How Gasoline Prices Impact Household Driving and Auto Purchasing Decisions

A Revealed Preference Approach

Beia Spiller

Duke University

June 2010

- Accurately measuring the elasticity of demand for gasoline
 - Importance in climate policy models
 - Economic incidence of gasoline tax burden falls on consumers or producers

- Prior studies have found very low elasticities
- Downward bias due to:
 - Assumptions
 - Research Methods

Incorporate the following into measurement of gasoline demand elasticity:

- Extensive and Intensive Margin (vehicle purchase decision and VMT)
 - Type of vehicle \leftrightarrow Amount of driving
 - Estimate jointly:
 - Model choice
 - Fleet size
 - Driving demand

Incorporate the following into measurement of gasoline demand elasticity:

- *Extensive and Intensive* Margin (vehicle purchase decision and VMT)
 - Type of vehicle \leftrightarrow Amount of driving
 - Estimate jointly:
 - Model choice
 - Fleet size
 - Driving demand
- Household fleet's VMT decisions *jointly determined*
 - Allocation of VMT between vehicles
 - Substitution as relative operating costs change

Model Objectives and Innovations

- Vehicle Fixed Effects
 - Unobserved vehicle attributes affect purchase decision
 - Berry, Levinsohn, and Pakes (1995): no fixed effects biases price coefficient

Model Objectives and Innovations

- Vehicle Fixed Effects
 - Unobserved vehicle attributes affect purchase decision
 - Berry, Levinsohn, and Pakes (1995): no fixed effects biases price coefficient
- *Detailed* choice set
 - To capture subtle changes in vehicle purchase decision

- *High dimensionality* of choice set
- 2418 types of vehicles (model-year) in dataset
 - If households can choose 2: 2,922,153 possible choices
 - If households can choose 3: 2,353,307,216 possible choices
- Infeasible size of choice set for logit, probit models

- Revealed preference approach:
 - Observed household vehicle holdings is equilibrium, provides maximum utility
 - Any deviation from equilibrium results in lower utility
 - Thus, can compare the utility levels:

Utility(observed) > Utility(deviation)

Allows for unconstrained choice set and fixed effects

Literature Review

- Separate estimation for extensive/intensive margins
 - West (2007), Klier and Linn (2008)
- Joint margin estimation
 - West (2004), Goldberg (1998), Berkowitz et al. (1990)
- One step approach
 - Feng, Fullerton, and Gan (2005), Bento et al. (2008)
- Fleet model
 - Green and Hu (1985)

Model

Per-vehicle sub-utility:

$$u_{ij} = \alpha_{ij} VMT_{ij}^{\rho} + \gamma_i X_j + \xi_j + \varepsilon_{ij}$$

- *i*: household
- *j:* vehicle
 - *VMT_{ij}* = Vehicle Miles Travelled per year
- X_i : observable attributes of vehicle j
- ξ_{j} : unobservable attributes of vehicle j $\varepsilon_{ij} \sim N(0, \sigma^{2})$

Model

Marginal utility of driving:

$$\alpha_{ij} = \left(\overline{Z_i^{\phi}} A \overline{X_j^{\phi}}\right)^{1/\phi} = \left(a_1 Z_{i1}^{\phi} X_{j1}^{\phi} + a_2 Z_{i2}^{\phi} X_{j2}^{\phi} + \dots a_t Z_{it}^{\phi} X_{jt}^{\phi}\right)^{1/\phi}$$

 Z_i : Household *i*'s attributes

Fixed effects:

$$\gamma_i = g_0 + g_1 Z_i$$
$$\theta_j = g_0 X_j + \xi_j$$

Model

Marginal utility of driving:

$$\alpha_{ij} = \left(\overline{Z_i^{\phi}} A \overline{X_j^{\phi}}\right)^{1/\phi} = \left(a_1 Z_{i1}^{\phi} X_{j1}^{\phi} + a_2 Z_{i2}^{\phi} X_{j2}^{\phi} + \dots a_t Z_{it}^{\phi} X_{jt}^{\phi}\right)^{1/\phi}$$

