Land Use Change: A Spatial Multinomial Choice Analysis

Carmen E. Carrion-Flores Alfonso Flores-Lagunes Ledia Guci

UF FLORIDA

CAMP RESOURCES XVI

August 13 - 14, 2009 Asheville Renaissance Hotel Asheville, North Carolina

Motivation

Changes in land-use patterns deserve examination

- Accelerated expansion of urban/exurban areas
 - urban sprawl; loss of cropland and forests; etc.
- Impacts: economic, social, environmental, global
- Policy implications
- Analysis of land-use changes requires spatial analysis
 - Challenging in a discrete-choice framework
 - Ignoring spatial dependence leads to inconsistent estimates
 - Recent spatial estimators apply mostly to binary choice

Objectives

- Employ a spatially-explicit econometric model of land-use conversion that reflects the landowner's decision making process
- Develop a spatial discrete-choice estimator for multiple land uses that is computationally feasible in large samples
- Apply the model to actual data
 - Data from Medina county, Ohio (Cleveland area)

Economic Model of Land-Use Conversion

- Spatially-explicit model of land-use change
 - E.g., Bockstael 1996; McMillen 1989; Irwin 2002; Irwin and Bockstael 2001; Hite et.al., 2003
- Some model assumptions:
 - A risk-neutral, price-taking landowner maximizes the present discounted value of the expected stream of future net land returns
 - Expected returns to conversion are a function of land attributes
 - Only a number of factors that affect conversion costs are observable

Economic Model of Land-Use Conversion

• Land net returns for parcel *i* in use *k*:

$$Y_{ik} = f(X_{ik}) + e_{ik}$$

where X_{ik} denotes observed parcel characteristics

The landowner will choose to convert parcel i to use I if :

$$Y_{il}(X_{il}) > \max_{l \neq k} \{Y_{ik}(X_{ik}) - C_{ik}(Z_{ik})\}, \forall k$$

where C_{ik} is the cost of conversion and Z_{ik} denotes parcel characteristics that affect conversion costs

Economic Model of Land-Use Conversion

• The "latent" net returns are given by:

$$Y_{ik}^* = f_{ik}(X,Z) + e_{ik}$$

where X and Z are observed but not Y^*

• Hence, a parcel of land will remain in use *k* if:

$$Y_{ik}^* > Y_{il}^*, \forall k \neq l$$

Methodology

• Spatial autoregressive lag (SAL) model:

$$Y = \rho W Y + X \beta + \varepsilon$$

where W is a spatial weighting matrix and ρ is the spatial lag parameter

 $\rho > 0$ implies clustering

 ρ <0 implies dispersion

• Can be applied to land-use change decisions

Methodology

Continuous Y:

- Maximum likelihood methods (Anselin, 1988)
- GMM approaches (Kelijian and Prucha, 1998)

• Discrete Y:

- Proposed estimation procedures mainly limited to the binary case (e.g., Case 1992; McMillen 1992; LeSage 2000; Pinkse and Slade 1998)
- Many of these procedures become infeasible in large samples due to inversion of large matrices or use of simulation techniques.

Proposed Estimator: Spatial MNL

- Extend Klier and McMillen (2008) binary choice "linearized logit" model to a multinomial setting
- Simple → linearization reduces estimation to two steps:

A standard multinomial logit model
 Two-stage least squares

SMNL Estimator

• Model:

$$Y^* = \rho W Y^* + X \beta + \varepsilon, \quad \varepsilon \sim iid$$
$$Y^* = (I - \rho W)^{-1} X \beta + (I - \rho W)^{-1} \varepsilon$$

Covariance matrix:

$$V(e) = [(I - \rho W)'(I - \rho W)]^{-1}$$

- Define d_{ik}=1 if choice k is observed, =0 o/w, hence MNL model if errors are logistic
- But there is heteroskedasticity and autocorrelation in the errors unless $\rho = 0$.

