Gibbs sampler convergence.”
series of truncated normal proposal densities. Journal of Statistical Computation and Simulation.
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Ordinal and Multinomial Choice

Let us take our original ordered probit:

iid

zi =x;B+e€i, €~ N(0,1),

1 if —oco<z <0
Yi = 2 if0<z <
3 fap<zi<o

and multiply the latent equation by 0 = 1/ap.
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Ordinal and Multinomial Choice

e So, when M = 3, we can simply use a standard Gibbs algorithm, as if
the model were a (latent) linear regression model.

@ When M > 3, we must sample the remaining cutpoints. One
possibility is to sample differences in cutpoint values via a Dirichlet
proposal density [e.g., Nandram and Chen (1996)].

Justin L. Tobias (Purdue) Bayesian Bayesics

Ordinal and Multinomial Choice

We then obtain the following, observationally equivalent model:

Z=xp +e, e X N0,
1 if —oo<z"<0
yi=¢ 2 if0<z <1
3 ifl<z<oo

In this reparameterized model, there are no unknown cutpoints and we
work with the parameterization

* %
d=1/ap, B*=65, z"=oz.
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Ordinal and Multinomial Choice

Multinomial Probit Model

Suppose that an agent has a choice among J alternatives, with no natural
ordering among the alternatives.

Let y; denote the observed choice of the agent, with y; € {0,1,--- , J—1}.

Let Uj; represent the latent utility received by agent i/ from making choice
J. We assume

Ujj = x;i8j + €,
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Ordinal and Multinomial Choice Ordinal and Multinomial Choice

We work with the augmented joint posterior of the form
Note that we can difference with respect to the base category (0) and p(U*, 8,7 y),
stack the observations over j for each i as follows: (where z and (3 can be
modified as needed): where U
* * Ui
Un zz 0 -+ 0 A1 €1 ur=| ?
U/*2 - 0 Zj2 0 ﬁz 672 .
= i : + . ; Ux
Ui 0 0 - zy Bi-1 € 1 This posterior distribution can be expressed as follows
or equivalently id (U 5,5 y) o p(B)p(E ) {H o(07326.) (1t = O(max( U]} < 0
U'=ZpB+e€, € ~ N0, i=1
J—1
(where a scale normalization is also required). + Y 1(yi = k)I[Uj > max {0, U,-*_k}])} ,
k=1
with U7, denoting the collection of utility differences for agent /i other
than the k" difference.
Ordinal and Multinomial Choice

@ In the first Bayesian work on this model, McCulloch and Rossi (1994)
fit the model using an “unrestricted” ¥ and simply report posteriors B McCulloch, R. and P.E. Rossi (1994). “An exact likelihood analysis of
for identifiable parameters by normalizing with respect to a diagonal the multinomial probit model” Journal of Econometrics 64, 207-240.
element: ~ - B McCulloch, R., N. Polson and P.E. Rossi (2000). “A Bayesian analysis

B=p/Vou, T =%/ou. of the multinomial probit model with fully identified parameters”
Journal of Econometrics 99, 173-193.

o McCulloch et al (2000) reparameterize ¥ and describe a (Gibbs) [M Nobile, A. (2000). “Comment: Bayesian multinomial probit models

posterior simulator over the identifiable parameter space. with a normalization constraint " Journal of Econometrics 99,
335-345.

o However, the prior over the unidentified model induces a prior on the [@ Imai, K. and van Dyk, D. A. (2005). 11A Bayesian Analysis of the
identified parameters that is not in standard form, and it is not in Multinomial Probit Model Using Marginal Augmentation.” Journal of
general easy to elicit sensible hyperparameters in this context (see Econometrics, 311-334.

Imai and van Dyk (2005 JoE).
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Ordinal and Multinomial Choice Endogenous Dummy Variable, Continuous Outcome Model

A Standard Binary Treatment Model

Consider the following model with a continuous outcome y and a binary
treatment variable D:

yi = oo+oaD+e¢
Df = z0+u,

2n[(9). (& )] =nom.