 Z_i : Household *i*'s attributes

Fixed effects:

$$\gamma_i = g_0 + g_1 Z_i$$
$$\theta_j = g_0 X_j + \xi_j$$

Thus:

$$u_{ij} = \left(\overline{Z_i^{\phi}} A \overline{X_j^{\phi}}\right)^{1/\phi} VMT_{ij}^{\rho} + g_1 Z_i X_j + \theta_j + \varepsilon_{ij}$$

Model: Utility Maximization

max

$$VMT,c$$
 $U_i = \sum_j u_{ij} + c_{ij}^{\rho}$
 $s.t.$
 $y_i = \sum_j P_j + \sum_j P_{ij}^d VMT_{ij} + P^c c_i$

- *y_i* : household income
- P_j: vehicle j's used price (opportunity cost of not selling)
- *P*^{*d*}_{*ij*}: operating cost (\$/mile)
- *P^c*: price of consumption = 1

Interdependence of vehicles in fleet:

$$VMT_{ij} * = \left(\frac{P_{ij}^{d}}{\alpha_{ij}}\right)^{\frac{1}{\rho-1}} \frac{\left(y_{i} - \sum_{j} P_{j}\right)}{\left(1 + \sum_{j} \left\{\left(P_{ij}^{d}\right)\left(\frac{\rho}{\rho-1}\right)\left(\frac{1}{\alpha_{ij}}\right)^{\frac{1}{\rho-1}}\right\}\right)}$$

 \rightarrow Indirect Utility

$$V_i^* = U_i \left(VMT_{ij}^*, c_i^* \right)$$

First Stage Estimation: Swapping

• Assumption 1: Household in equilibrium with vehicle purchase and VMT decision

$$V_{iF_i^*} \ge V_{iF_i} \qquad \forall F_i \neq F_i^*$$

 F_i^* : Fleet chosen by household *i*

First Stage Estimation: Swapping

• Assumption 1: Household in equilibrium with vehicle purchase and VMT decision

$$V_{iF_i^*} \ge V_{iF_i} \qquad \forall F_i \neq F_i^*$$

 F_i^* : Fleet chosen by household *i*

• Two households, 1 and 2, have vehicles A, B respectively:

$$\widetilde{V}_{1A} + \theta_A \ge \widetilde{V}_{1B} + \theta_B$$
$$\widetilde{V}_{2B} + \theta_B \ge \widetilde{V}_{2A} + \theta_A$$

First Stage Estimation: Swapping

• Assumption 1: Household in equilibrium with vehicle purchase and VMT decision

$$V_{iF_i^*} \ge V_{iF_i} \qquad \forall F_i \neq F_i^*$$

 F_i^* : Fleet chosen by household *i*

• Two households, 1 and 2, have vehicles *A*, *B* respectively:

$$\widetilde{V}_{1A} + \theta_A \ge \widetilde{V}_{1B} + \theta_B$$
$$\widetilde{V}_{2B} + \theta_B \ge \widetilde{V}_{2A} + \theta_A$$

$$\widetilde{V}_{1A} - \widetilde{V}_{1B} + \widetilde{V}_{2B} - \widetilde{V}_{2A} \ge 0$$

First Stage Estimation

$$\Pr\left(\widetilde{V}_{1A} - \widetilde{V}_{1B} + \widetilde{V}_{2B} - \widetilde{V}_{2A} \ge 0\right) = \Pr\left(\widetilde{\varepsilon}_{12,AB} \le \overline{V}_{1A} - \overline{V}_{1B} + \overline{V}_{2B} - \overline{V}_{2A}\right)$$
$$= \Phi\left(\frac{\overline{V}_{1A} - \overline{V}_{1B} + \overline{V}_{2B} - \overline{V}_{2A}}{\sigma_{\widetilde{\varepsilon}}}\right)$$