SMNL Estimator

• The probability that individual i chooses alternative k:

$$P_{ik} = P(d_{ik} = 1 | X_i) = \frac{\exp(X_i^{**} \beta_k)}{\sum_k \exp(X_i^{**} \beta_k)}$$

where:

$$X_i^{**} = (I - \rho W)^{-1} \left[\frac{X_i}{\sigma_i} \right], \ \sigma_i = \sqrt{[(I - \rho W)'(I - \rho W)]^{-1}}$$

• Define the generalized MNL residuals:

$$u_{ik} = d_{ik} - P_{ik}$$

SMNL Estimator

Idea: Use PS (1998) GMM estimator:

 $min_{\{\beta,\rho\}} u'ZMZ'u$

- Z matrix of instruments, M positive definite matrix
- If $M=(Z'Z)^{-1} \rightarrow \text{non-linear TSLS}$
- Gradient terms: $G_{\beta ik} = P_{ik}(1 P_{ik})X_i^{**}$ $G_{\rho i} = P_{ik}(1 P_{ik})\left[H_i \frac{X_i^{**}\beta}{\sigma_i^2}\Lambda_{ii}\right]$

where

$$H = (I - \rho W)^{-1} W X^{**},$$

$$\Lambda = (I - \rho W)^{-1} W (I - \rho W)^{-1} (I - \rho W)^{-1}$$

Insight by Klier and McMillen (2008)

- Linearization around $\Gamma_0 = (\beta_0, \rho_0)'$ possible since G_{ρ_i} is non- zero when $\rho=0$
- It simplifies the expressions of the gradients as:

$$X_i^{**} = X_i$$
 and $\Lambda = W$

 Linearization avoids inversion of large matrices, making this estimator feasible in large samples

- Step 1: Estimate the model by standard multinomial logit to get estimated β 's. Calculate \hat{u}_{ik} and the gradient terms ($\hat{G}_{\beta_{ik}}$ and $\hat{G}_{\rho_{ik}}$).
- Step 2: Regress each gradient term on Z to get the fitted values $\hat{\hat{G}}_{\beta_{ik}}$ and $\hat{\hat{G}}_{\rho_{ik}}$. Regress $(\hat{u}_{ik} + \hat{G}_{\beta_{ik}} \hat{\beta}_{k}^{MNL})$ on the fitted values of the gradient terms.

The coefficients are the estimated values of β and ρ .

Z are the "KP" instruments [X WX W²X W³X ...]

Monte Carlo Simulation

• Model: $Y = \rho WY + X\beta_k + \varepsilon$, k = 4

Dependent variable:

$$d_{ik} = 1 \text{ for } k = l \text{ if } \sum_{k=0}^{l-1} P_{ik} < u < \sum_{k=0}^{l} P_{ik}, P_{i0} = 0; u \sim U(0,1)$$

Independent variable: $X \sim U(-1,1)$ Weighting matrix (FL-S, '09) $W_{ij} = 1/(dist)_{ij}^2$ Instruments: $Z = \{X WX W^2 X W^3 X\}$ Other parameters: N=320 obs, M=1000 reps $0 < \rho < 0.9, \beta_1 = 0$ and $\beta_2, \beta_3, \beta_4 = 1$

