
Automatic Bill Payment and Price Salience: Evidence from Residential Electricity Consumption

Steven E. Sexton

NC State

August 6, 2012

000	Inbox
Hide Search: All Inbox (15040) ▼ Drafts (98) ▼ Sent (15) ▼ Notes ▼ Flagged	
MAILBOXES	Sort by Date ▼
🔻 📮 Inbox 🛛 📀	customerserviceoniin 🖬 4/30/12
Gmail (14951)	PG&E: You Have a New Inbox - Gmail Dear Valued Customer, A new energy
berkeley.edu 69 🛇	
iCloud 📀	customerserviceoniin 🖬 3/31/12
Drafts (98)	PG&E: You Have a New Inbox - Gmail
► Sent 15	Dear Valued Customer, A new energy statement for your PG&E account ****
	customerserviceonline 💂 3/5/12
▼	PG&E: You Have a New Inbox - Gmail
🗑 Gmail 🛛 🔊	Dear Valued Customer, A new energy statement for your PG&E account ****
🗑 berkeley.edu 📀	
REMINDERS	customerserviceonline 2/2/12 PG&E: You Have a New Inbox - Gmail
🏴 Flagged 🛛 🕥	Dear Valued Customer, A new energy
Notor	
MAIL ACTIVITY	customerserviceonIi 🖻 12/31/11
	PG&E: You Have a New Inbox - Gmail
	Dear Valued Customer, A new energy statement for your PG&E account ****
	customerserviceoniin 🗵 12/3/11
	PG&E: You Have a New Inbox - Gmail
	Dear Valued Customer, A new energy statement for your PG&E account ****
	customerserviceoniin 🖬 11/1/11
+ 🖭 🕸 -	PG&F: You Have a New Inbox - Gmail

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ▶ 53% phone
 - ► 44% cable
 - ▶ 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ▶ 53% phone
 - ► 44% cable
 - ▶ 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ▶ 53% phone
 - ► 44% cable
 - ▶ 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ▶ 53% phone
 - ► 44% cable
 - ► 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ► 53% phone
 - ► 44% cable
 - 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ► 53% phone
 - 44% cable
 - ► 37% utility

- ABP employed by electric, gas, water utilities; cable and telecommunications; cellular; insurance; home maintenance; etc.
- 2/3 of U.S. customers with recurring bills use ABP
- ▶ 3/4 of UK consumers paid at least one account automatically
- Among credit/debit cardholders, ABP used for:
 - ► 53% phone
 - 44% cable
 - 37% utility

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ▶ Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ▶ Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - ▶ to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ► Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - ▶ to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ► Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - ▶ to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ▶ Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - ▶ to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ▶ Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - ▶ to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

- Std. theory: decisions of rational agents are invariant to salience of product attributes
- ► Cognitive constraints, limited attention ⇒ systematic biases (Simon 1955, Tversky and Khaneman 1974)
 - Agents respond *less* to ad valorem taxes than to excise taxes (Chetty et al. 2009);
 - to Ebay shipping prices than to auction prices (Brown et al. 2010);
 - ▶ to rebates than to car purchase price (Busse et al. 2006);
 - to income tax incentives than to sales tax incentives (Gallagher and Muehlegger 2007); and
 - to late (in the week) corporate disclosures than to early (in the week) announcements (DellaVigna and Pollet 2009).

Theory Prices

Define the exogenous price of a good X:

$$P(x) = \begin{cases} (x-k)p_2 + kp_1 + a & \text{if } x > k \\ xp_1 + a & \text{if } 0 < x \le k \\ 0 & \text{if } x = 0 \end{cases}$$

for $p_2 = p_1 + n$

Theory Utility

Consumer utility:

$$U(L,M) = L + \theta V(M)$$

- *L* is a numeraire; $M = \alpha x$ for technology parameter, α .
- θ is a taste parameter
- V(·) is well-behaved

Theory Perceived Prices and Technology

Following DellaVigna (2009) . . . For inattention parameter $\beta \in [0, 1)$:

$$\tilde{a} = (1 - \beta)a$$

$$\widetilde{p}_j = (1 - \beta)p_j ext{ for } j \in \{1, 2\}$$

$$\tilde{\alpha} = \bar{\alpha} + (1 - \beta)\ddot{\alpha}$$

Define $\delta = 1 - \beta$

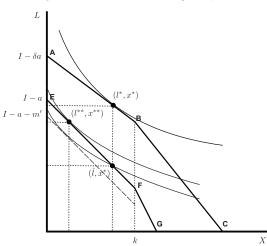
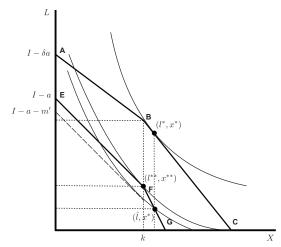
Theory Consumer's Objective:

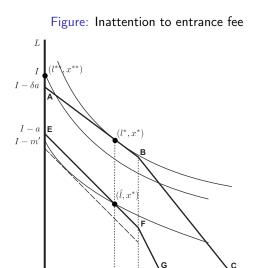
$$\max_{x} \quad U(L,M) = L + \theta V(M)$$
s.t.
$$I = \begin{cases} L + ((\bar{\alpha} + \delta \ddot{\alpha})x - k) \,\delta n + (\bar{\alpha} + \delta \ddot{\alpha})x \delta p_1 + \delta a & \text{if } x > k \\ L + (\bar{\alpha} + \delta \ddot{\alpha})x \delta p_1 + \delta a & \text{if } 0 < x \le k \\ L & \text{if } x = 0 \end{cases}$$

Theory Inattention to marginal price

Suppose $x^* \in (0, k)$ defined by:

$$V'(M) = \frac{(\bar{\alpha} + \delta \ddot{\alpha})\delta p_1}{\theta}$$


Figure: Inattention to marginal price

Theory Inattention to increasing block rates

Figure: Inattention to increasing block pricing

Theory Inattention to entrance fee

k

Proposition: "Overconsumption"

Inattention reduces perceived prices and can induce consumption levels in excess of those chosen by fully attentive agents – regardless of the level of consumption and the characteristics of the pricing regime.

⇒ Diminished price salience causes higher average consumption for electric and gas utilities, telecommunications, gym memberships, etc.

Proposition: "Overconsumption"

Inattention reduces perceived prices and can induce consumption levels in excess of those chosen by fully attentive agents – regardless of the level of consumption and the characteristics of the pricing regime.

 \Rightarrow Diminished price salience causes higher average consumption for electric and gas utilities, telecommunications, gym memberships, etc.

Inattention to changes in tastes, technology, prices

By the implicit function theorem:

$$\left.\frac{\partial \frac{dm}{dp}}{\partial \beta}\right|_{\ddot{\alpha}=0} = -\frac{\bar{\alpha}-2(1-\beta)\ddot{\alpha}}{V''(M)} > 0$$

 and

$$\frac{\partial \frac{dm}{d\alpha}}{\partial \beta} = \frac{2(1-\beta)p}{V''(M)} < 0$$

Proposition: "Taste Changes"

An inc. in preference for an insalient good induces too large an increase in demand and a decline in preference for an insalient good induces too small a decrease in demand.

Proposition: "Taste Changes"

An inc. in preference for an insalient good induces too large an increase in demand and a decline in preference for an insalient good induces too small a decrease in demand.

Proposition: "Price Changes"

Demand falls too little in response to price increases. The degree of "under-responsiveness" increases in inattention.

Proposition: "Taste Changes"

An inc. in preference for an insalient good induces too large an increase in demand and a decline in preference for an insalient good induces too small a decrease in demand.

Proposition: "Price Changes"

Demand falls too little in response to price increases. The degree of "under-responsiveness" increases in inattention.

Proposition: "Technology Changes"

Demand for an insalient good increases "too little" due to an increase in technical efficiency. The degree of "under-responsiveness" increases in inattention.

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - ▶ 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- ▶ 1 in 4 accounts enrolled in ABP in 2010

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - ▶ 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- ▶ 1 in 4 accounts enrolled in ABP in 2010

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - ▶ 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- ▶ 1 in 4 accounts enrolled in ABP in 2010

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - ▶ 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- ▶ 1 in 4 accounts enrolled in ABP in 2010

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- ▶ 1 in 4 accounts enrolled in ABP in 2010

Empirics Data

- Monthly observations on household (and commercial) electricity consumption from Santee Cooper
 - 163,000 residential customers along SC coast from Charleston to Myrtle Beach
 - 1994-2010
 - matched to zip5
- Obtained pursuant to PRA request; personal info is not released
- 1 in 4 accounts enrolled in ABP in 2010

Empirics Methods

Estimate:

$$y_{it} = \lambda_t + c_i + x_{it}\beta_1 + x_{it}^2\beta_2 + w_{it}^A\gamma_i^A + w_{it}^B\gamma_i^B + u_{it},$$