Maximum Likelihood:

$$LL(\beta) = \sum_{swap_{\{i_1,i_2\}(j_1,j_2)}} \log \Phi\left(\frac{\overline{V_{i_1j_1}} - \overline{V_{i_1j_2}} + \overline{V_{i_2j_2}} - \overline{V_{i_2j_1}}}{\sigma_{\widetilde{\varepsilon}}}\right)$$

Normalization:

$$\beta_c = 1$$

- Guess at parameter vector $\beta = (\alpha, g_1)$

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:

Step 1: Randomly choose a vehicle from another household

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:
 - Step 1: Randomly choose a vehicle from another household Step 2: Swap chosen vehicles between households

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:
 - Step 1: Randomly choose a vehicle from another household Step 2: Swap chosen vehicles between households Step 3: Calculate optimal VMT for observed fleet and proposed deviation (given current β)

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:

Step 1: Randomly choose a vehicle from another household Step 2: Swap chosen vehicles between households Step 3: Calculate optimal VMT for observed fleet and proposed deviation (given current β) Step 4: Calculate indirect utility under each scenario

Step 4: Calculate indirect utility under each scenario (observed and proposed)

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:

Step 1: Randomly choose a vehicle from another household Step 2: Swap chosen vehicles between households Step 3: Calculate optimal VMT for observed fleet and proposed deviation (given current β) Step 4: Calculate indirect utility under each scenario (observed and proposed)

Step 5: Difference indirect utilities

- Guess at parameter vector $\beta = (\alpha, g_1)$
- -For each vehicle in dataset:
 - Step 1: Randomly choose a vehicle from another household
 - Step 2: Swap chosen vehicles between households
 - Step 3: Calculate optimal VMT for observed fleet and proposed deviation (given current β)
 - Step 4: Calculate indirect utility under each scenario (observed and proposed)

Step 5: Difference indirect utilities

- -Calculate objective function (summed log of differences)
- -Find β' that increases objective function -Repeat until convergence

Second Stage Estimation

- Assumption 2: Net sub-utility of j > 0
- Assumption 3: *j* + 1 decreases total utility

Second Stage Estimation

- Assumption 2: Net sub-utility of j > 0
- Assumption 3: *j* + 1 decreases total utility
- Thus:

$$V_{1A} \ge V_1^0$$
$$V_{2B} \ge V_{2B,A}$$

Second Stage Estimation

- Assumption 2: Net sub-utility of j > 0
- Assumption 3: *j* + 1 decreases total utility
- Thus:

$$V_{1A} \ge V_1^0$$
$$V_{2B} \ge V_{2B,A}$$

• Rewriting:

$$\overline{V}_{1A} + \theta_A + \varepsilon_{1A} \ge 0$$

$$\overline{V}_{2B} + \theta_B + \varepsilon_{2B} \ge \overline{V}_{2B,A} + \theta_A + \theta_B + \varepsilon_{2B} + \varepsilon_{2A}$$

• For Household 1:

$$P\left(\varepsilon_{1A} \leq \overline{V}_{1A} + \theta_{A}\right) = \Phi\left(\frac{\overline{V}_{1A} + \theta_{A}}{\sigma_{\varepsilon_{A}}}\right)$$

• For Household 2:

$$P\left(\varepsilon_{2A} \leq \overline{V}_{2B} - \overline{V}_{2A} - \theta_{A}\right) = \Phi\left(\frac{\Delta \overline{V}_{2} - \theta_{A}}{\sigma_{\varepsilon_{A}}}\right)$$

• Maximum Likelihood:

$$LL(\theta_{j}) = \sum_{i} y_{ij} \ln \Phi\left(\frac{\Delta \overline{V}_{i} + \theta_{j}}{\sigma_{\varepsilon_{j}}}\right) + (1 - y_{ij}) \ln\left(1 - \Phi\left(\frac{\Delta \overline{V}_{i} - \theta_{j}}{\sigma_{\varepsilon_{j}}}\right)\right)$$