@ The second equation of the system describes a latent variable
generating D, i.e., D = I(D* > 0), like the probit model previously
discussed.

Putting Things Together: here
A LRM with an Endogenous Dummy <e,~>

uj

@ We seek to describe a Gibbs sampling algorithm for fitting this two
equation system.

A Standard Binary Treatment Model A Standard Binary Treatment Model
First, note that we can stack the model into the form . : . : :
We suggest a reparameterization to help with the former issue. First, write:
yi = XiB + uj, B
€ = Oyelj + Vi,
where .
where v; ~ N(0,02), v and u are independent, and 02 = 02 — 02,.
Q : : :
~ Vi 1 D 0 0 - €; So, we can work with an equivalent version of the model:
YVi=| pe|r Xi=|4 o B=1loa |, uy=| " 1.
i ZI 9 ul
yi = oo+ oa1Dj+ oyeuj + v
D = z0+ u;,
@ In this form, posterior simulation seems very similar to a SUR model
[Given the unit Jacobian of the transformation)]. where u and v are independently distributed. In this parameterization,X
takes the form:
. . o2 +02 o
o However, the fact that the (2,2) element of the covariance matrix y — v ue 1“6 )
must be restricted to unity introduces some complications. In Tue
addition, we must sample D*.
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Endogenous Dummy Variable, Continuous Outcome Model Endogenous Dummy Variable, Continuous Outcome Model

A Standard Binary Treatment Model A Standard Binary Treatment Model

We work with an augmented posterior distribution of the form

We complete the model by choosing priors of the following forms: p(B8,D*, 02,04y, D).
B~ N(ug, Vs) As for the complete conditional for 3, its derivation follows identically to
ouwe ~ N(po, Vo) the SUR model:
03 ~ /G(a,b), B|D 725Y7DNN(D5d5’D,3)
where

Finally, note that ¥ is positive definite for 03 > 0, which is enforced
through our prior. Dg=( XTI ' X+ Vg™ dpg =) XX+ Vilug.

1 1

(Note that ¥ is known given o2 and o).
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As for the parameters of the covariance matrix, let us go back to our
earlier version of the model:

yi = ao+ a1D;+ oyeui + v
As for the posterior conditional for each D, we must first break our D = z0+ uj,
likelihood contributions into a conditional for D}|y; and a marginal for y;.
Thus, Note that, conditioned on 0 and D*, the errors u are “known" and thus
DIIB.E.y.D { TN(o,00)[20 + [0ue /(02 + 02)](vi — a0 — 1), (1 — p2)] :D; =1 we can treat u ?S a typi.c§l regressor in the first equation when sampling
U TN(—oo,0[2i0 + [0ue /(07 + 02)](vi — a0), (1 — pie)] :Di = 0. from the posterior conditional for o .:

auelB,D*, 0%, y,D ~ N(Dd, D)

where

D=(ulo2+V; ), d=u(y—ao—a1D)/o2+ V5 po.
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Endogenous Dummy Variable, Continuous Outcome Model

Finally,

Ualaueaﬁa D*7Y7D ~ 1G (g + a, [b_l +.5 Z(Yi —ap —a1D; — Uueui)z]_1> .

@ The Gibbs sampler proceeds by cycling through all of these
conditionals, and it is easy to simulate draws from each of these.

e At each iteration, we can calculate the structural parameter

2 _ 2 2
O =0y, + Ope-
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Flexible Extensions

@ A simple extension is through scale mixtures of normals.

e For example, if we specify
€N 0? ~ N(0,A0?), A~ G (Y2
2'v
then
elo® ~ t(0,0,v)
(again, be careful about parameterization)

@ In terms of Gibbs implementation, then, we can simply add an
additional step to sample the A\ mixing variables (which turn out to be
conditionally inverse Gamma) to fit a model that has Student-t errors.

o Other mixing distributions give rise to other marginals for € (e.g.,
logit, double exponential).

Flexible Extensions

@ All of the analysis to this point assumed Gaussian errors.

@ This may not be appropriate and people may not be willing to give
you a job / tenure if you hang your hat on normality too often.

