Bias/Efficiency Tradeoff in Preference Elicitation

Sapna Kaul
Ph.D. Candidate, Virginia Tech
Pre-Doctoral Fellow, ASU

with
Kevin J. Boyle
Michael Hanemann
Nicolai Kuminoff

Motivation

- Research based on the design of surveys is fundamental to empirical analysis. The bias/efficiency tradeoff in the design of survey questions is arguably the most importation issue in applied research
 - Single question formats
 - Multi-question formats are more efficient (Hanemann et al., 1991, AJAE)
 - Additional questions generate bias and numerous mechanisms have been suggested that explain this bias (*Bernheim and Rangel, 2005, NBER; McFadden, 1994, AJAE*)
- Survey methods are used in various fields to elicit preferences and willingness to pay for prospective policy interventions
 - Exxon Valdez oil spill damages (Carson et al., 2003, ERE)
 - Unemployment insurance and reservation wages (Feldstein and Poterba, 1984, JPE; Krueger and Mueller, 2011, WP)
 - Preferences over inflation and unemployment (Tella et al., 2001, AER, Shiller, 1997, NBER)
 - Participation in green electricity programs (Kotchen and Moore, 2007, JEEM)
 - Psychology, health and marketing literature

Objectives

- Develop a utility theoretic approach to model individual responses to survey questions
- Catalog the mapping between mechanisms/ancillary conditions and pattern of survey responses by
 - Integrating them into the utility model
 - Manski's (2007) "bottom-up" approach for specific predictions
- Identify confounding mechanisms and if they are observationally or empirically equivalent

General Model w/ Certainty

WTP for a change in quality $q_j^0 \rightarrow q_j^1$

$$U_i(y_i - WTP_i, Z_{ij}^1) = U_i(y_i, Z_{ij}^0)$$

$$Z_{ij} = [X_{ij}, q_j],$$
 $i = 1, 2, ..., N,$ $j = 1, 2, ..., J$

$$y_i \rightarrow \text{Income}, \qquad q_j \rightarrow \text{Quality of good } j$$

 $X_{ij} \rightarrow \text{Characteristics}$ of respondents identified by interviewer

Solve for WTP using *simple* and *flexible* functional forms for $U_i(\cdot)$

Functional Forms for Utility

$U_i(\cdot)$	Functional Form	Parameters
Linear	$\alpha_i y_i + \sum_j \beta_{ij} Z_{ij}$	α_i , β_{ij}
Cobb- Douglas	$y_i^{lpha_i} \prod_j Z_{ij}^{eta_{ij}}$	α_i , β_{ij}
Translog	$\alpha_i \ln(y_i) + \sum_j \beta_{ij} \ln(Z_{ij}) + \frac{1}{2} \sum_j \sum_k \delta_{ijk} \ln(Z_{ij}) \ln(Z_{ik})$	$\alpha_i, \beta_{ij}, \delta_{ijk}$
Nested C.E.S	$\left\{ (1 - \alpha_i) \left[\kappa_i q_j^{\xi_i} + (1 - \kappa_i) \sum_j \beta_{ij} X_{ij}^{\xi_i} \right]^{\frac{\rho_i}{\xi_i}} + \alpha_i (y_i)^{\rho_i} \right\}^{1/\rho_i}$	$\alpha_i, \beta_{ij}, \kappa_i, \xi_i, \rho_i$

WTP Based on Functional Form of $U_i(\cdot)$

$U_i(\cdot)$	WTP
Linear	$rac{eta_{ij}\Delta q_j}{lpha_i}$
Cobb-Douglas	$y_i - \left[\frac{V_i^0}{\prod_j Z_{ij}^{1 \beta_{ij}}}\right]^{\frac{1}{\alpha_i}}$
Translog	$y_i - exp\left\{\frac{1}{\alpha_i}\left[U_i^0 - \sum_{ij} lnZ_{ij}^1 - 0.5 \sum_{j} \sum_{k} \delta_{ijk} lnZ_{ij}^1 lnZ_{ik}^1\right]\right\}$
Nested C.E.S	$y_i - \left[\frac{U_i^{0\rho_i} - (1 - \alpha_i) \left[\theta_i q_j^{1\varphi_i} + (1 - \theta_i) \sum_j \delta_{ij} X_{ij}^{\varphi_i} \right]^{\rho_i}}{\alpha_i} \right]^{1/\rho_i}$

