Data	Model		Conclusion/Extensions

General Equilibrium Effects of Environmental Gentrification

Ralph Mastromonaco

Duke University

August 9, 2011

Introduction	Data	Model	Results	Conclusion/Extensions
Introduction Research Quest	O N :ion			

Can environmental remediation lead to welfare losses?

- Evidence that burden of pollution isn't evenly distributed: Environmental Justice
- If pollution is regressive, uniform abatement is progressive
- Are welfare gains progressive?
- Hedonics only tell us so much

Introduction	Data	Model		Conclusion/Extensions
Introductio Heterogeneous F)N Preferences			

Heterogeneous Preferences

- Households likely have varying preferences for "environment".
- Hard to claim that households are pollution loving.

What conditions might be necessary?

- Neighborhoods have multiple attributes, many endogenously determined.
- Preferences can be heterogeneous over all attributes.
- Households can move, but not freely.

Introduction	Data	Model		Conclusion/Extensions
Introductic Avenues of Char)N nge			

Examples of negative welfare change avenue?

- Rent can be more important than pollution remediation
- Preferences for segregration
- Moving costs

What about wealth accumulation?

- Renters vs. Owners
- Moving costs cause frictions

Introduction	Data	Model		Conclusion/Extensions
Introduc	tion			
Environment	al Gentrificat	ion		

Why is gentrification an issue?

- Increased Rents
- Displacement Costs
- Loss of ethnic enclaves, community
- Loss of access to labor markets

Why should economists care?

- Cost-benefit analysis
- Policy Recommendations
- Insufficiency of price changes

Introduction	Data	Model		Conclusion/Extensions
Introduct	ion Basaarah	Question		

How can one hope to address this question?

- Estimates of household preferences
- Estimates of moving costs
- Mechanism to conduct counterfactual simulations with endogenous attributes

Introduction	Data	Model		Conclusion/Extensions
Introducti	on			
My Proposed F	Research			

I propose a dynamic, general equilibrium framework based on the dynamic housing model of Bayer et. al (2011) (BMMT):

- Estimates are based on moving costs and expectations
- Endogenously determined public goods
- Wealth accumulation

Counterfactual Mechanism:

- Conduct a counterfactual simulation of a remediation
- Allow re-sorting according preferences and moving costs
- Simplifying assumptions
- Utility Accounting

Introduction	Data	Model		Conclusion/Extensions
Introduct	tion			
Empirical Set	ting			

Setting

- San Francisco Oakland San Jose CSA
- 1994 2003, 2001 2008
- EPA's Toxic Release Inventory (TRI) Program

Data Sources

- Census 1990, 2000 tract data
- Dataquick Housing Transaction
- HMDA Demographic Information
- TRI Database

- All housing transactions in SJ-SF-OAK CSA
- 1990 2008
- Structural Characteristics
- Buyer/Seller Names
- Loan Amount/Lender Name
- HMDA: Race, income, age

	Data	Model		Conclusion/Extensions
Neighborh Supertracts &	100ds Attributes			

Supertracts

- Combine nearby census tracts into Supertracts
- $\bullet~$ Target population is 25,000 \rightarrow 10,000 HH's

Attributes

- Only observe racial breakdown & income in 1990, 2000
- Use housing panel to impute attributes: Stocks and flows

• Infinitely lived households $i \in \{1, \dots, N\}$

- Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$

- \bullet Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$
- Periods $t \in \{1, \dots\}$

- \bullet Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$
- Periods $t \in \{1, \dots\}$

- \bullet Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$
- Periods $t \in \{1, \dots\}$

Households

Wealth

- \bullet Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$
- Periods $t \in \{1, \dots\}$

Households

- Wealth
- Income

伺 ト イ ヨ ト イ ヨ

- Infinitely lived households $i \in \{1, \dots, N\}$
- Neighborhoods $j \in \{0, 1, \dots, J\}$
- Periods $t \in \{1, \dots\}$

Households

- Wealth
- Income
- Race

伺 ト イ ヨ ト イ ヨ

	Data	Model		Conclusion/Extensions
_				

State Variables

Observed States

- X_{jt} neighborhood observables
- Z_{it} individual characteristics
- $d_{i,t-1}$ decision variable

