

How do Household Drivers Respond to a Tax on Vehicle Miles Traveled?

August 11th, 2014 Camp Resources XXI

Garth Heutel

Georgia State University and NBER

Qing Shi

The University of North Carolina at Greensboro

What Do We Do?

- How do consumers respond to a tax on Vehicle Miles Travel (VMT)?
- Empirical challenge: there are (almost) no taxes on VMT
- Two solutions:
 - 1. Toll roads as a proxy for VMT pricing
 - 2. Oregon experimented with a pilot VMT tax program

Motivation

- Externalities from Automobiles/Driving (Parry et al. 2007, JEL)
 - Pollution
 - Global warming
 - Oil dependency/national security
 - Traffic congestion
 - Traffic accidents
- Optimal policy includes a tax on gasoline and a tax on VMT
- We know a lot about consumers' response to gasoline taxes
 - Intensive margin miles traveled
 - Extensive margin fuel economy of vehicle
- Less is known about consumers' response to VMT taxes (no empirical data under VMT tax)

- Gasoline-dependent

VMT-dependent

What Do We Find?

- Drivers in states with a higher proportion of toll roads drive significantly less and drive significantly more fuel-efficient cars
- Correlation between MPG and VMT is different for Oregon drivers subject to a VMT tax than for those subject to a gas tax
 - 1. In the expected direction
 - 2. Small sample; noisy data

What does the literature tell us?

- Direct tax on vehicle emission is not cost-effective (Fullerton and West 2010)
- Taxing fuels is compromised by agent's driving less with gas guzzlers (Greene 2011)
- Fuel Economy standard (CAFE) is compromised by agent's driving more with fuel efficient cars (Greene 2008)
- Tax on VMT, has been on policy makers' table and drawn congressional attention (McMullen, Zhang et al. 2010, Greene 2011), can correct rebound effects
- VMT tax alone will not provide efficient instrument to correct most of the automobile externalities (Caroll-Larson and Caplan, 2009)
- VMT tax will be slightly more regressive than the fuel tax, rural households benefit relative to urban households under a VMT tax (McMullen et al. 2010)
- A VMT tax schedule Indexed Roadway User Toll on Energy (IRoUTE) (Greene
 2011)

- VMT tax on top of Fuel Tax
 - Discourage (excessive) driving
 - Encourage choice of fuel efficient cars

Why is it important?

- Theoretical model of optimal policy under gas externalities and VMT externalities
- First-best: tax each at marginal damage, no need to know demand elasticity
- Second-best: if only one instrument (e.g. a gas tax) to target both externalities, need to know the elasticity
 - Gasoline tax only

•
$$\tau_g = -\frac{u_A A'}{\lambda} - \frac{u_T T'}{\lambda} \cdot mpg \cdot \left(1 + \frac{\eta_{mpgg}}{\eta_{gg}}\right)$$

• Where $\eta_{mpgg} \equiv \frac{dmpg}{d\tau_g} \frac{\tau_g}{mpg}$ and $\eta_{gg} \equiv \frac{dg}{d\tau_g} \frac{\tau_g}{g}$

- u_A: marginal utility on gasoline related externality
- u_T: marginal utility on VMT related externality
- VMT tax only

•
$$\tau_m = -\frac{u_A A'}{\lambda} \left(\frac{mpg}{1 + \frac{m \cdot dmpg}{mpg \cdot dm}} \right) - \frac{u_T T'}{\lambda}$$

Data

- State-year-level toll road data from US DOT Highway Statistics
 - Year 2009
 - % of total road-miles that are tolled proxy for VMT tax (cost)
- State level fuel price data from US DOE Energy Information Administration
- Combine with vehicle-level micro data from 2009 National Household Travel Survey (NHTS)
 - 134571 vehicles, 112130 non-missing data records
 - Miles traveled
 - Household demographic characteristics age, gender, race, price of gasoline

Empirical Model – Toll Road Data

On vehicle-level data

 $vmt_{i} = a_{0} + \alpha_{1} \cdot toll_{i} + a_{2} \cdot p_{i} + \boldsymbol{\alpha} \cdot X_{i} + \epsilon_{i}$ $mpg_{i} = \beta_{0} + \beta_{1} \cdot toll_{i} + \beta_{2} \cdot p_{i} + \boldsymbol{\beta} \cdot X_{i} + \mu_{i}$

