Age-Adjusted Value of Statistical Life: Evidence from Automobile Purchase Decisions

James O'Brien Georgetown University jho8@georgetown.edu

Camp Resources XX August 6th, 2013

Motivation:

Age variation in the VSL from vehicle choice

- People of all ages purchase cars
- Extend revealed preference evidence

Motivation:

Age variation in the VSL from vehicle choice

- People of all ages purchase cars
- Extend revealed preference evidence

Separately observe the effects of cost and risk

Motivation:

Age variation in the VSL from vehicle choice

- People of all ages purchase cars
- Extend revealed preference evidence

Separately observe the effects of cost and risk

Estimate VSL in a different context:

Possibly more applicable to road and vehicle safety regulations

Selected Age-VSL Results in Recent Literature

Multinomial Vehicle Choice Model

Standard McFadden (1974) MNL framework:

Consumers obtain utility from vehicle attributes:

$$U_i^n = \sum_{c} \beta_{1c} risk_i^c * I_c(age_n) + \sum_{c} \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma + \varepsilon_i^n$$

Multinomial Vehicle Choice Model

Standard McFadden (1974) MNL framework:

Consumers obtain utility from vehicle attributes:

$$U_i^n = \sum_{c} \beta_{1c} risk_i^c * I_c(age_n) + \sum_{c} \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma + \varepsilon_i^n$$

Value of Statistical Life

$$-\frac{\partial cost}{\partial risk^{c}} = VSL^{c} = \frac{\beta_{1c}}{\beta_{2c}} * \overline{income}^{c}$$

Multinomial Results

Risk Coefficients

Multinomial Results

Cost Coefficients

Multinomial Results

Coefficients

VSL Estimates

Selected Age-VSL Results in Recent Literature

Endogenous Car Choices

Accounting for Driver Behavior

i. Estimate relative driver effects based on crash test results and <u>single-vehicle</u> fatalities $(Y_{i,c})$

Accounting for Driver Behavior

i. Estimate relative driver effects based on crash test results and <u>single-vehicle</u> fatalities $(Y_{i,c})$

Accounting for Driver Behavior

i. Estimate relative driver effects based on crash test results and <u>single-vehicle</u> fatalities $(Y_{i,c})$

ii. Adjust overall deaths per mile $(Z_{j,c})$ for each alternative based on the $\hat{\alpha}$'s

(example: find the fatality risk in a Camaro if driven by a Prius driver)

Counterfactual
$$\longrightarrow \widetilde{risk}_{j,c}\Big|_i = \frac{\widehat{\alpha_i risk}_{j,c}}{\widehat{\alpha_j}}$$

Adjusted MNL Results

Risk Coefficients

Cost Coefficients

VSL Estimates

Alternative Approach: Control Function

• Problem is due to the correlation between between $risk_i^c$ and ε_i^n

$$U_i^n = \sum_{c} \beta_{1c} risk_i^c * I_c(age_n) + \sum_{c} \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma + \varepsilon_i^n$$

Alternative Approach: Control Function

• Problem is due to the correlation between between $risk_i^c$ and ε_i^n

$$U_i^n = \sum_{c} \beta_{1c} risk_i^c * I_c(age_n) + \sum_{c} \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma + \varepsilon_i^n$$

Separate the portion of the error that is problematic

$$\varepsilon_i^n \equiv \sum_c \varepsilon_{ic}^{1n} * I_c (age_n) + \varepsilon_i^{2n}$$
Problematic

Alternative Approach: Control Function

• Problem is due to the correlation between between $risk_i^c$ and ε_i^n

$$U_i^n = \sum_{c} \beta_{1c} risk_i^c * I_c(age_n) + \sum_{c} \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma + \varepsilon_i^n$$

Separate the portion of the error that is problematic

$$\varepsilon_i^n \equiv \sum_{c} \varepsilon_{ic}^{1n} * I_c (age_n) + \varepsilon_i^{2n}$$
Problematic

• Include consistent estimates of ε_{ic}^{1n} as additional regressors

$$\begin{aligned} U_i^n &= \sum_c \beta_{1c} risk_i^c * I_c(age_n) + \sum_c \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n) + X_i^n \gamma \\ &+ \sum_c \widehat{\varepsilon_{ic}^{1n}} * I_c(age_n) + \varepsilon_i^{2n} \end{aligned}$$

Control Function Results

Risk Coefficients

Cost Coefficients

VSL Estimates

Conclusion

- Extend range of revealed preference evidence
- No evidence of a "senior discount" per se
- Corroborate inverted-U shape
- Risk adjustments and Control Functions are very preliminary