直 ト イヨ ト イヨ ト

	Data	Model		Conclusion/Extensions
_				

State Variables

Observed States

- X_{jt} neighborhood observables
- Z_{it} individual characteristics
- $d_{i,t-1}$ decision variable

Unobserved states

- ξ_{ijt} type/neighborhood unobservable
- ϵ_{ijt} idiosyncratic error term

Data	Model		Conclusion/Extensions

State Variables

Observed States

- X_{jt} neighborhood observables
- Z_{it} individual characteristics
- $d_{i,t-1}$ decision variable

Unobserved states

- ξ_{ijt} type/neighborhood unobservable
- ϵ_{ijt} idiosyncratic error term

Information Set & State Variable

•
$$\Upsilon_{it} = \{X_{jt}, \xi_{ijt}\}_{j=1}^{J}$$

• $s_{it} = \{\Upsilon_{it}, Z_{it}, d_{i,t-1}\}$

	Data	Model		Conclusion/Extensions
Dunamia	Madal	of Lloudir		
Dynamic	iviodei (oi nousii	18	

Equilibrium & Market Assumptions

- Fixed housing supply
- Equilibrium prices equate neighborhood supply with neighborhood demand
- Households must choose a neighborhood each period, or leave town
- Households have perfect information about current state of each neighborhood
- Households form expectations over future states

Data	Model		Conclusion/Extensions

Household's Problem

Lifetime Utility

$$E\left[\sum_{r=t}^{\infty} \beta^{r-t} \left(u(X_{jt}, Z_{it}, \xi_{jt}) - MC_{ir}I[j \neq d_{i,r-1}]\right) | s_{it}, \epsilon_{it}, d_{it}\right]$$
(1)

< ∃ >

Data	Model		Conclusion/Extensions

Household's Problem

Lifetime Utility

$$E\left[\sum_{r=t}^{\infty} \beta^{r-t} \left(u(X_{jt}, Z_{it}, \xi_{jt}) - MC_{ir}I[j \neq d_{i,r-1}]\right) | s_{it}, \epsilon_{it}, d_{it}\right]$$
(1)

With states following Markov Transition probabilities, optimal decisions follow: $d^* = d(s_{it}, \epsilon_{it})$.

$$V(s_{it}, \epsilon_{it}) = \max_{j} \left\{ u_{ijt}^{MC} + \beta E \left[V(s_{it+1}, \epsilon_{it+1}) | s_{it}, \epsilon_{it}, d_{i,t-1} = j \right] \right\}$$
(2)

	Data	Model	Estimation	Conclusion/Extensions
Estimator Four Stages - In	Words			

Estimation procedure advances in four separate stages:

- Estimate Value Functions
- Moving Costs/Marginal Utility of Wealth
- Expectations/Period Utility
- Flow Utility Decomposition

	Data	Model	Estimation	Conclusion/Extensions
Estimator Four Stages - In	Words			

Estimation procedure advances in four separate stages:

- Estimate Value Functions
- Moving Costs/Marginal Utility of Wealth
- Expectations/Period Utility
- Flow Utility Decomposition

$$v_{jt}^{\tau} = u_{jt}^{\tau} + \beta E_{\epsilon} \left[\max_{k} v_{kt+1}^{\tau_{t+1}} + \epsilon_{ikt+1} \right]$$

	Data	Model	Estimation	Conclusion/Extensions
Stage 1 Household's Pro	blem			

Conditional on moving, household chooses j if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} v_{kt}^{\tau} + \epsilon_{ikt}$$

母▶ ★ 臣▶ ★ 臣

э

	Data	Model	Estimation	Conclusion/Extensions
Stage 1 Household's Pl	roblem			

Conditional on moving, household chooses j if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} v_{kt}^{\tau} + \epsilon_{ikt}$$

Type I Extreme Value errors implies:

$$P_{jt}^{\tau} = \frac{e^{v_{jt}^{\tau}}}{\sum_{k=0}^{J} e^{v_{kt}^{\tau}}}$$

♬▶ ◀글▶ ◀달

	Data	Model	Estimation	Conclusion/Extensions
Stage 1 Household's F	Problem			

Conditional on moving, household chooses j if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} v_{kt}^{\tau} + \epsilon_{ikt}$$

