MODELING HETEROGENEITY IN RESPONSE TO WATER POLICIES: A FIXED EFFECTS, FINITE MIXTURE APPROACH

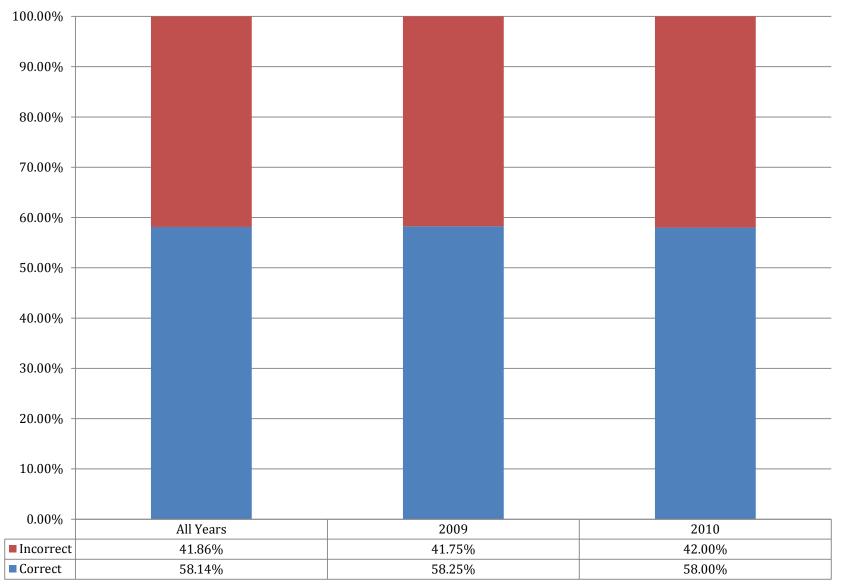
JANINE STONE COLORADO STATE UNIVERSITY

AUGUST 12, 2104 CAMP RESOURCES ADVISORS: CHRISTOPHER GOEMANS & MARCO COSTANIGRO Overview: Understanding Effectiveness of Utility Demand Side Management Programs

- Trillions of dollars in water infrastructure investments will be needed in the near future... much of which is demand driven. (Western Governors Association, 2011)
- An alternative the supply development: demand-side management (DSM) programs
 - DSM savings not currently built into planning forecasts.
- Need to understand who is reducing, how much they are reducing, and how reductions change over time.
 - Equity
 - Future effectiveness of DSM programs
 - Accurate demand modeling

Overview: Understanding Effectiveness of Utility Demand Side Management Programs

- Challenges & Sources of Heterogeneity:
 - Utility policies complex and confusing to the consumer.
 - Ex: Price
 - Complex rate structures (IBR)
 - Lag between use and receipt of bill
 - Consumption depends upon infrastructure
 - Can expect heterogeneity in consumers' decision making processes across households and across time.
 - Which price?
 - Infrastructure
 - Demographic variables



Which Best Explains the Rate Structure the Utility Currently Uses (Correct v. Incorrect)

Overview: Traditional Approaches to Heterogeneity

Assume data have a shared distribution:

 $f(w; x, \beta)$

- Include dummy variables or interaction terms for believed to cause heterogeneity.
- If using panel data, use fixed or random effects.
- E.g.: (Grafton et al, 2011)
- Problem with this approach:
 - Assumes marginal effect of included variables is the same for all users.
 - Fixed effects assumes omitted variables are constant over time.
 - We need to know how decision process varies across individuals and parameterize model accordingly.

Overview: Traditional Approaches to Heterogeneity

Assume subsets of data come from different distributions:

• Estimate separate demand functions for distinct user groups $f_j(w_j; x_{j,} \beta_j)$ $f_k(w_k; x_{k,} \beta_k)$

E.g.: Kenney, et al (2008)

Problem with running models for subsets of users:

- Researcher defined groups may not reflect true heterogeneity in the data.
 - Biased coefficients.
 - Inaccurate demand forecasting.

Overview: Finite Mixture Approach to Heterogeneity

Assumes total distribution of the data is actually a discrete mixture of distributions.

- "Latent Class" Model
- Useful when we don't have demographic data or know the nature of the heterogeneity.
- Find unique coefficients for latent classes.

$$f(w) = \sum_{j=1}^{k} \pi_j f_j(w; x, \beta_j)$$

Previous Applications:

- Health care demand (Deb and Trivedi, 2002)
- Energy loads (Sing, Pal, and Labor, 2010)
- Choice experiments (Boxall and Adamowicz, 2002).
- FMM can be used to capture heterogeneity when the nature of that heterogeneity is unknown.

Application of FMM: Water Demand

- Urdiales, et al (2013): find 5 latent classes corresponding to varying levels of policy responsiveness.
 - Don't use fixed effects.
 - Omitted variable bias.
 - Limited panel
 - Treat data as a cross-section.

