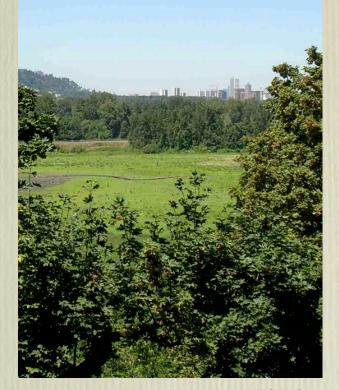


Valuing Landscape Patterns in an Urban Environment


Jonathan Kadish Noelwah R. Netusil

June 25, 2010 Prepared for Camp Resources XVII

Study Area and Problem

- Urban Growth Boundary
- Water quality
- Combined Sewer System
- Eight months of rain
- Combined Sewer Overflow Projects: \$1.4 billion
- Is there a better approach?

Oaks Bottom Wildlife Refuge Portland, Oregon

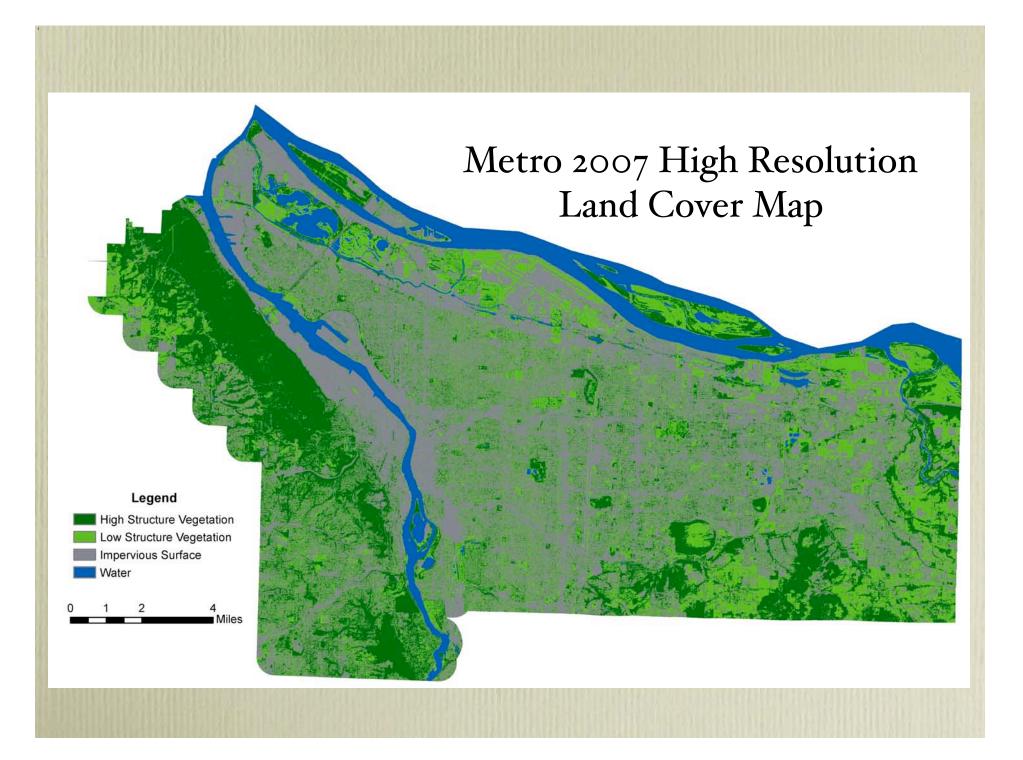
Grey to Green

\$50 million over five years to make "stormwater management more sustainable, restore watershed health, and enhance Portland's livability"

Goals include:

- Plant 33,000 yard trees and 50,000 street trees – "Treebate" program
- Purchase and protect 419 acres of high priority natural areas

NE Knott St. at 42nd Ave. Portland, Oregon


Research Questions

Is there a relationship between the sale price of single-family residential properties and:

(I) land cover types on and around the property?

