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Broad Question

@ How do possible future climate disasters affect near term optimal
climate policy (optimal emissions)?
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Climate Policy and the Discount Rate

@ The ongoing worldwide climate policy debates: shall we
» implement stringent control over GHG emissions now, or
» wait until we know more about climate change?
@ Since damages due to climate change would most likely happen in the

far future, the answer depends crucially on rate of return r used to
discount future utilities:

» r | = more stringent GHG control now (the Stern Review)
» r 1 = wait and see (Nordhaus DICE model)
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Discount Rate and Economic Growth

Suppose the economic growth rate g ~ N(,ug,sé)

I 50
r:p+aug—§a Sg (1)
@ According to the Ramsey equation, three factors determine the rate
used to discount consumption:
» the rate of pure time preference p
> relative risk aversion o

» the stochastic economic growth rate g
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Economic Growth and Climate

o future climate damages 1 = future g | = r |
= optimal emissions now.,

@ Want to examine how and whether future climate disasters would
affect economic growth, hence near term climate policy.

. Economic
Ramsey Equation System
Climate Discount Economic
Policy Rate Growth m

Climate
System
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Uncertainty

“Fear comes from uncertainty. When we are absolutely certain, whether of our
worth or worthlessness, we are almost impervious to fear.”
— William Congreve

@ Assuming an exogenous growth rate, Weitzman argues

> Fat tails reflect the “deep structural uncertainty for the low-probability,
high-impact catastrophes”.

» fat tails in climate system = s,7 = r | = act now.

» Bayesian learning would not help to thin down the fat tails (sgl).
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Specific Questions

@ Would uncertainties in climate change necessarily lead to fat tails in

growth rate?
@ How would learning help to resolve these uncertainties?

» Weitzman (2009) : “... It is inherently difficult to learn from finite
samples alone enough about the probabilities of extreme events to thin
down the bad tail of the PDF because, by definition, we don’t get
many data point observations of such catastrophes. "
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Objectives

@ Build an integrated assessment model (IAM) to capture the need to
use a limited amount of information to update the distribution of a
complex system in order to set climate policy.

@ The model features:

> uncertainty about positive climate feedbacks
Bayesian learning about the climate feedback parameter (fat tails)

»
» GHG emissions as tied to production
> a balanced growth path with exogenous growth in labor productivity

and population
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Objectives (cont.)

o Calibrate the model to real economic and climate data.
@ Examine the dynamics of resolution of uncertainty.

» Do fat tails matter?

» Can we learn fast enough to avert a disaster? If so, take little action
now.

@ Use the model to provide quantitative evaluations of the near term
climate policies.
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Model Outline

The Model

D. Kelly & Z.Tan (UMiami)

ECONOMIC SYSTEM

Economic
Dynamics

Damage
Fuction

Interactions Between Economic and Climate Systems

CLIMATE SYSTEM
Carbon Emissions

Carbon
. Cycle

Climate
Dynamics
Temperature

Climate Feedbacks

DA



The Model

The Economic System

@ The production technology is such that:
Qe = F(Ke, AcLe) = K (ALY

e Unabated pollution is an exogenous proportion 1/B; of output
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The Model

The Economic System

@ We assume a convex cost function:
Clue) =1—(1— )" (4)
@ Y; is the output net of abatement costs

Yy = (1 - C(ur))@: (5)
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The Climate System

@ GHG accumulates according to:
Miy1 — MB = (1 — 6pm)(My — MB) +~E (6)

@ which in turn changes the temperature

1 Ti1—T
Tt:Tt_l-I-a(Ft—%)'i‘l/t (7)
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The Climate System

where
@ T; is the annual global temperature (°C) deviation from 1961-90
average at time t
@ [ is the preindustrial temperature in deviations (known)

e Q is the radiative forcing parameter (known)

@ « is the heat capacity of ocean (known)

@ ) is climate sensitivity, which is a measure of how responsive the
temperature of the climate system is to a change in the radiative
forcing (unknown)
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The Model

Facts about the Temperature Model

(1) If GHG concentration stays at preindustrial level, temperature

converges to preindustrial temperature. That is, in steady state, with
M = MB,

T=T (8)