Where

 $toll_i$: the ratio of toll road miles to total road miles in vehicle *i*'s state, p_i : the tax-inclusive price of fuel faced by vehicle *i* X_i is a vector of state, household, driver characteristics

Summary Statistics

Level	Variable	Ν	mean	Std. dev.	minimum	median	Maximum
state	Toll Road Miles%	50	0.1367	0.2303	0	0.0027	0.8626
	State Has Toll Road	50	0.54	0.5035	0	1	1
	Total Road Miles (k miles)	50	80.98	53.927	4.37	80.658	310.85
	Price of Gasoline, regular grade	50	2.271	0.1388	2.076	2.2428	2.843
vehicle	Est. Annual VMT	132396	11183.41	7655.972	0	9842.11	50000
	Gasoline eq. MPG	132204	21.305	6.311	5.9	20.6	117
	Household income level	124158	11.329	5.4537	1	12	18
	Household size	134571	2.376	1.2274	1	2	13
	Number of Vehicles in Household	134571	2.136	1.0758	0	2	27
	Age of driver	121097	57.586	15.7855	15	58	92
	Household in Urban	134570	0.705	0.4561	0	1	1
	Race of Driver	134571	0.871	0.335	0	1	1
	Female Driver	121097	0.597	0.4906	0	1	1

Education Level

Highest Grade completed	Frequency	8
Less than high school	7137	5.30
High school graduate	31194	23.18
Some college	35020	26.02
College graduate	26548	19.73
Graduate or Professional degree	20135	14.96
Missing	14537	10.80

Model Estimates

 $vmt_i = a_0 + \alpha_1 \cdot toll_i + a_2 \cdot p_i + \boldsymbol{\alpha} \cdot X_i + \epsilon_i$

16200.93 (1311.776)**	22059.47 (456.369)**	21989.86
		(456.742)**
-1035.27 (402.873)*	-518.92 (149.584)*	
		-118.73 (34.225)*
-2363.42 (583.915)**	-3229.35 (198.197)**	-3229.35 (198.197)**
1.405 (0.6416)*	1.376 (0.3811)**	1.376 (0.3811)**
	Yes ^[b]	Yes ^[b]
	-2363.42 (583.915)** 1.405	-2363.42 (583.915)** (198.197)** 1.405 1.376 (0.6416)* (0.3811)**

Note: Clustered robust standard error in parentheses

Statistically significant at: * 0.01 level, ** < 0.001 level

[a]: Predictors are: Household income levels, Household size, Number of Vehicles in Household,

Household in Urban, Race of Driver, Age of driver, Female Driver, and Education Levels. [b]: All are statistically Significant at 0.001 level.

Model Estimates

$mpg_i = \beta_0 + \beta_1 \cdot toll_i + \beta_2 \cdot p_i + \boldsymbol{\beta} \cdot X_i + \mu_i$

Parameter	A Derived Gasoline-equivalent MPG				
Intercept	21.07 (0.059)**	12.28 (0.992)**	17.03 (0.966)**	17.13 (0.954)**	
Toll Road Miles%	0.67 (1.005)	0.71 (0.400)	0.75 (0.325)*		
Std. Toll Road Miles%				0.17 (0.074)*	
Price of Gasoline, regular grade		4.04 (0.438)**	3.28 (0.445)**	3.28 (0.445)**	
Total Road Miles (k miles)		-0.003 (0.0004)**	-0.003 (0.0005)**	-0.003 (0.0005)**	
Household Characteristics and			YES ^[b]	YES ^[b]	
Driver Demographics ^[a]					

Note: Clustered robust standard error in parentheses

Statistically significant at: * 0.01 level, ** < 0.001 level

[a]: Predictors are: Household income levels, Household size, Number of Vehicles in Household,

Household in Urban, Race of Driver, Age of driver, Female Driver, and Education Levels. [b]: All are statistically Significant at 0.001 level.

