

"Urban Stream Syndrome"

- Consistent ecological degradation of streams draining urbanizing watersheds.
- Urbanization typically quantified by:
 - % total impervious cover (TI)
 - % effective impervious cover (EI)
- Degradation documented in systems with <5% TI.
- Similar degradation due to agricultural development.
- Measured by macro-invertebrate taxa scores.

"Urban Stream Syndrome"

Feature	Consistent response	Inconsistent response	Limited research
Hydrology	 ↑ Frequency of overland flow ↑ Frequency of erosive flow ↑ Magnitude of high flow ↓ Lag time to peak flow ↑ Rise and fall of storm hydrograph 	Baseflow magnitude	
Water chemistry	↑ Nutrients (N, P) ↑ Toxicants ↑ Temperature	Suspended sediments	
Channel morphol- ogy	↑ Channel width ↑ Pool depth ↑ Scour ↓ Channel complexity	Sedimentation	
Organic matter Fishes	↓ Retention ↓ Sensitive fishes	Standing stock/inputs Tolerant fishes Fish abundance/biomass	
Invertebrates	↑ Tolerant invertebrates ↓ Sensitive invertebrates		Secondary production
Algae	↑ Eutrophic diatoms ↓ Oligotrophic diatoms	Algal biomass	
Ecosystem pro- cesses	↓ Nutrient uptake	Leaf breakdown	Net ecosystem metabolism Nutrient retention P:R ratio

"Urban Stream Syndrome"

J. N. Am. Benthol. Soc., 2005, 24(3):602–612
 © 2005 by The North American Benthological Society

Meyer et al.

Stream ecosystem function in urbanizing landscapes

J. N. Am. Benthol. Soc., 2005, 24(3):706–723
 © 2005 by The North American Benthological Society

Walsh et al.

The urban stream syndrome: current knowledge and the search for a cure

 J. N. Am. Benthol. Soc., 2009, 28(4):1080–1098
 © 2009 by The North American Benthological Society DOI: 10.1899/08-186.1
 Published online: 27 October 2009

Twenty-six key research questions in urban stream ecology: an assessment of the state of the science

Seth J. Wenger^{1,17}, Allison H. Roy^{2,18}, C. Rhett Jackson^{3,19}, Emily S. Bernhardt^{4,20}, Timothy L. Carter^{1,21}, Solange Filoso^{5,22}, Catherine A. Gibson^{6,23}, W. Cully Hession^{7,24}, Sujay S. Kaushal^{5,25}, Eugenia Martí^{8,26}, Judy L. Meyer^{9,27}, Margaret A. Palmer^{5,28}, Michael J. Paul^{10,29}, Alison H. Purcell^{11,30}, Alonso Ramírez^{12,31}, Amy D. Rosemond^{13,32}, Kate A. Schofield^{14,33}, Elizabeth B. Sudduth^{15,34}, AND Christopher J. Walsh^{16,35}

Questions, Part I ecosystem structure and function

Questions, Part II ecosystem management

- How do we prioritize ecosystem preservation:
 - What economic and societal benefits do streams provide?
 - What are realistic goals for different levels of development (TI)?
 - How do we predict future given climate change, infrastructure aging, population growth, etc.?
 - What management actions are most costeffective?

Modeling Needs

Scales:

- Cross-system modeling to synthesize sparse data from multiple locations.
- Targeted modeling to better understand biophysical processes.

Integration:

- Climate, hydrologic models.
- Water quality, ecological models.
- Economic models.
- Direct/indirect benefits:
 - Direct benefits to urban streams.
 - Indirect benefits downstream.