When Does Cap-and-Trade Increase Regulated Firms' Profits? And what does it mean for promoting clean technologies?

David A. Evans

NCEE, U.S.EPA

Ian Lange

University of Stirling

Joshua Linn

University of Illinois at Chicago

Camp Resources 8/07/08

Policy Framework

- With cap-and-trade the government limits total emissions by distributing a fixed amount of exchangeable allowances to pollute.
- Methods of distributing allowances include, historic behavior (grandfathering), recent production/input (updating), and auction.
- Currently the U.S. has two major programs (Acid Rain and NBP) and EU has one (ETS)

- These programs grandfather allowances

GHG Cap-and-Trade

- Much attention is being paid to the distributional effects of greenhouse gases (GHG) regulations.
- Studies find that the profits of regulated industries will increase if GHG permits are grandfathered.
 - Bovenberg and Goulder, 2001
 - 4.3% to coal producers, \$25/ton carbon
 - Burtraw et al. 2002
 - Electricity industry better off under auction, \$25/tonC
 - Incumbent coal generators are not.

Turning to auctions...

- Recognizing value of allowances and influence on profits, regulators turning to auctions

 Burtraw and Evans, 2008
- EU ETS proposal for post-2012
 - Full auctioning in the electricity sector in 2012
 - Full auctioning for other sectors by 2020
- Lieberman-Warner (Senate bill)
 - Increasing % of allowances auctioned over time
- RGGI proposal in NE U.S.
 - 6 of 10 states auctioning 100% of allowances

Non-GHG Cap-and-Trade

- Recent studies of cap-and-trade programs for conventional pollutants indicate that regulated firms better off with grandfathering (or similar), but that ratio is higher:
 - Bovenberg, Goulder and Gurney, 2005
 - General equilibrium, sulfur and carbon
 - Burtraw and Palmer, 2004
 - Partial equilibrium, sulfur, nitrogen and mercury
 - Need to compare to earlier work on carbon to see result

What explains the difference?

- Hypothesis: Availability of abatement opportunities
 - Technologies with lower uncontrolled emission rate
 - Low cost "end-of-pipe" control technologies
 - Emission rate of marginal producer
- We can show impact of "end-of-pipe" technologies with a simple analytical model
 Also shows how profits may increase with cap
- Recognizing this, we plan to explore effect of reducing cost of abatement technologies and of less-emitting generation technologies

Simple Model of Polluter Welfare

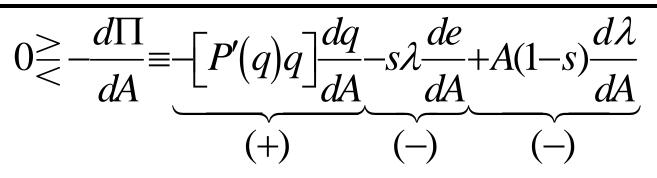
$$\max \pi \equiv Pq - C(q) - f(zq - e)$$

s.t. $A \ge e$

- q: Total production/consumption of final good in market
- e: Total controlled emissions
- z: Emissions intensity (i.e., uncontrolled emissions per unit of q)
- A: Total allowable emissions (i.e., the cap)
- *a*: Total abatement $\Rightarrow a = qz e$
- C(q): Total cost of producing q: C'(q) > 0, $C''(q) \ge 0$

f(qz-e): Cost of "end-of-pipe" abatement: $f'(qz-e) > 0, f''(qz-e) \ge 0$

Profit Change from Decreasing Cap


- What happens to profits as the cap decreases (i.e., if we impose a cap)?
- Total profits:

$$\Pi \equiv P(q)q - C(q) - f(zq - e) - \lambda(1 - s)A$$

Where:

P(q): marginal-willingness to pay: $P'(q) \le 0$ s: share of allowances provided gratis to producers λ : Shadow value on cap (i.e. allowance price) $\lambda(1-s)A$: value of allowances auctioned by gov't

Profit Δ from Allocation Decrease, Con't.

- Left term: Inframarginal effect on revenue from constraining production (*dq/dA>0*)
 - $-\uparrow$ with \uparrow in slope of end-of-pipe marginal cost
- Middle term: Reduction in value of allowances provided gratis as cap falls (*de/dA=1*).
- Right term: Increased payment to gov't as allowance price rises (*dλ/dA<0*).

 $-\uparrow$ with \uparrow in slope of end-of-pipe marginal cost

"Cooperative Oligopoly"

- Firms participating in a cap-and-trade program with grandfathering can realize increased profits as:
 - Cap acts as an output constraint
 - Firms restrict output w/o fear of competitor's response
 - Firms face an inelastic demand curve relative to supply (production cost).