(2) the spatial configuration of land cover types around the property?

Does incorporating landscape patterns change estimated coefficients on land cover variables?

Landscape Metrics

Composition Metrics

- Classify the number of land cover types and amount of each type in an area
- Examples: proportional abundance of each land cover, richness, evenness, diversity
- Commonly used in hedonic literature

Spatial Configuration Metrics

- Captures the spatial character of land cover patches within a mosaic
- Examples: patch-size distribution and density, patch-shape complexity, contagion, connectivity

Previous Research

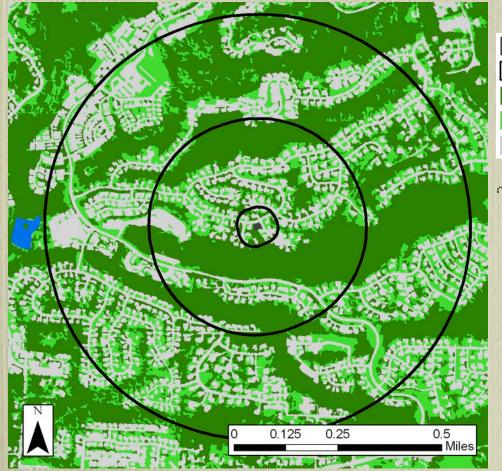

Vegetation

- Des Rosiers et al. (2002)
- Kestens et al. (2004)
- Mansfield et al. (2005)

Landscape Metrics

- Geoghegan et al. (1997)
- Acharya and Bennett (2001)
- Kong et al. (2007)

Composition Metrics: On-Property Land Cover



Composition Metrics: On-Property

£°.

	Mean	Standard Deviation	Minimum	Maximum
High Structure Vegetation	26.08%	22.13%	0	100%
Low Structure Vegetation	29.67%	19.18%	О	100%
Impervious Area	44.24%	19.60%	О	100%
Open Water	0.01%	0.57%	О	72.61%

Composition Metrics: Buffers

	High Structure	Low Structure	Impervious
200 foot	36.83%	17.45%	45.72%
200 foot- 1/4 mile	57.33%	16.64%	26.04%
1/4 mile- 1/2 mile	46.08%	23.46%	30.46%

Composition Metrics: Within 200 Feet

c.

	Mean	Standard Deviation	Minimum	Maximum
High Structure Vegetation	25.59%	14.58%	Ο	99.91%
Low Structure Vegetation	28.23%	10.33%	Ο	90.19%
Impervious Area	46.09%	13.22%	0	96.64%
Open Water	0.09%	1.53%	О	67.71%

Spatial Configuration Metrics

Patch Size Distribution and Density Metrics

- Patch Density
- Largest Patch Index
- Mean Patch Area
- Edge Density
- Landscape Shape Index

Contagion Metrics

- Contagion
- Aggregation Index

Shape Complexity Metrics

- Mean Shape Index
- Mean Fractal Dimension Index
- Mean Contiguity Index

Connectivity Metric

Patch Cohesion Index

Factor Analysis

Created 3 factors accounting for 90% of the variation; factors scaled between 0 and 1

Aggregation Factor

- Patch Density
- Mean Patch Area
- Edge Density
- Largest Shape Index
- Contagion
- Aggregation Index

Shape Factor

- Mean Shape Index
- Mean Fractal Dimension Index

Connectivity Factor

- Largest Patch Index
- Cohesion

Models

- 36,798 single-family residential transactions
- January 1, 2005-December 31, 2007
- Semi-log specification
- Quadratic terms to account for a priori expectations about diminishing returns
- Model 1: composition metrics only
- Model 2: composition and spatial metrics

Results: Spatial Metrics

Variable Name

 \mathbf{C}

Aggregation

Aggregation Squared

Shape

Shape Squared

Connectivity

Connectivity Squared

Estimated Coefficients (robust standard errors) -0.3117*** (0.0373) 0.1838*** (0.0583) -0.8446*** (0.0945) 0.6158*** (0.0843)

> -0.2171^{***} (0.0664)

-0.02559 (0.0813)

***p< 0.01, **p< 0.05, *p<0.1

Results: Landscape Factors

>

Real Sale Price

.