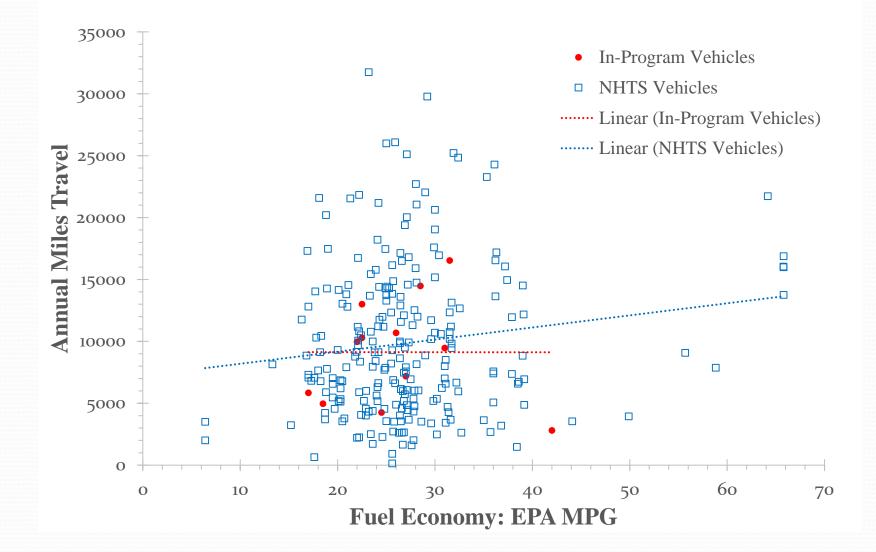
Oregon Road Usage Charge Program

- Oregon pilot VMT tax program
 - To provide supported evidence for replacing fuel tax by VMT tax in raising highway maintenance fund
 - 2. Vehicle owners are charged by miles driven in lieu of fuel tax
 - 3. Two pilot studies
 - 1) Road User Fee Pilot Project: 2006 2007;
 - 2) Road Usage Charge Pilot Project: 2012 2013

Oregon VMT tax pilot data

- Data of pilot 2012-2013 from the office of Road User Charge Program, Oregon DOT
 - 1. Vehicle type, model, year
 - 2. Odometer (miles) readings before and after program
- Empirical strategy: Regress VMT on vehicle fuel economy (MPG), separately for those (small number) in the VMT tax pilot program and for all other Oregon drivers from the NHTS
- Hypothesis: for those facing VMT tax instead of gas tax, the correlation between VMT and MPG is weaker

Summary Statistics Oregon Road Charge Program Data


In-program Vehicles vs NHTS Vehicles

	In-program Vehicles			<u></u> 20	09 NHTS V	ehicles		
	n/N ^[b]	Mean	Std. dev.	N	mean	std dev		
Annual VMT	12/45	9013.3[a]	4438.30	238	9881.1	6085.49		
EPA MPG		26.08	6.731		27.29	8.675		

Note [a]: Normalized to a year

[b]: N – total number of participants, n – number of participants with available data

Correlation between VMT and MPG, VMT-tax pilot group vs NHTS data

Correlation between VMT and MPG, VMT-tax pilot group vs NHTS data

coefficients	In program	Vehicles	2009 NHTS Vehicles		
(p-values)	Annual VMT	EPA MPG	Annual VMT	EPA MPG	
Annual VMT	1.0	-0.00045 (0.9989)	1.0	0.13950 (0.0315)	
EPA MPG		1.0		1.0	

Those drivers facing VMT tax instead of gas tax, the correlation between VMT and MPG is weaker

Conclusion

- Toll road data give some (weak) evidence that consumers respond in the expected way to VMT pricing
- Oregon pilot data analysis yields "expected" result
 - Suffered small, biased sample
- Extensions
 - Toll data at MSA level, more years
 - Toll rates
 - Leased cars as proxy for VMT pricing
 - VMT pricing in Singapore, Hong Kong

Acknowledgement

- Garth Heutel (UNCG, GSU)
- Stephan Holland (UNCG)
- Kenneth Snowden (UNCG)
- Stephan Sexton (NCSU)
- Lynn D Averbeck (Oregon DOT)

- Questions?
- Comments?