@ So, is there a way to maintain the computational conveniences of
Gaussian sampling models (under Gaussian priors) yet be flexible and
able to adapt to handle non-Gaussian situations?
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A Few References on Scale Mixtures

[M Andrews, D.F. and C.L. Mallows (1974). ‘Scale Mixtures of Normal
Distributions’. Journal of the Royal Statistical Society, Series B, 36:
00-102.

[ Carlin, B.P. and N. G. Polson (1991). ‘Inference for Nonconjugate
Bayesian Models Using the Gibbs Sampler’'. The Canadian Journal of
Statistics, 19: 399-405.

@ Geweke, J. (1993). ‘Bayesian Treatment of the Independent Student-t
Linear Model’. Journal of Applied Econometrics, 8: S19-S40.

@ Albert, J. and S. Chib (1993). ‘Bayesian Analysis of Binary and
Polychotomous Response Data'. Journal of the American Statistical
Association, 88: 669-79.

[@ Chib, S. and B. Hamilton (2000). ‘Bayesian Analysis of Cross Section
and Clustered Data Treatment Models'. Journal of Econometrics, 97:
25-50.
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Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

@ An alternate approach is to employ finite mixtures.

e For example, let r denote a J x 1 component label vector. Given r,
we could consider a model of the form:

J
yi = ZOéOj/(f: =Jj) | +aiDi+¢
j=1
J o~
D,* = Zﬁoj/(r,- :j) + Z;9+ u;
j=1
where
. 2,(r) _(r)
i 0
< 5 ) rz® N < ) T )| =N,
bi 0 Oue 1

Just a Few of Many Papers on Mixtures / Flexible Models

@ An even greater degree of flexibility can be obtained by using a Dirichlet process prior, as
in Conley et al (2008).

D Li, M., D.J. Poirier and J.L. Tobias (2004). ‘Do Dropouts Suffer from Dropping
Out? Estimation and Prediction of Outcome Gains in Generalized Selection Models'.
Journal of Applied Econometrics, 19: 203-25.

D Smith, M.D. (2005). "Using Copulas to Model Switching Regimes with an
Application to Child Labor” Economic Record, S47-S57.

Geweke, J. and M. Keane (2007). ‘Smoothly Mixing Regressions’. Journal of
Econometrics, 138: 252-91.

Conley, T., C. Hansen, R. McCulluch and P. Rossi (2008). ‘A Semi-Parametric
Bayesian Approach to the Instrumental Variables Problem’. Journal of Econometrics,
144: 276-305.

Villani, M. R. Kohn and P. Giordani (2009). “Regression density Estimation Using
Smooth Adaptive Gaussian Mixtures” Journal of Econometrics, 155-173.

) & ) @

Griffin, J., F. Quintana and M.F.J. Steel (2011). ‘Flexible and Nonparametric
Modelling’, in J. Geweke, G. Koop and H. van Dijk, (eds.), Handbook of Bayesian
Econometrics. Oxford: Oxford University Press, 125-182.

D Villani, M. R. Kohn and D. J. Nott (2012). “Generalized Smooth Finite Mixtures”
Journal of Econometrics, forthcoming.

Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

e So, the error covariance matrix and intercept parameters will vary
across the mixture components.

@ The model is completed by specifying

J
Pr(ri = Jjlp) = pj, ij =1, i=12,...,n
j=1
and adding a Dirichlet prior over the probability vector p.

e This allows a great deal of flexibility. Sometimes the mixtures can be
used / argued to capture various forms of heterogeneity.

@ In terms of posterior simulation, conditioned on r, the model is just
like the one we considered previously, and thus standard Gibbs can be
applied.

e Extra steps are added for the sampling of r (Multinomial) and p
(Dirichlet).