• Maximum Likelihood:

$$LL(\theta_{j}) = \sum_{i} y_{ij} \ln \Phi\left(\frac{\Delta \overline{V}_{i} + \theta_{j}}{\sigma_{\varepsilon_{j}}}\right) + (1 - y_{ij}) \ln\left(1 - \Phi\left(\frac{\Delta \overline{V}_{i} - \theta_{j}}{\sigma_{\varepsilon_{j}}}\right)\right)$$

• OLS:

$$\theta_j = g_0 X_j + \xi_j$$

Second Stage Estimation: Overview

- For each type of vehicle:
 - 1) Find all households who own it: positive sub-utility from owning it.
 - 2) Find all households who don't own it: adding this vehicle decreases utility.
 - 3) Form maximum likelihood over (1) and (2)
 - 4) Estimate fixed effect for this vehicle
- Run OLS of all FE on vehicle characteristics

- Household level data: NHTS 2001
 - National Sample:
 - 26,038 households
 - 53,275 observations
 - Final Sample:
 - 11,354 households
 - 18,166 observations

	National Sample	Final Sample
% White	87%	85%
% Urban	70%	79%
Average Family Income	\$55,832	\$56,338
Average Household Size	2.82	2.66
Average Workers to Vehicles	0.65	0.72
Average Fleet Size	2.69	2.04
Average MPG	25.72	25.87
Average Vehicle Age (years)	8.49	7.21
Average Yearly VMT	10,995	11,594

- Vehicle characteristic data: Polk, Ward's Automotive Yearbook
 - Provides detailed information on 18,273 vehicles 1971-2006
- Used vehicle prices: NADA
 - Provides used prices of all vehicles in 2001

Data: Gas

- American Chamber of Commerce Research Association (ACCRA) 2001 data
 - provides gas prices at the city level
 - yearly averages
 - aggregate to MSA

MSA	Gas Prices
Kansas City, KS	1.28
Houston, TX	1.34
Raleigh, NC	1.39
Chicago, IL	1.50
Philadelphia, PA	1.56
San Francisco, CA	1.92

	Interaction Term	Parameter Value (Std. Err.)
Marginal Utility of	HP * urban	-2.5815*** (0.0203)
Driving Parameters	Vehicle Size * household size	0.3689*** (0.0109)
	MPG * income	-0.0674*** (0.0425)
	ϕ : CES parameter (between Z_i and X_i)	1.0032*** (0.0000)
Indirect Utility of	HP*income	0.6565*** (0.0619)
Driving Parameters	MPG * urban	1.3418*** (0.1184)
	MPG * income	-0.2808*** (0.1322)
	Wheelbase * household size	2.7309*** (0.1785)
	ho: CES parameter (between VMT and consumption)	0.4080*** (0.1968)
Variance of Error Term	$\sigma_{\widetilde{arepsilon}}$	2.8174*** (0.0254)
***: significant at 1% level		

- Medium-run elasticity: allow for intra-fleet substitution
 - Parameter values imply: -1.0342*** (0.2692)

- Demand for gasoline is elastic
- Household choices are better represented
 - Discrete-continuous household portfolio model
 - Estimation method does not artificially restrict choice set

Any Questions?

• OLS Regression:

$$\theta_j = g_0 X_j + \xi_j$$

	Parameter Value (Std. Err.)
Constant	18.166*** (3.5366)
Horsepower	-9.8413*** (0.4301)
MPG	3.4244***(0.2173)
Wheelbase	-0.9120 (2.7298)

- Assumptions:
 - Additive separability in θ_i and ε_{ij}
 - Non-linear in VMT_{ii}^*
 - Non-separable in VMT_{ij}^*
 - Composite error term $\widetilde{\varepsilon}_{ij} = \sum_{j} \varepsilon_{ij} \sim N(0, \sigma_{\widetilde{\varepsilon}}^2)$