Type I Extreme Value errors implies:

$$P_{jt}^{\tau} = \frac{e^{v_{jt}^{\tau}}}{\sum_{k=0}^{J} e^{v_{kt}^{\tau}}}$$

Hotz and Miller (1993) and Berry (1994):

$$\widetilde{v}_{jt}^{\tau} = \log(\widehat{P}_{jt}^{\tau}) - \frac{1}{J}\sum_{k}\log(\widehat{P}_{kt}^{\tau})$$

• • • • • • •

	Data	Model	Estimation	Conclusion/Extensions
Stage 2 Moving Costs				

Psychological Moving Costs

- Neighborhood relationships
- Changing Schools
- Stress
- $PMC(Z_{it}, X_{d_{i,t-1}t})$

3

э

	Data	Model	Estimation	Conclusion/Extensions
Stage 2 Moving Costs				

Psychological Moving Costs

- Neighborhood relationships
- Changing Schools
- Stress
- $PMC(Z_{it}, X_{d_{i,t-1}t})$
- Financial Moving Costs
 - Industry Standard 6%
 - $FMC(Z_{it}, X_{d_{i,t-1}t})$

	Data	Model	Estimation	Conclusion/Extensions
Stage 2 Moving Costs				

Psychological Moving Costs

- Neighborhood relationships
- Changing Schools
- Stress
- $PMC(Z_{it}, X_{d_{i,t-1}t})$

Financial Moving Costs

- Industry Standard 6%
- $FMC(Z_{it}, X_{d_{i,t-1}t})$

Identification?

- Frequency of "moves" vs. "stays"
- Higher FMC should lead less "moves"

	Data	Model	Estimation	Conclusion/Extensions
Stage 2 Move vs. Stay				

A household will decide to stay if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} \left[v_{kt}^{\tau'} + \epsilon_{ikt} \right] - PMC(Z_{it}, X_{d_{i,t-1}t})$$

母▶ ★ 臣▶ ★ 臣

æ

	Data	Model	Estimation	Results	Conclusion/Extensions
Stage 2 Move vs. Stay					

A household will decide to stay if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} \left[v_{kt}^{\tau'} + \epsilon_{ikt} \right] - PMC(Z_{it}, X_{d_{i,t-1}t})$$

I have access to normalized choice specific utility functions:

$$\widetilde{v}_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} \left[\widetilde{v}_{kt}^{\tau'} + \epsilon_{ikt} \right] - PMC(Z_{it}, X_{d_{i,t-1}t}) - \left(m_t^{\tau} - m_t^{\tau'} \right)$$
(3)

3 ►

	Data	Model	Estimation	Results	Conclusion/Extensions
Stage 2 Move vs. Stay					

A household will decide to stay if:

$$v_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} \left[v_{kt}^{\tau'} + \epsilon_{ikt} \right] - PMC(Z_{it}, X_{d_{i,t-1}t})$$

I have access to normalized choice specific utility functions:

$$\widetilde{v}_{jt}^{\tau} + \epsilon_{ijt} > \max_{k \neq j} \left[\widetilde{v}_{kt}^{\tau'} + \epsilon_{ikt} \right] - PMC(Z_{it}, X_{d_{i,t-1}t}) - \left(m_t^{\tau} - m_t^{\tau'} \right)$$
(3)

$$P(d_{i,t} = j | d_{i,t-1} = j) = \frac{e^{\widetilde{v}_{jt}^{\tau}}}{e^{\widetilde{v}_{jt}^{\tau}} + \sum_{k \neq j} e^{\widetilde{v}_{kt}^{\tau} - FMC_{it}\gamma_i^{f} - PMC_{it}}}$$
(4)

With estimates of γ_f , normalization constants can be solved for and v's uncovered.

	Data	Model	Estimation	Conclusion/Extensions
Stage 3 Uncovering Flow	Utility			

Recall CSVF:

$$v_{jt}^{\tau} = u_{jt}^{\tau} + \beta E \left[\log \left(\sum_{k=0}^{J} \exp \left(v_{kt+1}^{\tau_{t+1}} - M C_{t+1}^{\tau_{t+1}} I[k \neq j] \right) \right) | s_{it}, d_{it} = j \right]$$

