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Motivation

Broad Question

How do possible future climate disasters a↵ect near term optimal
climate policy (optimal emissions)?
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Motivation

Climate Policy and the Discount Rate

The ongoing worldwide climate policy debates: shall we
I implement stringent control over GHG emissions now, or
I wait until we know more about climate change?

Since damages due to climate change would most likely happen in the
far future, the answer depends crucially on rate of return r used to
discount future utilities:

I r # ) more stringent GHG control now (the Stern Review)
I r " ) wait and see (Nordhaus DICE model)
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Motivation

Discount Rate and Economic Growth

Suppose the economic growth rate g ⇠ N(µg , s2g )

r = ⇢+ �µg � 1

2
�2s2g (1)

According to the Ramsey equation, three factors determine the rate
used to discount consumption:

I the rate of pure time preference ⇢
I relative risk aversion �
I the stochastic economic growth rate g
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Motivation

Economic Growth and Climate

future climate damages " ) future µg # ) r #
) optimal emissions now#
Want to examine how and whether future climate disasters would
a↵ect economic growth, hence near term climate policy.
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Motivation

Uncertainty

“Fear comes from uncertainty. When we are absolutely certain, whether of our
worth or worthlessness, we are almost impervious to fear.”

– William Congreve

Assuming an exogenous growth rate, Weitzman argues

I Fat tails reflect the “deep structural uncertainty for the low-probability,
high-impact catastrophes”.

I fat tails in climate system ) sg" ) r # ) act now.
I Bayesian learning would not help to thin down the fat tails (sg#).
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Motivation

Specific Questions

Would uncertainties in climate change necessarily lead to fat tails in
growth rate?

How would learning help to resolve these uncertainties?
I Weitzman (2009) :“... It is inherently di�cult to learn from finite

samples alone enough about the probabilities of extreme events to thin
down the bad tail of the PDF because, by definition, we don’t get
many data point observations of such catastrophes. ”
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Motivation

Objectives

Build an integrated assessment model (IAM) to capture the need to
use a limited amount of information to update the distribution of a
complex system in order to set climate policy.

The model features:
I uncertainty about positive climate feedbacks
I Bayesian learning about the climate feedback parameter (fat tails)
I GHG emissions as tied to production
I a balanced growth path with exogenous growth in labor productivity

and population
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Motivation

Objectives (cont.)

Calibrate the model to real economic and climate data.

Examine the dynamics of resolution of uncertainty.
I Do fat tails matter?
I Can we learn fast enough to avert a disaster? If so, take little action

now.

Use the model to provide quantitative evaluations of the near term
climate policies.
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The Model

Model Outline
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The Model

The Economic System

The production technology is such that:

Qt = F (Kt ,AtLt) = K 
t (ALt)

1� (2)

Unabated pollution is an exogenous proportion 1/Bt of output

Et = (1� ut)
Qt

Bt
(3)
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The Model

The Economic System

We assume a convex cost function:

C (ut) = 1� (1� ut)
✏ (4)

Yt is the output net of abatement costs

Yt = (1� C (ut))Qt (5)
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The Model

The Climate System

GHG accumulates according to:

Mt+1

�MB = (1� �m)(Mt �MB) + �E (6)

which in turn changes the temperature

Tt = Tt�1

+
1

↵

✓
Ft �

Tt�1

� �

�

◆
+ ⌫t (7)
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The Model

The Climate System

where

Tt is the annual global temperature (�C ) deviation from 1961-90
average at time t

� is the preindustrial temperature in deviations (known)

⌦ is the radiative forcing parameter (known)

↵ is the heat capacity of ocean (known)

� is climate sensitivity, which is a measure of how responsive the
temperature of the climate system is to a change in the radiative
forcing (unknown)
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The Model

Facts about the Temperature Model

(1) If GHG concentration stays at preindustrial level, temperature
converges to preindustrial temperature. That is, in steady state, with
M̄ = MB ,

T̄ = � (8)

(2) The steady state change in global mean near-surface air temperature
that would result from a sustained doubling of the atmospheric
(equivalent) CO2 concentration, M̄ = 2MB , is

4T
2⇥ = �⌦ = 4.39� (9)
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The Model

The Feedback Parameter

The temperature model can be reorganized as an AR(1) process:

