Voluntary Approaches to Conserving Endangered Species - The Case of Stochastic Bycatch

Zinnia Mukherjee

University of Connecticut

August, 2009

Voluntary approaches to reduce bycatch

(a) Sea Turtles - longline fish- (b) Seals - trawl fishing. (C) Porpoises - gill net fishing. ing, trawl fishing.

(e) Sea Lions - squid fishing.

(f) Dolphins - tuna fishing.

Motivation

- Most of the literature on voluntary approaches has been in the context of pollution.
- Previous literature (Segerson and Wu, 2006) has proposed using voluntary-threat policies in the context of nonpoint pollution.
- Some recent experimental evidence (Suter et al., 2008) indicate that these approaches can be effective in inducing efficient behavior.

Motivation

Problem: Bycatch/Nonpoint pollution is stochastic.

Basic Question:

• Can these V-T policies work in the presence of environmental uncertainty/stochasticity?

Context: Consider a farmer/fisher who makes an abatement/avoidance decision that determines a level of ambient pollution/bycatch, given by $x(a, \epsilon)$, which in turn generates some environmental damage, D(x).

Issues that arise with uncertainty

- With stochasticity, performance standards cannot be met with certainty.
- It calls for the use of marginal incentives.
- In the context of policies that involve group performance standard on bycatch or ambient pollution, it raises the question of smoothing of outcomes across firms.

Figure: Fisher's sequence of decisions with the policy in place

Research Question

Question: Can we design the tax rate (ρ) and the voluntary performance standard (\overline{x}) to induce an efficient choice in the voluntary stage if,

- \bullet \overline{x} is set at the firm level,
- \overline{x} is set at the industry level?

If yes, then how are the optimal policy parameters affected by the degree of uncertainty?

Summary of Initial Results

- When the policy is set both at the firm level and the industry level, a background threat of a permanent tax on bycatch mortalities can be designed to induce fishers to undertake efficient behavior voluntarily.
- In the context of group performance standard, equilibrium solution is not unique.
- In either case, the optimal policy parameter for the performance standard (\overline{x}) is sensitive to the degree of uncertainty, discount factor and the underlying distribution for bycatch mortalities.

Model

Assumptions

- Bycatch level is observable.
- Firms are identical
- Perfectly competitive market environment. Only source of market failure is the bycatch issue.
- Output is assumed to be non-stochastic.
- Fishers are risk neutral.
- Marginal damage from a single turtle mortality is constant d.

Social Planner's Problem

Let a fisher's profit in any season be defined as $\pi(a)$:

Expected net social benefit:

$$\sum_{i=1}^n \pi(a_i) - E[D(X)]].$$

First order condition implicitly defines a^* :

$$\frac{\partial \pi}{\partial a_i} = -dE[\frac{\partial x}{\partial a_i}].$$

LHS term = Marginal cost of reduced profit

RHS term = Marginal social benefit of reduced environmental damage

Solution Procedure

Backward induction

Tax Stage Solution: If $\rho^* = d$, then $a_t^* = a^*$, where a_t^* is the fisher's optimal choice in any tax period.

Given $\rho^* = d$, we next solve the fisher's optimization problem in the initial voluntary period, where he chooses a^v to maximize the present value of the stream of current and future income, $V(a^v)$.

Voluntary Stage

Fisher's Optimization Problem in the initial VA period, given ρ^* :

Maximize

$$V(a^{\mathsf{v}}) = \pi_{\mathsf{v}}(a^{\mathsf{v}}) + \beta F(\overline{\mathsf{x}}, a^{\mathsf{v}}) \overline{V} + [1 - F(\overline{\mathsf{x}}, a^{\mathsf{v}})] [\sum_{T=1}^{\infty} \beta^{T} E\{\pi_{t}(a^{*})\}]$$

First Order Condition:

$$\frac{\partial \pi_{\nu}}{\partial \textbf{a}^{\nu}} + \beta \frac{\partial \textbf{\textit{F}}}{\partial \textbf{\textit{a}}^{\nu}} [\overline{\textbf{\textit{V}}} - \frac{\textbf{\textit{E}}[\pi_{t}(\textbf{\textit{a}}^{*})]}{(1-\beta)}] = 0,$$

or, after solving for \overline{V} .

$$\frac{\partial \pi_{v}}{\partial \mathbf{a}^{v}} + \frac{\beta \frac{\partial F}{\partial \mathbf{a}^{v}}}{1 - \beta F(\overline{x}, \mathbf{a}^{v})} dE[x(\mathbf{a}^{*})] = 0,$$

Comparing the Social and the Private problems:

Regulator wants to set \overline{x} such that at $a^v = a^*$,

$$d\frac{\partial E(x)}{\partial a} = \frac{-\beta}{[1 - \beta F(\overline{x}, a^{\nu})]} \frac{\partial F}{\partial a} dE[x(a^{*})]$$

The above equation implicitly defines optimal standard \overline{x}^* .

Some Initial Results

Question: What can we say about \overline{x}^* ?

Result: In general, it depends on the discount factor, and the distribution parameters, mean and variance.

Comparative Static results for general distribution with constant mean:

$$\frac{\partial \overline{x}^*}{\partial \sigma}, \frac{\partial \overline{x}^*}{\partial \beta}$$

where σ denotes the variance.

Results driven by whether \overline{x}^* lies below or above the mean, given a^* .

Special Case: Uniform Distribution for *x*

Figure: Uniform distribution of bycatch mortalities at a *

$$\overline{x}^* = \frac{(2 - \beta)}{\beta} \mu$$

$$\frac{\partial \overline{x}^*}{\partial \mu} > 0 \qquad \frac{\partial \overline{x}^*}{\partial \beta} < 0$$

Group Performance Standard

Assumptions:

- While choosing a, an individual fisher takes the other fisher's choices as given.
- Individual bycatch level of the two fishers are independent of each other.
- If $x_i \in [k(a) \mu, k(a) + \mu]$ where i = 1, 2, then $X = x_1 + x_2$ follows a symmetric unimodal triangular distribution over the interval $[2k(a) 2\mu, 2k(a) + 2\mu]$.

Initial Results

- First-best exists for the voluntary period under certain conditions on μ .
- Two solutions, not perfectly symmetric around the mean.
- Solutions depend on the degree of uncertainty (μ) , discount factor (β) , and $k(a^*)$.

Remaining Questions

Investigate the role of this policy in facilitating smoothing of outcomes across firms.

How does the optimal group performance standard compare to the optimal individual standard, e.g., $\overline{X}^* \geq \overline{2}x^*$, or $\overline{X}^* \leq 2\overline{x}^*$?

 ${\sf Questions}/{\sf Comments?}$

Thank You!