Contrasting with Melnikov (2001) & Hendel and Nevo (2006), "Inclusive Value" assumption:

$$v_{jt}^{\tau} = \nu_0^{\tau} + \sum_{l=1}^{L} v_{j,t-l}^{\tau} \nu_{1,l}^{\tau} + \sum_{l=1}^{L} X_{j,t-l} \nu_{2,l}^{\tau} + \nu_3^{\tau} t + \varepsilon_{jt}^{\tau}$$
$$Price_{jt} = \eta_0 + \sum_{l=1}^{L} X_{j,t-l} \eta_{1,l} + \eta_2 t + \omega_{jt}$$

- ∢ ≣ ▶

	Data	Model	Estimation	Conclusion/Extensions
Stage 3 Simulating Expe	ectation			

$\begin{array}{l} \text{Simulating } u_{ijt}^{\tau}:\\ 1 \ \text{Draw } (\varepsilon^r, \omega^r) \end{array}$

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

	Data	Model	Estimation	Conclusion/Extensions
Stage 3 Simulating Expe	ectation			

Simulating u_{ijt}^{τ} : 1 Draw $(\varepsilon^r, \omega^r)$ 2 Use (ω^r) to calculate $Price_{j,t+1}^r$

□ ▶ < E ▶ < E ▶

3

	Data	Model	Estimation	Conclusion/Extensions
Stage 3	ectation			

- 1 Draw $(\varepsilon^r, \omega^r)$
- 2 Use (ω^r) to calculate $Price_{j,t+1}^r$
- 3 $Wealth_t = Price_t loan_t \Longrightarrow \tau_{t+1}^r$

同 ト イ ヨ ト イ ヨ ト

3

	Data	Model	Estimation	Conclusion/Extensions
Stage 3	octation			

- 1 Draw (ε^r,ω^r)
- 2 Use (ω^r) to calculate $Price^r_{j,t+1}$
- 3 $Wealth_t = Price_t loan_t \Longrightarrow \tau_{t+1}^r$

4 Use $(\varepsilon^r, \tau^r_{t+1})$ to calculate:

$$u_{jt}^{\tau,r} = v_{jt}^{\tau} - \beta \log \left(\sum_{k=0}^{J} \exp \left(v_{kt+1}^{\tau_{t+1},r} - M C_{t+1}^{\tau_{t+1},r} I[k \neq j] \right) \right).$$

	Data	Model	Estimation	Conclusion/Extensions
Stage 3	octation			

- 1 Draw $(\varepsilon^r, \omega^r)$
- 2 Use (ω^r) to calculate $Price^r_{j,t+1}$
- 3 $Wealth_t = Price_t loan_t \Longrightarrow \tau_{t+1}^r$

4 Use $(\varepsilon^r, \tau^r_{t+1})$ to calculate:

$$u_{jt}^{\tau,r} = v_{jt}^{\tau} - \beta \log \left(\sum_{k=0}^{J} \exp \left(v_{kt+1}^{\tau_{t+1},r} - M C_{t+1}^{\tau_{t+1},r} I[k \neq j] \right) \right).$$

5
$$u_{jt}^{\tau} = \frac{1}{R} \sum_{r} u_{jt}^{\tau,r}$$

30.00

	Data	Model	Estimation	Conclusion/Extensions
Stage 3	octation			

- 1 Draw $(\varepsilon^r, \omega^r)$
- 2 Use (ω^r) to calculate $Price^r_{j,t+1}$
- 3 $Wealth_t = Price_t loan_t \Longrightarrow \tau_{t+1}^r$

4 Use $(\varepsilon^r, \tau^r_{t+1})$ to calculate:

$$u_{jt}^{\tau,r} = v_{jt}^{\tau} - \beta \log \left(\sum_{k=0}^{J} \exp \left(v_{kt+1}^{\tau_{t+1},r} - M C_{t+1}^{\tau_{t+1},r} I[k \neq j] \right) \right).$$

5
$$u_{jt}^{\tau} = \frac{1}{R} \sum_{r} u_{jt}^{\tau,r}$$

30.00

	Data	Model	Estimation	Conclusion/Extensions
Stage 3	octation			

- 1 Draw $(\varepsilon^r, \omega^r)$
- 2 Use (ω^r) to calculate $Price^r_{j,t+1}$
- 3 $Wealth_t = Price_t loan_t \Longrightarrow \tau_{t+1}^r$

4 Use $(\varepsilon^r, \tau^r_{t+1})$ to calculate:

$$u_{jt}^{\tau,r} = v_{jt}^{\tau} - \beta \log \left(\sum_{k=0}^{J} \exp \left(v_{kt+1}^{\tau_{t+1},r} - M C_{t+1}^{\tau_{t+1},r} I[k \neq j] \right) \right).$$

5 $u_{jt}^{\tau} = \frac{1}{R} \sum_{r} u_{jt}^{\tau,r}$ Repeat for each (j, t, τ) .