Thank You!

Agent's utility:

U(m,g)

Where:

- *g* consumption of gasoline/fuel,
- m is the number of vehicle miles traveled (VMT),

 $U_m > 0 \ U_{mm} < 0, \ U_g > 0, \ U_{gg} < 0, \ U_{mg} > 0$

Agent's utility:

U = u(c, m, A, T)

Where:

c consumption of a numeraire good,

m is the number of vehicle miles traveled (VMT),

A is a public good (externality) related to gasoline consumption

(e.g. air quality or climate change),

T is a public good (externality) related to VMT

(e.g. traffic congestion or the accident rate)

The agent's budget constraint is

 $y = c + g \cdot \left(p_g + \tau_g \right) + mpg \cdot g \cdot \tau_m + f(mpg) - r$

Where:

 p_q : gasoline price (an exogenous)

 t_g : gasoline tax

 τ_m : VMT tax

mpg: fuel economy in miles per gallon

g: gasoline consumption

m: miles drive, $m = g \cdot mpg$

r: transfer to the consumer from the government

 $\tau_m \cdot m + \tau_g \cdot g = r$

Agent's Choice:

Value function

 $V(\tau_g, \tau_m, r, A, T)$

 $= \max_{m,g,mpg,c} u(m,c,A,T) + \mu[m-mpg \cdot g] + \lambda[y-c-g \cdot (p_g + \tau_g) - m \cdot \tau_m + r - f(mpg)]$

FOCs

$$u_m = u_c \cdot \frac{p_g + \tau_g}{mpg} + u_c \cdot \tau_m$$

$$f'(mpg) = \left(p_g + \tau_g\right) \cdot \frac{g}{mpg}$$

The second-best gasoline tax sets $\frac{dV}{d\tau_a}$ equal to zero. It is

$$\tau_{g} = -\frac{u_{A}A'}{\lambda} - \frac{u_{T}T'}{\lambda} \cdot mpg \cdot \left(1 + \frac{\eta_{mpgg}}{\eta_{gg}}\right)$$

where $\eta_{mpgg} \equiv \frac{dmpg}{d\tau_g} \frac{\tau_g}{mpg}$ is the elasticity of mpg demand with respect to the gasoline tax and $\eta_{gg} \equiv \frac{dg}{d\tau_g} \frac{\tau_g}{g}$ is the elasticity of gasoline demand with respect to the gasoline tax.

Social Planer problem

$$\frac{\partial V}{\partial \tau_g} = -\lambda \cdot g$$
$$\frac{\partial V}{\partial \tau_m} = -\lambda \cdot m$$
$$\frac{\partial V}{\partial r} = \lambda$$
$$\frac{\partial V}{\partial A} = u_A$$
$$\frac{\partial V}{\partial T} = u_T$$
$$\tau_m \cdot g \cdot dmpg +$$

 $\tau_g \cdot dg + g \cdot d\tau_g + \tau_m \cdot mpg \cdot dg + \tau_m \cdot g \cdot dmpg + g \cdot mpg \cdot d\tau_m = dr.$

 $dV = \lambda \tau_g dg + \lambda \tau_m mpg \cdot dg + \lambda \tau_m g \cdot dmpg + u_A A' \cdot dg + u_T T' \cdot (g \cdot dmpg + mpg \cdot dg)$