Simulation Results

_

Standar	d Multinom	ial Logit	S	patial Mult	inomial Log	it
β1	β2	β3	β1	β2	β3	ρ
-0.001	0.003	0.005	-0.001	0.003	0.005	-0.016
0.080	0.084	0.080	0.080	0.085	0.080	0.248
-0.002	0.002	0.004	-0.002	0.003	0.004	-0.077
0.081	0.083	0.079	0.081	0.084	0.079	0.253
-0.003	0.001	0.003	-0.004	0.002	0.003	-0.137
0.081	0.084	0.080	0.080	0.084	0.080	0.266
-0.006	-0.002	0.001	-0.006	-0.001	0.001	-0.188
0.081	0.083	0.080	0.081	0.083	0.080	0.288
-0.009	-0.007	-0.003	-0.009	-0.006	-0.003	-0.235
0.080	0.083	0.079	0.080	0.083	0.079	0.315
-0.019	-0.013	-0.011	-0.018	-0.012	-0.011	-0.261
0.080	0.084	0.079	0.080	0.084	0.080	0.342
	β1 -0.001 0.080 -0.002 0.081 -0.003 0.081 -0.006 0.081 -0.009 0.080 -0.019	β1β2-0.0010.0030.0800.084-0.0020.0020.0810.083-0.0030.0010.0810.084-0.006-0.0020.0810.083-0.009-0.0070.0800.083-0.019-0.013	-0.001 0.003 0.005 0.080 0.084 0.080 -0.002 0.002 0.004 0.081 0.083 0.079 -0.003 0.001 0.003 -0.081 0.084 0.003 -0.003 0.001 0.003 0.081 0.084 0.080 -0.006 -0.002 0.001 0.081 0.083 0.080 -0.009 -0.007 -0.003 0.080 0.083 0.079 -0.019 -0.013 -0.011	β1 $β2$ $β3$ $β1$ -0.0010.0030.005-0.0010.0800.0840.0800.080-0.0020.0020.004-0.0020.0810.0830.0790.081-0.0030.0010.003-0.0040.0810.0840.0800.080-0.006-0.0020.001-0.0060.0810.0830.0800.081-0.009-0.007-0.003-0.0090.0800.0830.0790.080-0.019-0.013-0.011-0.018	$\beta1$ $\beta2$ $\beta3$ $\beta1$ $\beta2$ -0.0010.0030.005-0.0010.0030.0800.0840.0800.0800.085-0.0020.0020.004-0.0020.0030.0810.0830.0790.0810.084-0.0030.0010.003-0.0040.0020.0810.0840.0800.0800.084-0.006-0.0020.001-0.006-0.0010.0810.0830.0800.0810.083-0.009-0.007-0.003-0.009-0.0060.0800.0830.0790.0800.083-0.019-0.013-0.011-0.018-0.012	β1 $β2$ $β3$ $β1$ $β2$ $β3$ -0.0010.0030.005-0.0010.0030.0050.0800.0840.0800.0800.0850.080-0.0020.0020.004-0.0020.0030.0040.0810.0830.0790.0810.0840.079-0.0030.0010.003-0.0040.0020.0030.0810.0840.0800.0800.0840.080-0.006-0.0020.001-0.006-0.0010.0010.0810.0830.0800.0810.0830.080-0.009-0.007-0.003-0.009-0.006-0.0030.0800.0830.0790.0800.0830.079-0.019-0.013-0.011-0.018-0.012-0.011

Table 1. Simulation Results for a Sample of 320 Observations

Simulation Results

	Standa	rd Multino	mial Logit		Spatial Mul	tinomial Lo	git
ρ	β1	β2	β3	β1	β2	β3	ρ
0.6							
Bias	-0.029	-0.024	-0.023	-0.028	-0.022	-0.022	-0.278
RMSE	0.082	0.085	0.080	0.082	0.086	0.080	0.362
0.7							
Bias	-0.050	-0.044	-0.044	-0.049	-0.042	-0.043	-0.258
RMSE	0.083	0.086	0.080	0.082	0.086	0.080	0.383
0.8							
Bias	-0.097	-0.093	-0.092	-0.095	-0.090	-0.090	-0.162
RMSE	0.089	0.092	0.086	0.089	0.092	0.086	0.396
0.9							
Bias	-0.241	-0.237	-0.239	-0.238	-0.233	-0.236	0.211
RMSE	0.132	0.136	0.135	0.131	0.135	0.134	0.699

Table 1. Simulation Results for a Sample of 320 Observations

Notes: Results based on 1,000 replications. See text for the specification of W in the SMNL model. The slope's true value is 1 in all cases.

Data

- Parcel-level data from Medina County in Cleveland, Ohio
- Data set: 1990 land use, major roads, soil type, location boundaries, socio-economic data.
- To estimate the model:
 - Y: choice of land use (ag, com, res, ind)

X: proximity to city center, distance to the nearest city, population density, housing density, proportion of surrounding land-use, and min. lot size zoning

 Six W's are used, specified as inverse Euclidean distance varying friction parameter (1 or 2) and cutoff distances (400, 800, 1600 meters).