Aggregation, Connectivity Real Sale Price

۸

Shape

>

Calculations

Ω.

	Impact of 1-SD increase above mean		
Landscape Factor	Percentage	Dollar Amount*	
Aggregation	-1.8%	-\$5,772	
Shape	4.72%	\$15,004	
Connectedness	-2.22%	-\$7,065	

*Evaluated at mean property value of \$317,602

Findings

The spatial distribution of land cover types around a property affects its sales price

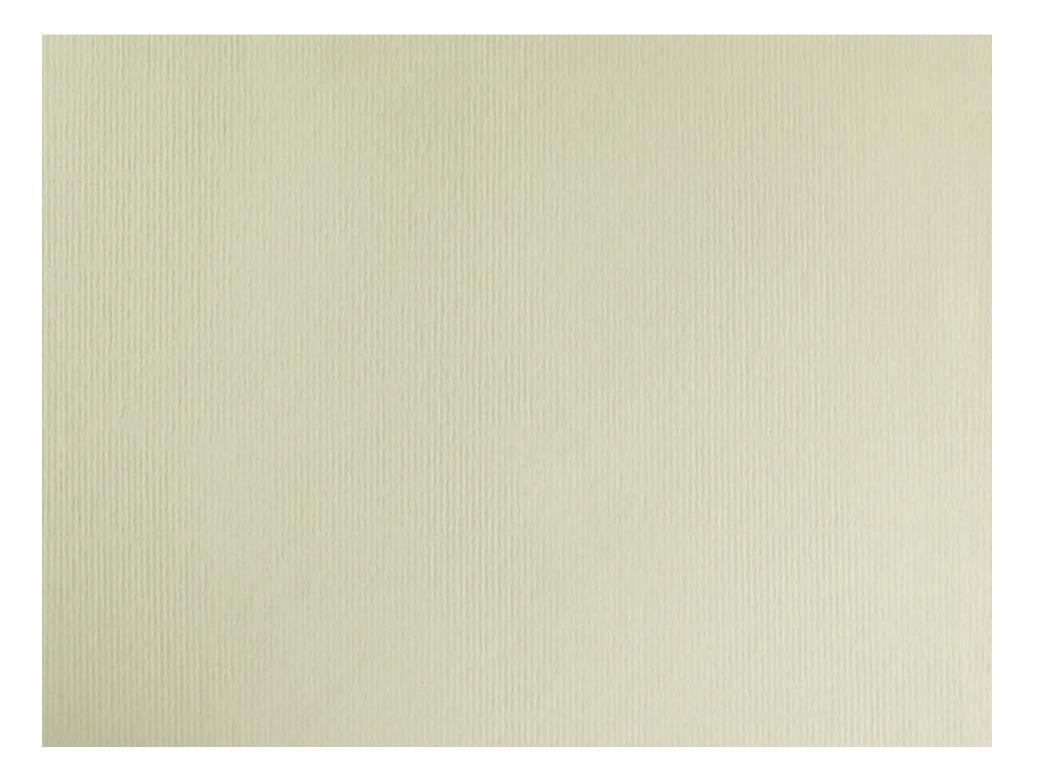
- Higher aggregation and connectivity are associated with a decrease in sale price
- More regular patch shapes are associated with an increase in sale price

Estimates of land cover values generally diminish with the inclusion of landscape factors – omitted variable bias

Implications

People prefer homogenous land uses in the area within ¹/₄-mile around their property – consistent with previous research

Policy initiatives should consider impact on spatial distribution of land cover types


- Treebate program could further fragment land cover, increasing property values
- Ecological value (water and air quality, wildlife habitat) of natural area preservation must be weighed against potential impact on property values

Questions?