$$\tau_g = -\frac{u_A A'}{\lambda}$$
$$\tau_m = -\frac{u_T T'}{\lambda}$$

Full Model Estimates

Parameter	Estimated Annual Miles						
Intercept	11283.10 (26.6495)****	16125.57 (431.5565)****	22029.55 (484.2398)****	21980.77 (482.3286)****			
Toll Road Miles%	-637.954 (104.6890)****	-733.101 (105.6111)****	-363.594 (111.0038)**				
Std. Toll Road Miles%				-83.192 (25.3981)**			
Price of Gasoline, regular grade		-2280.38 (190.5238)****	-3189.04 (200.9196)****	-3189.04 (200.9196)****			
Total Road Miles (k miles)		1.994 (0.2618)****	1.673 (0.2740)*****	1.673 (0.2740)****			
Household income level			182.602 (5.0872)****	182.602 (5.0872)****			
Household size			536.517 (22.3347)****	536.517 (22.3347)****			
Number of Vehicles in Household			-72.403 (23.7840)**	-72.403 (23.7840)**			
Household in Urban			-1442.18 (49.7188)****	-1442.18 (49.7188)****			
Race of Driver			253.561 (68.9695)***	253.561 (68.9695)***			
Age of driver			-93.305 (1.7181)****	-93.305 (1.7181)****			
Female Driver			-767.702 (44.9659)++++	-767.702 (44.9659)****			
Education Level ^a							
Less than high school			-665.642 (114.0987)****	-665.642 (114.0987)****			
High school Graduate			-693.476 (74.2620)****	-693.476 (74.2620)****			
Some college			-167.143 (69.6961)±	-167.143 (69.6961)±			
College degree			-296.355 (71.0943)****	-296.355 (71.0943)++++			

a: compared to Graduate and professional degree Significant level: * at 0.05; **: at 0.01; ***: at 0.001; *

****: < 0.0001

Full Model Estimates

Parameter		EIA Derived Gas	oline-equivalent MPG	
Intercept	21.177 (0.0220)****	12.204 (0.3551)****	16.986 (0.4114)****	17.115 (0.4098)****
Toll Road Miles%	0.821 (0.0863)	1.020 (0.0869)****	0.964 (0.0943)****	
Std. Toll Road Miles%				0.221 (0.0216)****
Price of Gasoline, regular grade		4.123 (0.1568)****	3.332 (0.1707)****	3.332 (0.1707)****
Total Road Miles (k miles)		-0.002 (0.0002)****	-0.002 (0.0002)****	-0.002 (0.0002)****
Household income level			0.046 (0.0043)****	0.046 (0.0043)****
Household size			-0.172 (0.0190)****	-0.172 (0.0190)****
Number of Vehicles in Household			-0.132 (0.0202)****	-0.132 (0.0202)****
Household in Urban			0.178 (0.0422)****	0.178 (0.0422)****
Race of Driver			-0.067 (0.0586)	-0.067 (0.0586)
Age of driver			-0.037 (0.0015)****	-0.037 (0.0015)****
Female Driver			1.081 (0.0382)****	1.081 (0.0382)****
Education Level *			-2.306 (0.0970)****	-2.306 (0.0970)****
Less than high school			-2.075 (0.0631)****	-2.075 (0.0631)****
High school Graduate			-1.551 (0.0592)****	-1.551 (0.0592)****
Some college			-0.990 (0.0604)	-0.990 (0.0604)****
College degree				

a: compared to Graduate and professional degree Significant level: * at 0.05; **: at 0.01; ***: at 0.001; ****: <

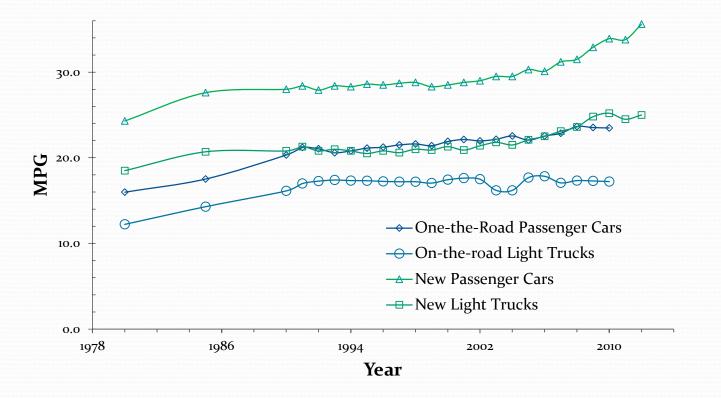
****: < 0.0001

Full Model Estimates (Clustered Robust SE)