Estimation Results

-	MNL R	lesults		SMNL Results											
)0_f=1	80	0_f=1	W_16	00_f=1		0_f=2	W_80	00_f=2		00_f=2	
VARIABLE	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Er	
Acres:															
βag	0.081	0.009	0.090	0.004	0.108	0.004	0.125	0.003	0.090	0.004	0.109	0.004	0.126	0.00	
βres	-0.253	0.014	-0.645	0.072	-0.809	0.058	-0.334	0.041	-0.653	0.072	-0.823	0.057	-0.359	0.04	
βcom	0.068	0.009	0.068	0.005	0.066	0.004	0.061	0.004	0.068	0.005	0.066	0.004	0.060	0.00	
otdiscle:															
(x10,000) βag	-0.329	0.083	-0.320	0.024	-0.314	0.024	-0.304	0.022	-0.321	0.024	-0.314	0.024	-0.307	0.02	
βres	-0.355	0.085	-0.402	0.035	-0.414	0.034	-0.345	0.032	-0.405	0.035	-0.419	0.034	-0.345	0.03	
βcom	-0.381	0.092	-0.386	0.065	-0.383	0.063	-0.371	0.059	-0.386	0.065	-0.381	0.063	-0.371	0.05	
Disttonear:															
(x10,000) вад	0.437	0.163	0.413	0.061	0.348	0.060	0.230	0.056	0.410	0.061	0.345	0.060	0.224	0.05	
βres	0.294	0.171	0.420	0.089	0.467	0.086	0.612	0.080	0.426	0.089	0.484	0.086	0.661	0.07	
βcom	1.053	0.193	1.102	0.168	1.013	0.164	1.010	0.153	1.094	0.168	0.999	0.163	0.994	0.15	
garea:															
βag	1.730	0.807	1.643	0.311	1.452	0.303	1.224	0.283	1.645	0.311	1.447	0.302	1.241	0.28	
βres	1.744	0.835	3.292	0.465	4.054	0.435	3.226	0.392	3.331	0.465	4.093	0.434	3.210	0.39	
βcom	2.139	1.013	2.199	0.958	2.167	0.931	1.912	0.868	2.187	0.958	2.178	0.929	1.961	0.86	
Reside:															
βag	-1.894	0.929	-1.790	0.373	-1.592	0.363	-1.156	0.339	-1.785	0.373	-1.584	0.362	-1.099	0.33	
βres	4.239	0.955	6.281	0.650	6.776	0.591	2.720	0.519	6.320	0.650	6.818	0.588	2.786	0.51	
βcom	0.363	1.142	0.517	1.040	0.611	1.011	0.500	0.945	0.527	1.039	0.683	1.010	0.603	0.94	
Commarea:															
βag	-0.007	1.499	-0.089	0.530	-0.070	0.515	0.314	0.481	-0.113	0.530	-0.047	0.514	0.413	0.47	
βres	3.726	1.515	4.938	0.667	5.156	0.638	2.734	0.589	4.925	0.667	5.137	0.637	2.809	0.5	
Bcom	4.545	1.688	4.596	1.191	4.396	1.156	4.094	1.077	4.595	1.191	4.413	1.154	4.130	1.07	

Estimation Results

	MNL R	Results	SMNL Results											
				00_f=1	W_80	0_f=1	W_16	00_f=1		00_f=2	80	00_f=2		00_f=2
VARIABLE	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Eri
Acres:														
βag	0.081	0.009	0.090	0.004	0.108	0.004	0.125	0.003	0.090	0.004	0.109	0.004	0.126	0.003
βres	-0.253	0.014	-0.645	0.072	-0.809	0.058	-0.334	0.041	-0.653	0.072	-0.823	0.057	-0.359	0.040
βcom	0.068	0.009	0.068	0.005	0.066	0.004	0.061	0.004	0.068	0.005	0.066	0.004	0.060	0.004
Totdiscle:														
(x10,000) βag	-0.329	0.083	-0.320	0.024	-0.314	0.024	-0.304	0.022	-0.321	0.024	-0.314	0.024	-0.307	0.022
βres	-0.355	0.085	-0.402	0.035	-0.414	0.034	-0.345	0.032	-0.405	0.035	-0.419	0.034	-0.345	0.03
βcom	-0.381	0.092	-0.386	0.065	-0.383	0.063	-0.371	0.059	-0.386	0.065	-0.381	0.063	-0.371	0.059
Disttonear:														
(x10,000) <i>bag</i>	0.437	0.163	0.413	0.061	0.348	0.060	0.230	0.056	0.410	0.061	0.345	0.060	0.224	0.05
βres	0.294	0.171	0.420	0.089	0.467	0.086	0.612	0.080	0.426	0.089	0.484	0.086	0.661	0.07
βcom	1.053	0.193	1.102	0.168	1.013	0.164	1.010	0.153	1.094	0.168	0.999	0.163	0.994	0.15
Agarea:														
βag	1.730	0.807	1.643	0.311	1.452	0.303	1.224	0.283	1.645	0.311	1.447	0.302	1.241	0.28
βres	1.744	0.835	3.292	0.465	4.054	0.435	3.226	0.392	3.331	0.465	4.093	0.434	3.210	0.39
βcom	2.139	1.013	2.199	0.958	2.167	0.931	1.912	0.868	2.187	0.958	2.178	0.929	1.961	0.86
Reside:														
βag	-1.894	0.929	-1.790	0.373	-1.592	0.363	-1.156	0.339	-1.785	0.373	-1.584	0.362	-1.099	0.33
βres	4.239	0.955	6.281	0.650	6.776	0.591	2.720	0.519	6.320	0.650	6.818	0.588	2.786	0.51
βcom	0.363	1.142	0.517	1.040	0.611	1.011	0.500	0.945	0.527	1.039	0.683	1.010	0.603	0.94
Commarea:														
βag	-0.007	1.499	-0.089	0.530	-0.070	0.515	0.314	0.481	-0.113	0.530	-0.047	0.514	0.413	0.47
βres	3.726	1.515	4.938	0.667	5.156	0.638	2.734	0.589	4.925	0.667	5.137	0.637	2.809	0.58
Bcom	4.545	1.688	4.596	1.191	4.396	1.156	4.094	1.077	4.595	1.191	4.413	1.154	4.130	1.07