Our research:

- Identify heterogeneity across individuals and across time.
- Apply a fixed effects, finite mixture model (Deb and Trivedi, 2013).
- Examine how heterogeneity changes across individuals **and across time** in response to a policy shock—i.e., if we don't believe π_j is constant across all bill periods.

$$f(y) = \sum_{j=1}^{k} \boldsymbol{\pi}_{j} f_{j}(y; x, \beta_{j})$$

Estimation: Background

- 2002: Record low precipitation for large Colorado water provider.
- July 2002: Utility uses water restrictions, seasonal block-rate pricing, price increases, rebates, and education programs to decrease water demand.
 - "Drought Period"
- **2006-2010:** Block rates become permanent; prices increases and education programs continue.
 - Watering restrictions are lifted.
 - Price increases are larger than those during the drought.
 - "Post-drought period"

Research Questions

1)Can we identify latent classes corresponding to varying levels of policy responsiveness?

- Short term changes in demand resulting from policy shocks.
- 2)How do the latent classes evolve over time?
 - Does use of short-term policies lead to long-term changes in demand ("demand hardening")?
 - Behavioral change
 - Changes in infrastructure

3)Does the FMM capture heterogeneity better than single distribution and split-sample models?

• Welfare implications

Estimation: Data and Approach

Step 1A: Estimate Fixed Effects FMM for 2001-2005 ("Drought Period")

Step 1B: Post estimation:

- Classify billing periods
- Identify individuals who had high-policy response billing periods.

Step 2A: Estimate coefficients for latent classes for "Post-drought" period (2006-2010).

Step 2B: Post estimation:

- Classify billing periods.
- Determine if high responders in shock period were also high responders in price-only period.

Estimation: Data and Approach

• Data:

- 365,711 household water use records from 1998-2010
 - 140 billing periods for 2,612households
- Policy data
 - Watering restrictions
 - Price increases
 - Use of block-rate pricing structure
- Weather data
 - Temperature
 - Precipitation

Estimation: Data and Approach

Log-log model using (lagged) average price

 $lnw = \beta_0 + \beta_1 Price + \beta_2 Rperdays + \beta_4 Totprecip + \beta_5 Maxtemp + \beta_6 Bpdays + \varepsilon$

- Fixed effects to control for omitted individual-level variables (Deb and Trivedi, 2013)
- Instrument for average price using individual consumption block prices
- Use only summer months (June, July, and August)

Estimation Results: Latent Classes vs. OLS and Split Sample Models (Drought Period)

	OLS	OLS: Split sample (High relative Users)	OLS: Split sample (Low relative Users)	FMM: Class 1 Responders	FMM: Class 2 Responders
Price	-0.42*** (0.011)	-0.40*** (0.023)	-0.42*** (0.018)	-0.292*** (0.011)	-1.167*** (0.071)
Class Shares:				85.6%	14.4% ** indicates α=0.01

Low relative outdoor water use: Summer use<=2 x Winter Use Med. Relative outdoor water use: Summer Use=2-3 x Winter Use High Relative outdoor water use: Summer Use >3 x Winter Use

Estimation Step 2 Results: Latent Classes vs. OLS and Split Sample Models (Post-drought period)

	OLS	OLS: Split sample (High relative Users)	OLS: Split sample (Low relative Users)	FMM: Class 1 Responders	FMM: Class 2 Responders
Price	-0.30*** (0.006)	-0.31*** (0.013)	-0.27*** (0.009)	-0.29*** (0.005)	-0.38*** (0.045)
Class Shares	(0.000)	(0.020)		90%	10% *** indicates α=0.01

Estimation Results:

How does class membership evolve over time?

"High Response" Households in Drought and Post-Drought Periods

	Drought (-1.16)	Post- drought (-0.38)
High-response households	39.98%	22.06%

Only 33.3% of "high responders" in shock period are also high responders in price-only period.

Estimation Results:

How does class membership evolve over time?

Logit model for probability a household is a high responder in drought and postdrought periods, as a function of pre-drought water use

	Drought high responder	Post-drought high responder
High relative outdoor	0.267*** (0.012)	0.519*** (0.015)
Low relative outdoor	0.253*** (0.010)	-0.114*** (0.014)

Key Results:

1)Can we identify latent classes corresponding to varying levels of policy responsiveness?

- "Baseline" price elasticity in drought and post-drought periods, of -0.3
- Higher responsiveness after consumers receive (or actually look at) a high bill?
 - Large decreases in demand from a small subset of households/billing periods.
- 2) How do the latent classes evolve over time?
 - All consumers are less responsive to prices in the post-drought, despite the steeper price increases that occurred from 2006-2010.
 - 67% of high responders drop out of high response class after 2006.

3) Does the FMM capture heterogeneity better than models than single distribution models and split-sample models?

- Single distribution OLS model gives only "average" price elasticity.
 - May under or over-estimate price elasticities for some users/billing periods.
 - Doesn't reflect fact that lower average elasticity post-drought results from high outdoor users' decreased responsiveness.
- Split-sample models may fail to capture true heterogeneity in the data.
 - Households may have similar policy responsiveness even if we wouldn't think to group them together.

Questions?

Contact: jmstone@lamar.colostate.edu