Jonathan Kadish jonathan.kadish@gmail.com

Thanks to:

W. Bowman Cutter Char Miller Seth Kadish Niko Drake-McLaughlin Caleb Fassett Lori Hennings Justin Houk Roberta Jortner Gary Odenthal Claire Puchy Matt Summers Schultz Environmental Studies Award, Pomona College

Property Data (2005-2007)

36,798 transactions

 \mathcal{C}


Variable	Mean	Standard Deviation	Minimum	Maximum
Real Sale Price (2007 dollars)	\$317,602	\$190,816	\$58,920	\$4,349,733
Lot Square Footage	7,718	19,378	808	845,250
Building Square Footage	1,933	869	360	12,177
Age	53.4	31.77	О	137

On-Property Land Cover

	High Structure	Low Structure	Impervious	
Property 1	84.77%	0%	15.23%	
Property 2	26.07%	29.66%	44.26%	
Property 3	0%	61.01%	38.99%	

Spatial Configuration Metrics

Results: On Property

 \mathbf{C}_{i}

Variable Name	Estimated Coefficients (robust standard errors)
High Structure Vegetation	0.0896*** (0.0169)
High Structure Vegetation Squared	-0.143 ^{***} (0.0224)
Low Structure Vegetation	0.0422* (0.0224)
Low Structure Vegetation Squared	-0.105*** (0.0332)
Open Water	-0.333 (0.316)
	***p< 0.01, **p< 0.05, *p<0.1

Results: Within 200 Feet

 $C_{\rm c}$

Variable Name	Estimated Coefficients (robust standard errors)
High Structure Vegetation	0.138*** (0.0332)
High Structure Vegetation Squared	0.0224 (0.0509)
Low Structure Vegetation	0.350 ^{***} (0.0576)
Low Structure Vegetation Squared	-0.342*** (0.0872)
Open Water	0.932*** (0.148)
	***p< 0.01, **p< 0.05, *p<0.1

Results: 200 Feet to 1/4 Mile

 \mathbf{C}

Variable Name	Estimated Coefficients (robust standard errors)
High Structure Vegetation	0.374 ^{***} (0.0536)
High Structure Vegetation Squared	-0.0329 (0.0792)
Low Structure Vegetation	0.392*** (0.104)
Low Structure Vegetation	-0.315***
Squared	(0.0885)
Open Water	0.315 ^{***} (0.0885)
	***p< 0.01, **p< 0.05, *p<0.1

Results: 1/4 Mile to 1/2 Mile

C

Variable Name	Estimated Coefficients (robust standard errors)
High Structure Vegetation	0.556*** (0.0584)
High Structure Vegetation Squared	-0.298*** (0.0846)
Low Structure Vegetation	0.812*** (0.112)
Low Structure Vegetation Squared	-0.683*** (0.173)
Open Water	0.479 ^{***} (0.046)
	***p< 0.01, **p< 0.05, *p<0.1

Results - Vegetation

Real ^AHigh Structure Vegetation: on property Sale ^ALow Structure Vegetation: all areas

Real Sale Price

.

Water: on property

>

>

Real Sale Price

.

High Structure Vegetation: 200 foot & 1/4-mile buffers Real Sale Price

>

>

Water: 200 foot, 1/4 mile and 1/2 mile buffers

Calculations

- 30.46%: Amount of on-property high structure vegetation that maximizes sale price
- 26.04%: Average for properties in our study
- Estimated increase in sale price of \$122
- Present discounted cost: \$230+
- Private benefits < private costs
- 40% urban tree canopy goal?

Overall Benefits

- Increase in high structure vegetation in surrounding buffers also has a positive effect on sale price
- Other benefits that may not be included in our estimates:
 - •Water flow
 - •Water quality
 - Carbon sequestration
 - •Air quality
 - •Aesthetics
 - •Wildlife habitat