Estimation Results

_	MNL R	esults						SMNL	Results					
			W_40	00_f=1		0_f=1	W_160	00_f=1		0_f=2	W_80	0_f=2	W_16	00_f=2
VARIABLE	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.	Est.	St. Err.						
Popdens:														
βag	0.006	0.001	0.006	0.001	0.006	0.001	0.006	0.001	0.006	0.001	0.006	0.001	0.006	0.00
βres	0.003	0.001	0.002	0.001	0.002	0.001	0.004	0.001	0.002	0.001	0.002	0.001	0.004	0.001
βcom	0.011	0.002	0.012	0.003	0.011	0.003	0.010	0.003	0.012	0.003	0.011	0.003	0.011	0.003
Housedens:														
βag	-0.018	0.003	-0.017	0.002	-0.017	0.002	-0.018	0.002	-0.017	0.002	-0.017	0.002	-0.018	0.00
βres	-0.011	0.003	-0.011	0.002	-0.012	0.002	-0.014	0.001	-0.011	0.002	-0.012	0.002	-0.013	0.00
βcom	-0.034	0.005	-0.035	0.010	-0.034	0.009	-0.032	0.009	-0.035	0.010	-0.034	0.009	-0.032	0.00
Percpinc:														
(x10,000) <i>Bag</i>	-0.352	0.415	-0.361	0.158	-0.329	0.153	-0.276	0.143	-0.361	0.158	-0.323	0.153	-0.283	0.14
βres	0.036	0.426	0.254	0.212	0.262	0.204	-0.284	0.190	0.246	0.212	0.233	0.204	-0.285	0.18
βcom	-1.304	0.495	-1.397	0.433	-1.339	0.422	-1.229	0.394	-1.389	0.433	-1.337	0.421	-1.248	0.392
Largelot:														
βag	0.650	0.236	0.583	0.087	0.439	0.085	0.223	0.079	0.582	0.087	0.429	0.085	0.220	0.07
βres	0.144	0.247	0.579	0.156	0.816	0.148	0.495	0.134	0.601	0.156	0.834	0.148	0.511	0.13
βcom	0.828	0.266	0.832	0.179	0.804	0.174	0.761	0.162	0.829	0.179	0.800	0.174	0.759	0.16
ρ			0.145	0.009	0.213	0.008	0.406	0.008	0.145	0.009	0.214	0.008	0.401	0.00

Notes: Sample size is 9,760 parcels. All models include indicater variables for the township in which the parcel resides. The columns for the SMNL estimator correspond to different specifications of W that vary the cut-off distance (400, 800, and 1600) and the friction parameter (f=1 or 2). See text for details.

Results Discussion

- Industrial land use becomes less attractive as distance from Cleveland increases
- Local markets and population density are important determinants of ag, com, and res land uses
- Minimum lot size policy affects all land uses but relatively less industrial
- The estimates of the spatial lag parameter indicate the presence of spatial spillover effects

Conclusions

- Spatial dependence is important when analyzing land use decisions
- The proposed SMNL estimator has the following advantages:
 - Easy to estimate and feasible in large sample
 - Wide applicability in analyzing economic decisions

Future work:

- A more complete exploration of finite sample properties of SMNL
- A more comprehensive analysis of the land-use change process
- Other applications