Elasticity of abatement

- However, if marginal "end of pipe" elasticity is high:
 - Link between emissions and output is low
 - Ability to restrict output lower
 - Increase in output price lower
- When would "end of pipe" elasticity be high?
 - Low cost of end-of-pipe technology
 - Entry costs low for low-emitting technologies (technologies with a lower z)
 - Also, incentive to innovate is low

An Important Aside

- Bovenberg, Goulder and Gurney (2005) analyze effect of "end of pipe" cost on compensation ratio
 - But they scale the marginal cost curve; they do not change "end of pipe" marginal cost elasticity.
 - The do find that level of marginal abatement cost does not have much affect on compensation ratio.
 - Analytic model does not suggest this, but it is empirical question.
 - Suggests we need to be careful in analysis: are we changing marginal cost levels, or elasticity of curve?

Planned contribution...

- Could analyze effect of elasticity of marginal end of pipe cost and see affect on profitability, but want to go even further...
- Earlier studies of effect on profits of GHG policies have not explored how R&D policy and subsidies to low emitting technologies and abatement controls influence the profits of incumbent sources.
- Will use a detailed partial equilibrium model of the U.S. electricity sector for analysis.

Subsidies for R&D and Clean Technologies

- Lieberman-Warner had a complex scheme for allocating auction revenues.
- Some activities receiving revenues.
 - 4% of auction revenues to go to renewable energy sources
 - 1.5% low carbon technology deployment
 - 3% for CCS bonus allowances
 - Specific nuclear subsidies considered

Influence May be Large

- Some comparison:
 - In 2020, total annual value of allowances \$250 billion under Lieberman-Warner:
 - 40% of allocation will be auctioned (i.e., \$100 billion in targeted revenues).
 - 10% of auction revenues to go to renewable energy sources (\$10 billion)
 - Source: CEB, U.S.EPA, 2008
 - (An additional) \$16/MWh subsidy for renewable generation in 2020 would (absent a GHG policy):
 - Increase renewable generation from ~5% to ~13% of total generation.
 - Total cost of the subsidy ~\$10 billion/year (2004\$)
 - Source: Palmer, Evans and Paul, 2008

Model Laboratory

- Model developed at RFF to estimate partial equilibrium welfare changes from environmental regulations affecting electricity sector.
- Solves for equilibrium in electricity markets by customer class, time of day, season, and region.
 - Solves over 25 year time-horizon
 - Price responsive electricity demand and fuel supply
 - Marginal or average cost pricing depending on region
 - Load serviced by existing and new generators
 - New technologies include IGCC, nuclear, and renewables
 - Carbon capture and storage.
 - Can represent a variety of renewable promotion policies.
 Incorporates existing renewable promotion policies.

Possible Experiments in Model

- Direct subsidies to non-emitting technologies or pollution control technologies
 - Immediate effect on investment decisions
 - Model as percent of allowance revenues
 - PTC effects versus ITC effects
- R&D Policy
 - Model as declining cost of low emitting technologies?
 - R&D does not necessarily discriminate
 - Effect not until in future; capital stock turnover already underway by then.

Model Outputs

- Change in asset values of exiting generators
- Change in consumer surplus
- Electricity price
- Renewable/nuclear penetration
- Adoption of carbon capture and storage
- Coal price

Questions, comments, thoughts?

Thank you!

- Dave: evans.davida@epa.gov
- Josh: jlinn@uic.edu
- Ian: TBD

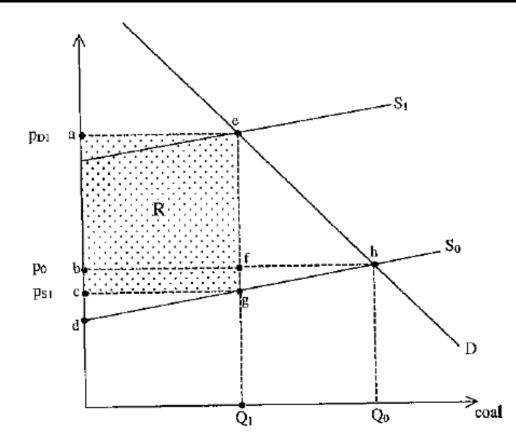
Supplemental Slides

Optimality Conditions

$$P-C'(q)-zf'(zq-e)=0$$
$$f'(zq-e)-\lambda=0$$
$$A-e=0$$

 λ : Shadow value on emissions restriction (allowance price)

Second Order Conditions


$$SOC = -P'(q) + C''(q) + z^{2} f''(qz-e) \ge 0$$

$$\frac{dq}{dA} = \frac{zf''(qz-e)}{SOC} \ge 0$$

$$\frac{de}{dA} = 1$$

$$\frac{d\lambda}{dA} = \frac{[P'(q) - C''(q)]f''(qz-e)}{SOC} = \frac{zf'(qz-e)f''(qz-e)}{SOC} \le 0$$

Profit Increase Graphically

• Source: Bovenberg and Goulder, 2001