Parameter	Best Estimated Annual Miles					
Intercept	11034.58 (177.569)**	16200.93 (1311.776)**	22059.47 (456.369)**	21989.86 (436.742)**		
Toll Road Milest	-996.16 (523.176)	-1035.27 (402.873)*	-518.92 (149.584)*			
Std. Toll Road Milest				-118.73 (34.225)*		
Price of Gasoline, regular grade		311.38 (171.779)	158.44 (152.678)	158.44 (152.678)		
Total Road Miles (k miles)			-3229.35 (198.197)**			
Household income level		1.405 (0.6416)*	1.376 (0.3811)**	1.376 (0.3811)**		
Household size			182.13 (7.352)**	182.13 (7.352)**		
Number of Vehicles in Household			536.68 (23.217)**	536.68 (23.217)**		
Household in Urban			-73.02 (26.466)*	-73.02 (26.466)*		
Race of Driver			-1440.44 (85.182)**	-1440.44 (85.182)**		
Age of driver			263.35 (72.945)**	263.35 (72.945)**		
Female Driver			-93.32 (1.931)**	-93.32 (1.931)**		
Education Level 2			-769.01 (61.570)**	-769.01 (61.570)**		
Less than high school			-667.38 (62.972)**	-667.38 (62.972)**		
High school Graduate			-690.93 (63.829)**	-690.93 (63.829)**		
Some college			-163.96 (58.520)*	-163.96 (58.520)*		
College degree			-293.34 (89.107)*	-293.34 (89.107)*		

a: compared to Graduate and professional degree Significant level: * at 0.01 **: at <0.001.

Full Model Estimates (Clustered Robust SE)

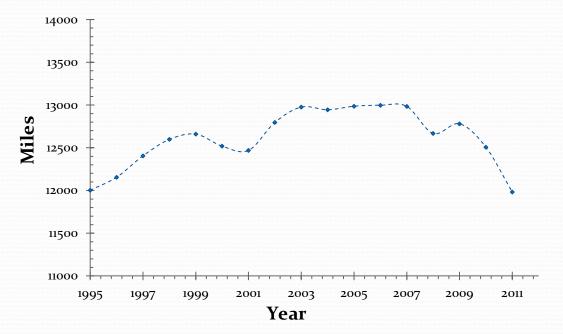

Parameter	EIA Derived Gazoline-equivalent MPG					
Intercept	21.07 (0.059)**	12.28 (0.992)**	17.03 (0.966)**	17.13 (0.954)**		
Toll Road Milest	0.67 (1.005)	0.71 (0.400)	0.75 (0.325)*			
Std. Toll Road Miles*				0.17 (0.074)*		
Price of Gasoline, regular grade	0.17 (0.368)	0.32 (0.151)*	0.22 (0.155)	0.22 (0.155)		
Total Road Miles (k miles)		4.04 (0.438)**	3.28 (0.445)**	3.28 (0.445)**		
Household income level		-0.003 (0.0004)**	-0.003 (0.0003)**	-0.003 (0.0003)**		
Household size			0.03 (0.006)**	0.03 (0.006)**		
Number of Vehicles in Household			-0.17 (0.029)**	-0.17 (0.029)**		
Household in Urban			-0.13 (0.020)**	-0.13 (0.020)**		
Race of Driver			0.18 (0.070)+	0.18 (0.070)*		
Age of driver			-0.05 (0.082)	-0.05 (0.082)		
Female Driver	I		-0.04 (0.002)**	-0.04 (0.002)**		
Education Level			1.08 (0.083)**	1.08 (0.083)**		
Less than high school			-2.31 (0.159)**	-2.31 (0.159)**		
High school Graduate			-2.07 (0.143)**	-2.07 (0.143)**		
Some college			-1.55 (0.146)**	-1.55 (0.146)**		
College degree			-0.99 (0.120)**	-0.99 (0.120)**		

a: compared to Graduate and professional degree Significant level: * at 0.05; **: at 0.01; ***: at 0.001;

****: < 0.0001

Improvements in Vehicle Fuel Efficiency

Average US Light Duty Vehicle Fuel Efficiency



Data source: US DOT NTS

Downfalls of CAFE standard

Due to improved vehicle fuel economy

- 1. Rebound effects: agents save fuel cost, however drive more, damage road more
- 2. Less fuel tax revenue to fund road development and maintenance

US Averge Vehicle Travel Miles