(2) The steady state change in global mean near-surface air temperature
that would result from a sustained doubling of the atmospheric
(equivalent) CO2 concentration, M = 2MB, is

ATry = AQ = 4.30) (9)
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The Feedback Parameter

The temperature model can be reorganized as an AR(1) process:
= 1T + B2 log(m') + v/ (10)

here
@ T =T —T is the temperature deviation from preindustrial level
° b= a Iog alog(2)
@ (31 is the unknown feedback parameter: 81 ~ N(pu, &)

e v is the stochastic shock: v/ ~ N(u,,,c?2)
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The Model

Damage Function

Damages to total output are due to temperature. We borrow the damage
function from Weitzman (2009):

D(T) = exp (—bl sz) (11)
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The Model

The Recursive Problem

The social planner tries to maximize the net present value of population
utility:

vs)=m {() 4 BE s )}} (12)

where s = [k, m, T, u, ]

subject to
o c=D(T)f(k,E)+ (1 -6 )k—(1+n)(1+ @)k
om =1+ (1-0m)(m—1)+ (7)5) E
o T'=p1T + Palog(m') + v/
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The Model

Bayesian Learning

Bayesian rule gives two additional law of motions for (u,&). Posterior
distribution of (7 is still normal with:

p+Ep, TH
ST T (13)
§
I )
where
H =T+ (15)

Learning is endogenous. Each period new climate records arrive and the
social planner update the prior on the feedback parameter ;.
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The Model

From Feedbacks to Climate Sensitivity

In the temperature model, we have

fr=1— — ~ N ) (16)

We can then compute the pdf for climate sensitivity from Jacobian
transformation

2
1 é 1 1—0% I
h,\()\):\/%apexp —§< ; ) (17)
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Visualization of the Prior

pdf of climate sensitivity
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The Model

Solution Algorithm

We use function iteration and Chebychev approximation to solve the
problem.

Ui(s: xi-1) = maxu(s, ¢) + BEs, . [®lg(s, c, B, v)ixi—1]]  (18)
Xi—1 = arg min|[®(s; x) — ¥i(s, xi-1)l| (19)
The following summarizes the algorithm for finding the value function.

o 1. Compute Yo, the parameter vector which minimizes the distance
between vg and ¢.

@ 2. Compute {7 by computing the optimal controls for the
approximate value function ®.

@ 3. Compute x1, the parameter vector which minimizes the distance
between V1 and ¢.

@ 4. Repeat step (2) until ||V — Vi_1|| < n* .
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Simulations

Simulations
Table: Two Learning Experiments
Experiment 1  Experiment 2
ture Climate Sensitivity A T3, 2.2289 4
true Feedback 37 0.56 0.7481

piror for 3 (0.62,0.0169)" (0.62,0.0169)

number of simulations 500 500

number of years simulated 500 500

T from Colman(2008), which calculated (u,£) from a suite of
GCM simulations.
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Simulations

Observations

o It takes a long time to learn where the true mean is.
» When AT, = 2.23, average time to resolve uncertainty
(Pr(2.13 = AT,y £2.33) 2 95%) is 76 years.
» When AT, = 4, average time to resolve uncertainty
(Pr(3.9 < ATy £4.1) 2 95%) is 132 years.
o Fat tails are diminished quickly!
» When ATS, = 2.2298, average time to rule out extreme climate
sensitivity (Pr(ATax > 4) < 1%) is 4 years.
» When ATJ, =4, average time to rule out extreme climate sensitivity
(Pr(ATox > 8) £ 1%) is 7 years.
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Simulations

Experiment 1

learning dynamics for mean of feedback
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Experiment 1

learning dynamics for variance of feedback
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Experiment 1

pdf of climate sensitivity (avg of 500 simuls)
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Experiment 1

pdf of climate sensitivity (avg of 500 simuls)
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Simulations

Experiment 1

pdf of climate sensitivity (avg of 500 simuls)
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Simulations

Experiment 2

learning dynamics for mean of feedback
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2:'0.08

Experiment 2
s learning dynamics for variance of feedback (T2x=4)
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Experiment 2

pdf of climate sensitivity (avg of 500 simuls)
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Experiment 2

pdf of climate sensitivity (avg of 500 simuls)
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Simulations

Experiment 2

pdf of climate sensitivity (avg of 500 simuls)
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