The Effects of Water Quality Improvements on an Open Access Commercial Fishery: Evidence from the Chesapeake Bay Blue Crab Fishery

Sarah Ball

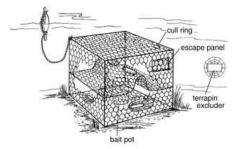
University of Maryland

August 6, 2013

Clean Water Act

- ► First major US law to address water pollution
- ► TMDLs must be developed for impaired waterways
- Chesapeake Bay TMDL
 - Costs
 - Benefits
 - Commercial fishing
 - Recreational fishing and other recreational activities
 - Property values
 - Avoided costs of water treatment
 - Co-benefits of BMPs

TMDL Costs


Table 14: Summary of Costs for Maryland's Interim (2017) and Final (2025) Chesapeake **Bay Restoration Strategies**

Source Sector	Cost of 2017 Strategy 2010 - 2017 (Millions)	Cost of 2025 Strategy ^a 2010 - 2025 (Millions)
Agriculture	\$498	\$928
Municipal Wastewater	\$2,368	\$2,368
Major Municipal Plants	\$2,306	\$2,306
Minor Municipal Plants	\$62	\$62
Stormwater	\$2,546	\$7,388
MDOT ^c	\$467	\$1,500
Local Government	\$2,079	\$5,888
Septic Systems	\$824	\$3,719
Septic System Upgrades	\$562	\$2,358
Septic System Connections	\$237	\$1,273
Septic System Pumping	\$25	\$88
TOTAL	\$6,236	\$14,403

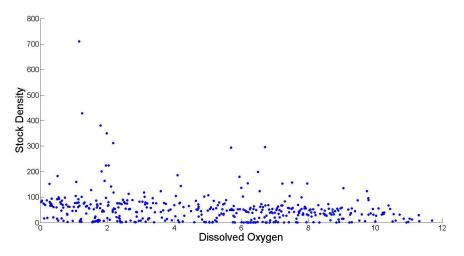
a. Cumulative total.

Blue Crab Fishery

- ▶ Over 65% of landings in the Bay
 - ▶ \$76 million in Maryland (2010)
- ► Limited Entry
 - May-December season
 - ▶ 8 hours/day
 - License-dependent gear type/amount

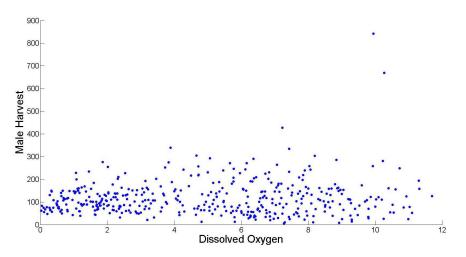
Overview

- ► Bio-economic model
- ► Fisherman choice model
- Application to TMDL
- Conclusion

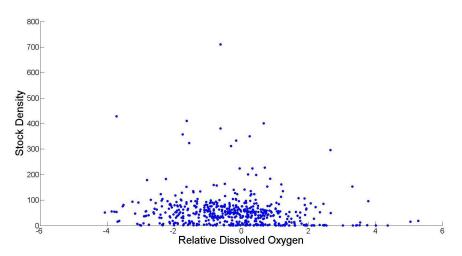

Bio-Economic Model

$$Stock_{j,t} = f(Stock_{j,t-1}, Harvest_{j,t-1}[, WQ_{j,t}])$$

 $Harvest_{i,j,t} = f(Effort_{i,j,t}, Skill_{i,j,t}, Stock_{j,t}[, WQ_{j,t}])$


Question: What is the role of water quality? Hypotheses:

- 1. Mortality
 - 2. Availability
 - 3. Distribution

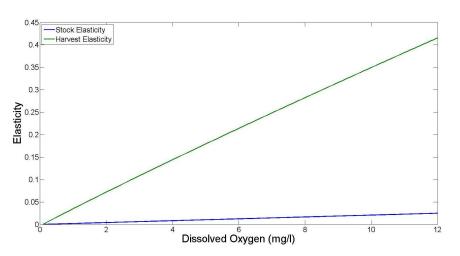

Data Plots

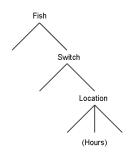
Data Plots

Data Plots

Results

	Mortality	Availability	Availability 2	Distribution
Density				
Lagged Density	0.11***	0.11***	0.09***	0.12***
	(0.002)	(0.002)	(0.002)	(0.002)
Lagged Male Harvest	0.002***	0.002***	-0.0001***	0.002***
	(0.0001)	(5.86E-4)	(6.40E-5)	(5.87E-5)
\sqrt{DO}	-11.80***	-		
	(0.32)			
ΔDO	-		-	1.33***
				(0.11)
Constant	89.67***	45.80***	55.78***	46.74***
	(2.32)	(2.00)	(2.00)	(2.00)
Male Harvest				
Density	0.71***	0.83***	0.44***	0.82***
	(0.01)	(0.01)	(0.02)	(0.01)
Age	-1.07***	-1.10***	-1.13***	-1.10***
	(0.03)	(0.03)	(0.03)	(0.03)
Hours	36.11***	35.68***	36.24***	36.27***
	(0.16)	(0.16)	(0.17)	(0.16)
\sqrt{DO}	-	10.25***	5.92***	-
		(0.56)	(0.58)	
Constant	-57.13***	-78.42***	-41.98***	-64.14***
	(2.16)	(2.47)	(2.62)	(2.19)
Number of Observations	367,478	367,478	339,509	367,478


