Text as Data

Brandon M. Stewart!

Department of Government, Harvard University

Camp Resources XX, August 5, 2013

1Thanks to Gary King, Justin Grimmer, Rich Nielsen and Molly Roberts for permission tojinclude figures here.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 1/38



Overview

Two points and an application.

Brandon M. Stewart (Harvard)

Text as Data



Overview

Two points and an application.

© Large bodies of text can provide a new source of data for social
science research.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 2 /38



Overview

Two points and an application.

© Large bodies of text can provide a new source of data for social
science research.

@ Big data isn't about the data (it's about the methods).

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 2 /38



Overview

Two points and an application.

© Large bodies of text can provide a new source of data for social
science research.

@ Big data isn't about the data (it's about the methods).

© Application to censorship and media control in China.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 2 /38



Overview

Two points and an application.

© Large bodies of text can provide a new source of data for social
science research.

@ Big data isn't about the data (it's about the methods).

© Application to censorship and media control in China.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 2 /38



References

Grimmer Justin and Brandon M. Stewart. (2013) “Text as Data: The

Promise and Pitfalls of Automatic Content Analysis Methods for Political
Texts." Political Analysis.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 3/38



Overview

© Text as Data

© Big Data isn't about Data

e Information Control in China

@ Conclusion

Brandon M. Stewart (Harvard)

Text as Data



Text as Data

Massive quantities of unstructured text are increasingly available and open
up new possibilities.

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 5/38



Text as Data

Massive quantities of unstructured text are increasingly available and open
up new possibilities.
© More Systematic and Replicable Data collection

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 5/38



Text as Data

Massive quantities of unstructured text are increasingly available and open
up new possibilities.

© More Systematic and Replicable Data collection

@ Cheaper to collect!

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 5/38



Text as Data

Massive quantities of unstructured text are increasingly available and open
up new possibilities.

© More Systematic and Replicable Data collection

@ Cheaper to collect!

© New Quantities of Interest
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What Changed?

@ Massive increase in availability of unstructured text (10 minutes of
worldwide email = 1 LOC)

@ Cheap storage: 1956: $10,000 megabyte. 2011: <<< $0.0001 per
megabyte (Unless you're sending an SMS)

@ Explosion in methods and programs to analyze texts
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- Interpreting the meaning of a sentence or phrase ~» Analyzing a straw
of hay

- Humans: amazing (Straussian political theory, analysis of English

poetry)
- Computers: struggle

- Comparing, Organizing, and Classifying Texts~> Organizing hay stack

- Humans: terrible. Tiny active memories
- Computers: amazing~ and getting better all the time!

What They Don’t Do:
- Develop a comprehensive statistical model of language
- Replace the need to read

- Develop a single tool + evaluation for all tasks
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A simple recipe for automated content analysis:
@ Define the Problem
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How to Use Text as Data

A simple recipe for automated content analysis:
@ Define the Problem
@ Find a Text Corpus
© Analyze with an Appropriate Model
@ Validate and Visualize

But seeing is believing...
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Islamic Clerics and Jihad (Nielsen)
Why do some Islamic Clerics support militant Jihad?
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Digital Literature Reviews (Nielsen & Stewart)
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Want to code international events of form “someone did something to
someone else”
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International Events (O'Connor, Stewart & Smith)

Want to code international events of form “someone did something to
someone else”

@ Original Approach: Manual Coding
o First Automated Approach: 15,000 patterns, 200 event classes

@ Our Approach: Learn Event Types from the Text with a Probabilistic
Model!
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International Events (O'Connor, Stewart & Smith)
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International Events (O'Connor, Stewart & Smith)
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Many More Possibilities!

Some other interesting questions addressed with Text Data

@ How do civilians differ from military leaders on foreign policy?
(Stewart and Zhukov 2009)

How do legislators relate to their constituents? (Grimmer 2010,2013)
What drives media slant? (Gentkow and Shapiro 2010)

Was there a constitutional moment in the 1860s? (Stewart and
Young 2013)

Where does [insert party/legislator] fall on the ideological spectrum?

Plus: Open-ended survey analysis (Roberts et. al 2013), Digital
Humanities (Jockers 2012), Digital Historiography (Mimno 2012),
Public Opinion (Hopkins and King 2010), Congressional Discourse
(Quinn et al 2010), Legal Analysis (Gill and Hall 2013) etc.
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Big Data Isn't About the Data

Data only gets you so far.
Four principles for automated text analysis:

@ Statistical models of language are wrong but useful.
@ Best methods amplify resources and augment humans.
© There is no globally best method.

@ Validate, Validate, Validate.
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A unifying view of text methods
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The Value of Better Methods

@ Moores Law (doubling speed/power every 18 months) vs. Better
Algorithm (1000x speed increase in 1 day)
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The Value of Better Methods

@ Moores Law (doubling speed/power every 18 months) vs. Better
Algorithm (1000x speed increase in 1 day)

@ Statistics can see the needle in the haystack

@ Simple Methods can lead you astray.

Examples of bad analytics (Jobs and Jordan).

Brandon M. Stewart (Harvard) Text as Data August 5, 2013 24 / 38



Example: International Events

200 Million International Events

Image from GDELT data by Kalev Leetaru
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Example: International Events

Able to track violence over time.

NewsScientist

Charting Syria's civil war

Can a huge database of news stories help
peer through the fog of war? Political
scientists hope that it can — and maybe
even predict a conflict's course.
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Example: International Events

Suddenly in the 1990's Jordan began attacking everyone.
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Example: International Events

Because Michael Jordan was attacking the net.

MICHAEL
JORDAN
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@ Conclusion
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Chinese Censorship (King, Roberts and Pan 2013)

@ Largest selective suppression of human expression in history
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Chinese Censorship (King, Roberts and Pan 2013)

Largest selective suppression of human expression in history

Press freedom ranking: 187th out of 197
Scale of Effort:

» Total Government Censors: ~ 200,000
> Internet Police: 20,000 — 50,000

@ 11 Million Posts analyzed, about 13% censored
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What Do They Censor?

@ Previous understanding: they censor criticisms of the government
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What Do They Censor?

@ Previous understanding: they censor criticisms of the government
@ New Results: they silence collective action

@ Criticism relatively uncensored.
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What Do They Censor?
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China and the Media (Roberts, Stewart and Airoldi 2013)

@ Want to understand how the traditional media covers China’s rise.
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China and the Media (Roberts, Stewart and Airoldi 2013)

@ Want to understand how the traditional media covers China’s rise.
@ Topic Models to estimate and track topics in millions of news reports.

@ Uses the Structural Topic Model (an extension of Latent Dirichlet
Allocation)
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China and the Media (Roberts, Stewart and Airoldi 2013)
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Topics by Time
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Comparing Coverage by Source

@ Compare Xinhua to Western News Wires
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@ Same topics covered but in different ways.
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Comparing Coverage by Source

@ Compare Xinhua to Western News Wires

@ Same topics covered but in different ways.

» Taiwan: ‘one-china’, ‘reunification’ vs. ‘elections’, ‘democratic’
» Falungong: ‘crime’, ‘illegal’ vs. ‘protest’, ‘crackdown’

@ Delayed coverage: SARS
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Two Points:
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@ Data + Analysis > Data
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