- y_{it} is log monthly electricity consumption (in kilowatt hours) of household i in period t
- ▶ λ_t is year-month time effect; c_i is time-invariant heterogeneity
- x_{it} and x²_{it} are account duration and square of account duration, respectively
- ▶ w^A_{it}, w^B_{it} are treatment indicators for autopay, budget bill, respectively
- *u_{it}* is an idiosyncratic error

Empirics

Heterogeneous treatment effects

For γ_i^j for $j = \{A, B\}$ and $\ddot{w}_{it} = w_{it} - \bar{w}_i$, a valid estimator of PATE is:

$$\hat{\gamma^j} = N^{-1} \sum_{i=1}^N \hat{\gamma}^j_i$$

if

$$E(\gamma_i^j | \ddot{w}_{it}) = E(\gamma_i^j) = \gamma^j \, \forall t$$

- If indiv. treatment effects are uncorrelated with deviations from average propensity to recieve treatment
 - Unintended nature of treatment effect likely alleviates selection bias
 - ▶ if w_{it} = 1 whenever w_{ir} = 1 for r < t, strict exogeneity is a reasonable assumption (Wooldridge and Imbens 2007)</p>

Empirics PATE vs. PATT

- Sequential exogeneity almost surely satsified (see Wooldridge and Imbens 2007)
- Strict exogeneity will still hold amid correlated deviations from mean characteristics if underlying characteristics determining treatment are unrelated to outcome of interest (Imbens 2004)
- Regardless, absent strict/sequential exogeneity, still identify PATT, which is of policy interest anyway

Empirics PATE vs. PATT

- Sequential exogeneity almost surely satsified (see Wooldridge and Imbens 2007)
- Strict exogeneity will still hold amid correlated deviations from mean characteristics if underlying characteristics determining treatment are unrelated to outcome of interest (Imbens 2004)
- Regardless, absent strict/sequential exogeneity, still identify PATT, which is of policy interest anyway

Empirics PATE vs. PATT

- Sequential exogeneity almost surely satsified (see Wooldridge and Imbens 2007)
- Strict exogeneity will still hold amid correlated deviations from mean characteristics if underlying characteristics determining treatment are unrelated to outcome of interest (Imbens 2004)
- Regardless, absent strict/sequential exogeneity, still identify PATT, which is of policy interest anyway

Residential Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Resid.		R1-4		R5-6, RG, RS		\mathbf{RE}	
	All	Recent	All	Recent	All	Recent	All	Recent
ABP	0.0204**	0.0447***	0.0234***	0.0584***	0.0278***	0.0509***	-0.00211	0.0405***
	(0.0104)	(0.00668)	(0.00664)	(0.0115)	(0.00690)	(0.00999)	(0.00594)	(0.00962)
BB	0.0838***	0.0913***	0.0523***	0.0548**	0.105***	0.0888***	0.0818***	0.0788***
	(0.00869)	(0.0102)	(0.0125)	(0.0239)	(0.0137)	(0.0157)	(0.0131)	(0.0239)
Observations	739,539	670,467	1,897,882	704,311	1,101,064	326,614	1,438,610	409,755
No. of accounts	14,146	18,240	40,154	22,882	18,637	9,173	33,182	15,703

Standard errors in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

Commercial Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Comm.		GN		GS		GL		GC	
	All	Recent	All	Recent	All	Recent	All	Recent	All	Recent
ABP	0.011	0.063**	0.015	0.103***	0.029**	0.027	0.018	0.020	0.067	0.221**
	(0.021)	(0.028)	(0.021)	(0.032)	(0.014)	(0.019)	(0.094)	(0.056)	(0.072)	(0.109)
Observations	630,553	153,490	544,261	135,856	590,772	143,476	6,943	1,483	60,101	9,069
No. of accounts	9,703	3,964	8,327	3,470	10,645	3,938	107	24	782	251

Standard errors in parentheses

*** p < 0.01, ** p < 0.05, * p < 0.1

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

- ► Growing use of ABP across industries and salience effects ⇒ consumers may be "overconsuming" telecommunications, household and financial services, and natural resources
- Resource conservation can be enhanced by boosting the salience of private costs of consumption
 - Cost effectiveness compares favorably to other conservation projects attracting research and policy attention
 - Kotchen and Grant 2011: DST 1% increase in resid. energy consumption
 - Alcott 2011: Opower 2% reduction in resid. energy; \$0.33 per kWh
- Energy Paradox a consequence of insalient future savings from efficiency investments *and* insalient present consumption costs
- Effect may grow over time due to generational effect

Thank You!

And thanks to the Institute of Business and Economic Research at UC Berkeley, the University of California Giannini Foundation, and the Carter Foundation.

ssexton@berkeley.edu