T 0 = �
1

T + �
2

log(m0) + ⌫ 0 (10)

here

T = T � � is the temperature deviation from preindustrial level

�
2

= ⌦

↵ log(2)

�
1

is the unknown feedback parameter: �
1

⇠ N(µ, ⇠)

⌫ is the stochastic shock: ⌫ 0 ⇠ N(µ⌫ ,�2

⌫)
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The Model

Damage Function

Damages to total output are due to temperature. We borrow the damage
function from Weitzman (2009):

D(T ) = exp
⇣
�b

1

T b
2

⌘
(11)
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The Model

The Recursive Problem

The social planner tries to maximize the net present value of population
utility:

v(s) = max
k 0,E

(
(c)1��

1� �
+ �̂E

⇥
v(s 0)

⇤
)

(12)

where s = [k ,m,T , µ, ⇠]
subject to

c = D(T )f (k ,E ) + (1� �k)k � (1 + ⌘)(1 + �)k 0

m0 = 1 + (1� �m)(m � 1) +
� �
MB

�
E

T 0 = �
1

T + �
2

log(m0) + v 0
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The Model

Bayesian Learning

Bayesian rule gives two additional law of motions for (µ, ⇠). Posterior
distribution of �

1

is still normal with:

µ0 =
µ+ ⇠p⌫TH 0

1 + ⇠pvT 2

(13)

⇠0 =
⇠

1 + pv⇠T 2

(14)

where
H 0 = �

1

T + v 0 (15)

Learning is endogenous. Each period new climate records arrive and the
social planner update the prior on the feedback parameter �

1

.
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The Model

From Feedbacks to Climate Sensitivity

In the temperature model, we have

�
1

= 1� 1

↵�
⇠ N(µ, ⇠) (16)

We can then compute the pdf for climate sensitivity from Jacobian
transformation

h�(�) =
1p
2⇡�

1

↵

�2

exp

2

4�1

2

 
1� 1

↵� � µ

�

!
2

3

5 (17)
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The Model

Visualization of the Prior
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The Model

Solution Algorithm

We use function iteration and Chebychev approximation to solve the
problem.

v̂i (s;�i�1

) = max
c

u(s, c) + �̂E�
1

,⌫ [�[g(s, c ,�1, ⌫);�i�1

]] (18)

�i�1

= argmin
�

k�(s;�)� v̂i (s,�i�1

)k (19)

The following summarizes the algorithm for finding the value function.

1. Compute �
0

, the parameter vector which minimizes the distance
between v

0

and �.

2. Compute v̂
1

by computing the optimal controls for the
approximate value function �.

3. Compute �
1

, the parameter vector which minimizes the distance
between v̂

1

and �.

4. Repeat step (2) until kv̂i � v̂i�1

k < ⌘⇤ .
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Simulations

Simulations

Table: Two Learning Experiments

Experiment 1 Experiment 2
ture Climate Sensitivity �T ⇤

2⇥ 2.2289 4
true Feedback �⇤

1

0.56 0.7481
piror for �

1

(0.62,0.0169)† (0.62,0.0169)
number of simulations 500 500

number of years simulated 500 500
† from Colman(2008), which calculated (µ,⇠) from a suite of
GCM simulations.
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Simulations

Observations

It takes a long time to learn where the true mean is.
I When �T ⇤

2⇥ = 2.23, average time to resolve uncertainty
(Pr(2.13 5 �T

2⇥ 5 2.33) = 95%) is 76 years.
I When �T ⇤

2⇥ = 4, average time to resolve uncertainty
(Pr(3.9 5 �T

2⇥ 5 4.1) = 95%) is 132 years.

Fat tails are diminished quickly!
I When �T ⇤

2⇥ = 2.2298, average time to rule out extreme climate
sensitivity (Pr(�T

2⇥ > 4) 5 1%) is 4 years.
I When �T ⇤

2⇥ = 4, average time to rule out extreme climate sensitivity
(Pr(�T

2⇥ > 8) 5 1%) is 7 years.
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Simulations

Experiment 1
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Simulations

Experiment 1
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Simulations

Experiment 1
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Simulations

Experiment 1
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Simulations

Experiment 1
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Simulations

Experiment 2
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Simulations

Experiment 2
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Simulations

Experiment 2
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Simulations

Experiment 2
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Simulations

Experiment 2
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