Flexible Regression Functions: Kline and Tobias (2008)

f(s,-) +x;8+ €
z;0 + oh; + uj,

. " 2
{e,] ’szag,\,[(o»(ae oezuﬂ =12, ..
uj 0 Ocu 0

@ The endogenous variable s is treated nonparametrically in the
outcome equation.

where

e h? are latent variables, (e.g. iid from a half normal), to allow for
additional skew in the conditional BMI distribution
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Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

Bayesian Implementation Bayesian Implementation
To smooth the curve, we reparameterize the model in terms of 9 = H~,
where
Stack the observations over i to obtain:
1 0 0 0 0 0 0
0 L 1l . 01 0 0 0 0
— AL Ay — A AL 0 0 0 0
y D7 + X’B Te H= é zAgl ’ N . a7toat 0 0 0
s = ZO0+6h" +u ;
0 0 0 0 At —Ak—;; -at A:;
where
f(s1) and A; =s; — 5j_1.
f(s2) The elements of ¥ = H~ thus consist of a pair of “initial conditions”
[€' u]|x,z,h* ~ N(02p, Z® y), ~= ' , : ¥ 7 P m
: and 7, and differences of the form
f(s
(k) o o= VT U T2 g
D is a n x k, matrix,k, < n, with ith row d;, which is constructed to / Si—S-1  Si-1—Sji-2 e
select off the appropriate element of v, and 5; < sj41. ~ f(si_1) — f'(sj_2).
Bayesian Implementation Generated Data Experiments
We choose a prior for @ of the form:
[1 1] ~ N[0y, 10l5], e Generate some data from the model described above to investigate

the performance of the algorithm.
with I, denoting the 2 x 2 identity matrix.

For the remaining elements of ¢, we specify a prior of the form @ Do this for two cases. One where f is nonlinear (a sin function with a

linear trend), and the second for a linear model.
[V3 wa - Wi ] In ~ N[0k, —2,mlk, 2], )

@ Keep priors constant in both experiments.

o As n — 0, force linearity. : .
g y e Focus on posterior results for f(s) and the smoothing parameter 1 to

e For “intermediate” 7, force local similarity. fix ideas

o Allow 1 to be updated by the data.

@ Can also use Gaussian Process priors to the same end.
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Generated Data Results: Nonlinear Model Generated Data Results: Linear Model

Post. Mean Posterior Mean + 2 Std. Dev
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zf ) 2|
B Posterior A
2 et
o @
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Diagnostics with Actual Data, Using s = log(BM/) Diagnostics with Actual Data, Assuming Skew-Normality
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Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

Regression function f(s) : Females Sample

1.8

1.75F Ef(BMI) | y] + 2 Std[f(BMI)ly] 1

1.7F 4
ELf(BMDIY]

1.65

1.6

= Linear
5 1,55
1.5t
145} .
EIf(BMI) | y] - 2 Std[f(BMI)|y]
1.4f / 1
1.35F E
1.3 L L L L L L
18 20 22 24 26 28 30 32

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012 93 / 101

Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

The Model

e z is differentiated from x in that z is potentially excludable.

e The dominant approach in practice is to employ p(a;) = (a1 = 1)
and then spend considerable time and effort to try and convince us
that this prior is “correct.”

@ One can employ different priors for a; than we will for elements of a;
given our knowledge of the problem at hand, yet we do not need to
impose perfect excludability.

e Conley, Hansen and Rossi (2012) consider

ar ~ N(p,0%), a1 ~ N(u,7*8%).

[B Conley, T.G., C.B. Hansen and P.E. Rossi (2012). “Plausibly
Exogenous” The Review of Economics and Statistics, 260-272.

IV Imperfection

Yi = oo+ ziag + X + S + uj,
Bo + ziB1 + xiBs + vi,

() enpo (5, )]
Vi PuvOuOyv oy

@ y is the continuous outcome, s is a continuous endogenous variable.

where

@ 7 is typically the key parameter of interest.

@ The model is only partially identified.
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@ At a minimum, one can conduct an analysis of this sort as a
robustness exercise - to illustrate how posterior results change as prior
information changes.

@ This is consistent with what is being done in the bounding literature.

@ Bayesians often support the production of a menu of posterior results;
in this particular case, dogmatic priors correspond to just a single
item on this menu.
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IV Imperfection

o Kraay (2012) notes posterior sensitivity to even mild uncertainty
surrounding excludability.

Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

Table : Number of draws (in thousands) required to have the NSE less than one
percent of the posterior mean: as; ~ N(0,.052).

Wage Equation

; ; ; : : ; Number of Iterations Computation Time

° _Chan_ gnd Tob_las (2012) discuss posterior computation in the partially Parameter EC|Data) | Gibbe | SemiAnalytic it Semi-Analytic
identified setting. BMI 1008 3,377,208 146 390 days 24 minutes
e They consider priors that order “direct” and "“indirect” effects, e.g: Constant 1.756 5,685 1.50 15.8 hours .25 minutes
MomBMI -.0092 363,582 8 42.1 days 1.2 minutes

DadBMI -.0073 317,180 24 36.7 days 4.0 minutes

a1y, b1~ TN g1, 1891) (0: Ve )- Familylncome .0007 218 63 0.6 hours 10 minutes

HighSchool .062 5,659 14 15.7 hours 2.4 minutes

Alevel .266 899 1.92 2.5 hours .32 minutes

o Non-ID coefficients mix very poorly, and NSEs will be relatively large Degree .355 903 .58 2.5 hours .09 minutes
by necessity. Union .031 6,852 38 19.0 hours 6.3 minutes
Married -.018 55,708 106 6.4 days 17 minutes

o Offer a computational approach that improves upon iid simulation from Other Parameters

the joint posterior. Parameter E(-|Data) Gibbs Semi-Analytic Gibbs Semi-AnaIytic

Puv -.097 965,848 5 112 days .90 minutes

05 225 12,293 .03 1.4 days .005 minutes
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Conclusion

Conclusion

Bayesian Bayesics Bayesian Bayesics

Endogenous Dummy Variable, Continuous Outcome Model Extensions and Recent Work

[ Poirier, D.J. (1998). “Revising Beliefs in Non-Identified Models"
Econometric Theory, 483-500.

8 Nevo, A. and A.M. Rosen (2012). “Identification with Imperfect
Instruments” Review of Economics and Statistics, 659-671.

e MCMC is a very powerful tool that facilitates posterior calculation,
and in some cases, enables researchers to estimate models that might
otherwise be intractable.

@ Here, we illustrated its use in a standard selection or endogenous
variable model. Techniques discussed there for handing non-normality
or nonlinearities can be adapted to all kinds of other
microeconometric models relevant to applied work in Environmental /
Resource Economics.

[8 Kraay, A. (2012). “Instrumental Variables Regressions with Uncertain
Exclusion Restrictions: A Bayesian Approach,” Journal of Applied
Econometrics, 108-128.

[ Moon, H.R. and F. Schorfheide (2012). " Bayesian and Frequentist
Inference in Partially lIdentified Models” Econometrica , 755-782,

[ Chan, J. and Tobias, J.L. (2012). "Priors and Posterior Computation °
in Linear Endogenous Variables Models with Imperfect Instruments”
working paper.

Remember, we use priors all the time. Bayesian just confess to this
practice and incorporate prior information in a way that conforms to
the laws of probability theory.

@ Thank you so much for allowing me this opportunity.
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Conclusion

And, here are a few all-purpose Bayesian textbooks covering a variety of
different topics:

[ Poirier, D. (1995). Intermediate Statistics and Econometrics: A
Comparative Approach, MIT Press.

Koop, G. (2003). Bayesian Econometrics, John Wiley and Sons.

Lancaster, T. (2004). An Introduction to Modern Bayesian
Econometrics, Blackwell Publishing.

Geweke, J. (2005). Contemporary Bayesian Econometrics and
Statistics, New York: Wiley.

Koop, G., D. Poirier and J.L. Tobias (2007). Bayesian Econometric
Methods, Cambridge: Cambridge University Press.

) B =

Greenberg, E. (2008). Introduction to Bayesian Econometrics
Cambridge University Press.

Justin L. Tobias (Purdue) Bayesian Bayesics August 7, 2012 101 / 101