^{*}Statistical significance at 10% level


^{**}Statistical significance at 5% level

^{***}Statistical significance at 1% level

Results

Fisherman Choice Model


```
Fish_{i,t} = f(Skill_{i,t}, Regulation_t, Weather_t)
  Switch_{i,i,t} = f(E(Crab\ Stock_{i,t}))
Location_{i,i,t} = f(E(Profits_{i,i,t}), E(Number of Fishermen_{i,i,t}))
   Hours_{i,i,t} = f(P_{i,i,t}^*, Skill_{i,t}, Regulation_t, Weather_t)
```

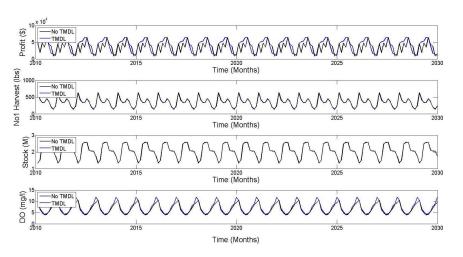
Two Data Sets

Fishermen Log Book Data

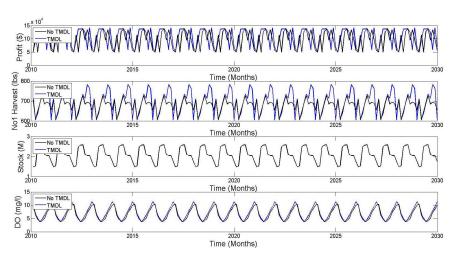
- **2000-2010**
- ▶ 1,473 unique fishermen
- ▶ 786,296 observations
- ▶ 393,734 trips (50%)
- ▶ 1,322 switches (0.8%)

GPS Buoy Data

- 2002-2004,2007-2011
- 263 unique fishermen
- ▶ 51,883 observations
- ▶ 9,634 trips (19%)
- ▶ 4,476 switches (46%)


Results - Log Book Data

Fish		Switch		Location	
Sun/Mon	-0.35*** (0.05)	Spring/North	-0.02 (0.02)	E(Profit)	0.17***
Age	(0.02)	Summer/North	-0.78*** (0.02)	E(N)	0.02*** (0.002)
Age^2	-0.0002 (0.0002)	Fall/North	-0.85*** (0.03)		,
Air Temp	0.004***	IV_l	0.51***		
Wind Speed	-0.10*** (0.01)	Constant	-5.35*** (0.09)		
Cloud Cover	-0.05*** (0.01)		(9000007)		
Precip Type	-0.06*** (0.03)				
IV_s	0.96***				
Constant	0.34 (0.43)				
Observations	133,634		391,812		15,937
Clusters	1,325		1,371		-
Replications	500		500		-
LL	-91,585.11		-16,680.86		-4,594.40


^{*}Statistical significance at 10% level **Statistical significance at 5% level

^{**}Statistical significance at 5% level ***Statistical significance at 1% level

Open Access Results

"Managed" Results

Comparison of Results

	Open Access	"Managed"
Stock (crabs)	651.47	28,710.06
Stock (class)	(3.19E-5%)	(1.39E-3%)
Harvest (lbs)	1,380.08	4,332.80
	(1.51%)	(2.39%)
Trip (#)	733.28	0
	(1.69%)	(0%)
Trip Harvest (lbs/#)	-0.004	0.05
	(-0.17%)	(2.39%)
Profit (\$)	870,640.83	1,761,143.57
	(13.88%)	(10.25%)
CS (\$)	6,679.92	19,450.07

Conclusion

- Estimated a bio-economic model of the blue crab fishery
 - Water quality affects the availability of the crabs
 - Stock and harvest respond inelastically to changes in water quality
- Estimated a fisherman behavior model
 - Switching occurs more frequently than previously assumed
- Simulated the effects of the TMDL on the blue crab fishery
 - Benefits are likely to be small
 - Managing commercial fisheries may lead to greater benefits

Results - GPS Buoy Data

Fish		Switch		Location	
Sun/Mon	-0.53***	Spring/North	-0.15***	E(Revenue)	0.06***
	(0.04)		(0.01)		(0.01)
Air Temp	-0.0001	Summer/North	-0.50***	E(N)	0.03***
	(0.004)		(0.05)		(0.0005)
Wind Speed	-0.86***	Fall/North	-0.42***		
	(0.04)		(0.07)		
Cloud Cover	-0.02	Year Trend	-0.43***		
	(0.02)		(0.01)		
Precip Type	0.42***	IV_l	0.42***		
	(0.06)		(0.06)		
IV_s	0.99***	Constant	2.70***		
	(0.04)		(0.17)		
Constant	-0.95***				
	(0.19)				
Observations	7,303		9,014		21,863
Clusters	252		263		-
Replications	100		100		
LL	-3,539.77		-4,925.72		-6,551.2

^{*}Statistical significance at 10% level

^{**}Statistical significance at 5% level

^{***}Statistical significance at 1% level