Mechanisms in the Utility Model

$$WTP_i = f(y_i, X_{ij}, q_j, \tau_{ij}), \quad \tau_{ij} \rightarrow \text{parameters}$$

- Mechanisms effect WTP_i via X_{ij} , q_j or γ_{ij}
- For example anchoring by suggesting plausible values of the good may change the perception of quality
- And there are other mechanisms that impact WTP_i in a similar fashion

Anchoring

Effect of bid on WTP	$\frac{\partial WTP_i(\cdot)}{\partial bid} = \frac{\partial WTP_i(\cdot)}{\partial q_i^1} \times \frac{\partial q_i^1}{\partial bid}$		
From WTP functions	$\frac{\partial WTP_i(\cdot)}{\partial q_i^1} > 0$		
Bid increasing path	$q_i^1 > q_i^0, \qquad \frac{\partial q_i^1}{\partial bid} < 0$		
Bid decreasing path	$q_i^1 < q_i^0$, $\frac{\partial q_i^1}{\partial bid} > 0$		
Mechanism $\gamma_i \rightarrow$ anchoring parameter Herriges & Shogren, 1996, JEEM	$q_i^1 = (1 - \gamma_i)q_i^0 + \gamma_i \widetilde{q_i}$		
$0 \le \gamma_i \le 1$ $\gamma_i = 0$, no anchoring	$WTP_i = f(\gamma_i, q_i^0, \widetilde{q}_i, y_i, X_{ij}, \tau_{ij})$		

Framing

Surplus value of a good (DeShazo, 2002, JEEM)	$SV_{ij} = R_{ij} - bid_j$		
Loss Aversion	SV_{ij} decreases with bids, WTP_{ij} biased down		
Mechanism	${U_i}^1=(1-\pi_i)U_i^0+\pi_i\widetilde{U}_i^1$ $\widetilde{U}_i^1 o$ Utility from hypothetical Scenario		
$0 \leq \pi_i \leq 1$ π_i =0, No Framing	$WTP_i = f(\pi_i, q_i^0, \tilde{q}_i^1, y_i, X_{ij}, \tau_{ij})$		

Framing only effects the bid increasing path

Other Mechanisms

Mechanism	Parameter	Suggested Functional Form	Effect on WTP
Disutility Whitehead, 2002, LE	D_i	$U_i^1 = U_i^0 + D_i$	Bias Down $D_i < 0$
Preference Instability Alberini et al., 1997, LE	eta_i	$\beta_{ij} = \beta_i + \epsilon_{ij}$	Indeterminate β_i >0, β_i <0

Observational Equivalence

Anchoring & Weariness Example – Double Bounded Dichotomous Choice Format

Bid1?

Bid → Plausible Value for quality

Bid2?

- Asymmetric effect across sequence
- WTP biased towards the bid

Respon se?

- More "no" responses for bid ↑ sequence
- More "yes" responses for bid ↓ sequence

Continued

- Framing, Indignation and Wastage
 - Only bid-increasing path
- Disutility and surprise
 - Across paths
- Preference instability
 - Positive shifts for bid-increasing path: Yeasaying/warm-glow/response acquiescence
 - Negative shifts for bid decreasing path: Naysaying/free riding/strategic bias/quality reduction

Strategy for Empirical Analysis

- Calibrate distribution of parameters of the utility model using actual survey data.
 - Optimization criteria is to minimize the difference b/w observed responses and predicted responses from our models
- Characterize econometric corrections suggested to remove bias and test if they are effective in reducing bias in our framework
- Use observed/simulated responses to characterize bias due to different mechanisms

Illustration

Well behaved *cdf* vs. observed *cdf* for *WTP*

Conclusion

- Using a utility theoretic approach to model individual responses we show that
 - Anchoring biases WTP towards the bid
 - Framing and disutility bias WTP downwards
 - Preference instability has no clear predictions
- Future empirical strategy
 - Calibrate preference parameters of utility functions
 - Characterize different mechanisms and econometric corrections suggested in the literature