Appendix 1

VSL of Households with No Children

Appendix 2: Control Function Details

• Bias arises because of a correlation between $risk_i^c$ and $arepsilon_i^n$

$$\begin{split} \varepsilon_i^n &= \sum_c \varepsilon_{ic}^{1n} * I_c \left(age_n \right) + \varepsilon_i^{2n} \\ risk_i^c &= crashtest_i \delta^c + Z_i \theta^c + \mu_i^c \end{split}$$

Appendix 2: Control Function Details

• Bias arises because of a correlation between $risk_i^c$ and $arepsilon_i^n$

$$\varepsilon_i^n = \sum_c \varepsilon_{ic}^{1n} * I_c (age_n) + \varepsilon_i^{2n}$$

$$risk_i^c = crashtest_i \delta^c + Z_i \theta^c + \mu_i^c$$

- Assume $arepsilon_{ic}^{1n}$ and μ_i^c are correlated and jointly normal
- Observe that: $\varepsilon_{ic}^{1n} \equiv E \left[\varepsilon_{ic}^{1n} \middle| \mu_i^c \right] + \widetilde{\varepsilon_{ic}^{1n}} = \varphi_c \mu_i^c + \rho_c \eta_c \underset{\text{standard normal}}{\longleftarrow} \text{standard normal}$

Appendix 2: Control Function Details

• Bias arises because of a correlation between $risk_i^c$ and $arepsilon_i^n$

$$\varepsilon_i^n = \sum_c \varepsilon_{ic}^{1n} * I_c (age_n) + \varepsilon_i^{2n}$$

$$risk_i^c = crashtest_i \delta^c + Z_i \theta^c + \mu_i^c$$

- Assume ε_{ic}^{1n} and μ_i^c are correlated and jointly normal
- Observe that: $\varepsilon_{ic}^{1n} \equiv E \left[\varepsilon_{ic}^{1n} \middle| \mu_i^c \right] + \widetilde{\varepsilon_{ic}^{1n}} = \varphi_c \mu_i^c + \rho_c \eta_c \underset{\text{standard normal}}{\longleftarrow} \text{standard normal}$
- Sub into utility function, and model is purged of endogeneity

$$U_i^n = \sum_c \beta_{1c} risk_i^c * I_c(age_n) + \sum_c \beta_{2c} \frac{cost_i}{income_n} * I_c(age_n)$$

$$+ X_i^n \gamma + \sum_c \varphi_c \widehat{\mu_i^c} * I_c(age_n) + \sum_c \rho_c \eta_c + \varepsilon_i^{2n}$$

Appendix 3: Other MNL Covariates

Other covariates

Engine Displacement	0.13†
	(80.0)
Cylinders	-0.07
	(0.05)
Cylinder*Pickup	0.31†
	(0.17)
Passenger Volume	0.24*
	(0.05)
Luxury Brand	-0.38*
	(0.10)
Gross Vehicle Weight	-0.01
	(0.05)
Imported	-0.05
	(0.06)
Model Year 2003-2005	0.56*
	(0.06)
Model Year 2006-2008	1.39*
	(0.08)
Class specific constants	Yes

Appendix 3

Effects of Various Discount Rates

Clean Air Act Amendments

237,100 Annual Deaths

Crash Test Results

Relative Driver Effects

Vehicle Class	Alpha		
Full size	1.23*		
	(80.0)		
Compact	0.82*		
	(0.07)		
Standard	1.11*		
	(0.05)		
Mini	1.55		
	(0.42)		
Pickup	2.48*		
	(0.1)		
SUV	1.22*		
	(0.05)		
Van	1.24*		
	(0.06)		
n	10.360		

n 10,360
Significant at the five (*) and ten (†) percent level. Values shown are incident rate ratios relative to economy class vehicles. Age cohort fixed-effects and crash-test coefficients are not shown.

First Stage Results:

Dependent Variable: Deaths per Mile (for Relevant Cohort)

	Age Cohort						
	Overall	Age 18 to 34	Age 35 to 49	Age 50 to 64	Age 65 to 85		
	(1)	(2)	(3)	(4)	(5)		
Front Head Injury	0.51†	2.57	0.19	0.72*	3.02*		
	(0.29)	(2.38)	(0.46)	(0.29)	(0.93)		
Front Chest Injury	24.86*	67.18	26.49*	8.61	84.77*		
	(8.30)	(60.41)	(11.70)	(6.88)	(24.50)		
Side Head Injury	-0.06	-2.95*	-0.31	-0.16	-1.06*		
	(0.11)	(0.83)	(0.20)	(0.12)	(0.39)		
F-stat for crash-test variables	12.73	6.746	4.044	4.864	16.35		
n	1,381	1,142	873	822	822		
Adj. R Squared	0.217	0.112	0.160	0.175	0.138		

Note: Other controls: curb weight, tire size, passenger volume, number of cylinders, engine displacement, and indicators for imported, luxury, vintage, and class. Significant at the 5 percent (*) or 10 percent (†) level.