	Data	Model	Estimation	Conclusion/Extensions
Stage 4 Flow Utility				

How does u_{ijt}^{τ} vary with types and covariates?

$$u_{jt}^{\tau} = \alpha_w W_{\tau} + \alpha_{IN} I N_{\tau} + \alpha_R R_{\tau} + \alpha_X X_{jt} + \alpha_t T + \alpha_{W,X} W_{\tau}' X_{jt}' + \alpha_{IN,X} I N_{\tau}' X_{jt} + \alpha_{R,X} R_{\tau}' X_{jt} + \bar{\xi}_j + \xi_{jt}^{\tau}.$$
 (5)

where price is converted to a user-cost per period.

	Data	Model	Estimation	Conclusion/Extensions
Stage 4 Flow Utility				

How does u_{ijt}^{τ} vary with types and covariates?

$$u_{jt}^{\tau} = \alpha_w W_{\tau} + \alpha_{IN} I N_{\tau} + \alpha_R R_{\tau} + \alpha_X X_{jt} + \alpha_t T + \alpha_{W,X} W_{\tau}' X_{jt}' + \alpha_{IN,X} I N_{\tau}' X_{jt} + \alpha_{R,X} R_{\tau}' X_{jt} + \bar{\xi}_j + \xi_{jt}^{\tau}.$$
 (5)

where price is converted to a user-cost per period. Controlling for endogeneity of price:

$$u_{jt}^{\tau} + \hat{\gamma_{f}} r_{jt} = \alpha_{w} W_{\tau} + \alpha_{IN} I N_{\tau} + \alpha_{R} R_{\tau} + \alpha_{X} X_{jt}' + \alpha_{t} T + \alpha_{W,X} W_{\tau}' X_{jt}' + \alpha_{IN,X} I N_{\tau}' X_{jt}' + \alpha_{R,X} R_{\tau}' X_{jt}' + \bar{\xi}_{j} + \xi_{jt}^{\tau},$$
 (6)

• • 3 • • 3

	Data	Model	Estimation	Conclusion/Extensions
Stage 4 Flow Utility				

How does u_{iit}^{τ} vary with types and covariates?

$$u_{jt}^{\tau} = \alpha_w W_{\tau} + \alpha_{IN} I N_{\tau} + \alpha_R R_{\tau} + \alpha_X X_{jt} + \alpha_t T + \alpha_{W,X} W_{\tau}' X_{jt}' + \alpha_{IN,X} I N_{\tau}' X_{jt} + \alpha_{R,X} R_{\tau}' X_{jt} + \bar{\xi}_j + \xi_{jt}^{\tau}.$$
 (5)

where price is converted to a user-cost per period. Controlling for endogeneity of price:

$$u_{jt}^{\tau} + \hat{\gamma_{f}} r_{jt} = \alpha_{w} W_{\tau} + \alpha_{IN} I N_{\tau} + \alpha_{R} R_{\tau} + \alpha_{X} X_{jt}' + \alpha_{t} T + \alpha_{W,X} W_{\tau}' X_{jt}' + \alpha_{IN,X} I N_{\tau}' X_{jt}' + \alpha_{R,X} R_{\tau}' X_{jt}' + \bar{\xi}_{j} + \xi_{jt}^{\tau},$$
 (6)

Endogeneity of other attributes?

	Data	Model	Results	Conclusion/Extensions
Estimati	on Resul	ts		

Stage 2 - Moving Costs

Table: Moving Costs

	Coefficient	Standard Error	Coefficient	Standard Error
PMC Intercept Income X PMC	0.3217**	(.0047)	10.061 0.155	
FMC Intercept Income X FMC	3.255** -0.942**	(.0200) (.0093)	-0.618 -0.486	

<ロ> <同> <同> < 同> < 同>

æ

	Data	Model	Results	Conclusion/Extensions
Estimation	Results			

Stage 2 - Moving Costs

Year	Ν	Mean	Std Dev	Min	Max
1994	253	26.60	23.14	8.303	115.4
1995	253	13.97	11.35	7.513	92.82
1996	253	11.62	7.652	7.448	96.88
1997	253	10.25	2.703	6.916	42.88
1998	253	9.647	1.344	6.772	13.96
1999	253	9.492	1.354	6.677	13.38
2000	253	9.416	1.332	6.424	14.10
2001	253	9.489	1.292	6.527	14.61
2002	253	9.359	1.346	6.232	13.72
2003	253	9.277	1.286	6.255	13.37

Table: Psychological Moving Costs

Using $PMC = 10 \rightarrow $432, 338$.

