"Urban Stream Syndrome" - Consistent ecological degradation of streams draining urbanizing watersheds. - Urbanization typically quantified by: - % total impervious cover (TI) - % effective impervious cover (EI) - Degradation documented in systems with <5% TI. - Similar degradation due to agricultural development. - Measured by macro-invertebrate taxa scores. # "Urban Stream Syndrome" | Feature | Consistent response | Inconsistent response | Limited research | |--------------------------|---|--|---| | Hydrology | ↑ Frequency of overland flow ↑ Frequency of erosive flow ↑ Magnitude of high flow ↓ Lag time to peak flow ↑ Rise and fall of storm hydrograph | Baseflow magnitude | | | Water chemistry | ↑ Nutrients (N, P) ↑ Toxicants ↑ Temperature | Suspended sediments | | | Channel morphol-
ogy | ↑ Channel width ↑ Pool depth ↑ Scour ↓ Channel complexity | Sedimentation | | | Organic matter
Fishes | ↓ Retention
↓ Sensitive fishes | Standing stock/inputs
Tolerant fishes
Fish abundance/biomass | | | Invertebrates | ↑ Tolerant invertebrates ↓ Sensitive invertebrates | | Secondary production | | Algae | ↑ Eutrophic diatoms ↓ Oligotrophic diatoms | Algal biomass | | | Ecosystem pro-
cesses | ↓ Nutrient uptake | Leaf breakdown | Net ecosystem metabolism
Nutrient retention
P:R ratio | ## "Urban Stream Syndrome" J. N. Am. Benthol. Soc., 2005, 24(3):602–612 © 2005 by The North American Benthological Society Meyer et al. #### Stream ecosystem function in urbanizing landscapes J. N. Am. Benthol. Soc., 2005, 24(3):706–723 © 2005 by The North American Benthological Society Walsh et al. ## The urban stream syndrome: current knowledge and the search for a cure J. N. Am. Benthol. Soc., 2009, 28(4):1080–1098 © 2009 by The North American Benthological Society DOI: 10.1899/08-186.1 Published online: 27 October 2009 Twenty-six key research questions in urban stream ecology: an assessment of the state of the science Seth J. Wenger^{1,17}, Allison H. Roy^{2,18}, C. Rhett Jackson^{3,19}, Emily S. Bernhardt^{4,20}, Timothy L. Carter^{1,21}, Solange Filoso^{5,22}, Catherine A. Gibson^{6,23}, W. Cully Hession^{7,24}, Sujay S. Kaushal^{5,25}, Eugenia Martí^{8,26}, Judy L. Meyer^{9,27}, Margaret A. Palmer^{5,28}, Michael J. Paul^{10,29}, Alison H. Purcell^{11,30}, Alonso Ramírez^{12,31}, Amy D. Rosemond^{13,32}, Kate A. Schofield^{14,33}, Elizabeth B. Sudduth^{15,34}, AND Christopher J. Walsh^{16,35} # Questions, Part I ecosystem structure and function # Questions, Part II ecosystem management - How do we prioritize ecosystem preservation: - What economic and societal benefits do streams provide? - What are realistic goals for different levels of development (TI)? - How do we predict future given climate change, infrastructure aging, population growth, etc.? - What management actions are most costeffective? ## **Modeling Needs** #### Scales: - Cross-system modeling to synthesize sparse data from multiple locations. - Targeted modeling to better understand biophysical processes. ### Integration: - Climate, hydrologic models. - Water quality, ecological models. - Economic models. - Direct/indirect benefits: - Direct benefits to urban streams. - Indirect benefits downstream.