- 4 回 > - 4 回 > - 4 回 >

3

Data	Model	Results	Conclusion/Extensions

Table: MWTP Estimates

Wealth	Race	Income	M.U. of Wealth	%White	Income	TRI
\$50K	White	\$80K	2.878	1,154	-35.58	-264.5
\$50K	White	\$160K	1.747	2,475	-29.84	-891.8
\$50K	White	\$320K	0.428	12,848	14.41	-5,823
\$50K	Minority	\$80K	2.878	303.7	-89.87	1,153
\$50K	Minority	\$160K	1.747	1,075	-119.3	1,443
\$50K	Minority	\$320K	0.428	7,129	-350.8	3,713
\$150K	White	\$80K	2.878	2,025	48.54	-1,150
\$150K	White	\$160K	1.747	3,910	108.7	-2,351
\$150K	White	\$320K	0.428	18,707	580.3	-11,780
\$150K	Minority	\$80K	2.878	1,175	-5.751	267.5
\$150K	Minority	\$160K	1.747	2,510	19.29	-15.37
\$150K	Minority	\$320K	0.428	12,989	215	-2,244
\$250K	White	\$80K	2.878	2,895	133.1	-2,048
\$250K	White	\$160K	1.747	5,343	248	-3,829
\$250K	White	\$320K	0.428	24,560	1,149	-17,817
\$250K	Minority	\$80K	2.878	2,045	78.79	-629.9
\$250K	Minority	\$160K	1.747	3,943	158.5	-1,494
\$250K	Minority	\$320K	0.428	18,841	783.7	-8,281

Ralph Mastromonaco Duke University General Equilibrium Effects of Environmental Gentrification 24/26

Data	Model	Results	Conclusion/Extensions

Table: MWTP Estimates - Neighborhood Fixed Effects

Wealth	Race	Income	M.U. of Wealth	%White	Income	TRI
\$50K	White	\$80K	2.878	-1,609	-76.46	-2,680
\$50K	White	\$160K	1.747	-2,076	-97.18	-4,871
\$50K	White	\$320K	0.428	-5,737	-260.6	-22,073
\$50K	Minority	\$80K	2.878	-2,459	-130.8	-1,263
\$50K	Minority	\$160K	1.747	-3,476	-186.6	-2,536
\$50K	Minority	\$320K	0.428	-11,456	-625.8	-12,537
\$150K	White	\$80K	2.878	-738.1	7.65	-3,566
\$150K	White	\$160K	1.747	-641.2	41.38	-6,330
\$150K	White	\$320K	0.428	121.9	305.2	-28,030
\$150K	Minority	\$80K	2.878	-1,588	-46.63	-2,148
\$150K	Minority	\$160K	1.747	-2,042	-48.06	-3,995
\$150K	Minority	\$320K	0.428	-5,597	-59.97	-18,494
\$250K	White	\$80K	2.878	131.9	92.2	-4,463
\$250K	White	\$160K	1.747	791.8	180.6	-7,808
\$250K	White	\$320K	0.428	5,974	873.9	-34,067
\$250K	Minority	\$80K	2.878	-718.2	37.91	-3,046
\$250K	Minority	\$160K	1.747	-608.6	91.2	-5,473
\$250K	Minority	\$320K	0.428	255.3	508.7	-24,531

Ralph Mastromonaco Duke University General Equilibrium Effects of Environmental Gentrification

	Data	Model		Conclusion/Extensions
Conclusio	on			
Deficiencies &	2 Extensions			

Areas for improvement:

- TRI Facility Site counts vs. Toxicity weights
- Endogeneity in Stage 4
- Multiple Equilibria

Areas to extend:

- Multiple Racial categories
- Housing quantity decision
- Additional neighborhood attributes?