The Fundamental Law of Road Congestion Revisited: a micro-based approach to estimating commuter responses to investments in public infrastructure

> Chris Mothorpe Georgia State University Cmothorpe1@GSU.edu

Traffic Congestion in the U.S.

 Congestion cost in 2012 \$121 billion

Traffic Congestion in the U.S.

- Congestion cost in 2012 \$121 billion
- Mitigation strategies
 - Lane additions

Fundamental Law of Road Congestion

An increase in lane miles is met by a proportional increase in traffic (Downs 1962, 1992)

Fundamental Law of Road Congestion

- An increase in lane miles is met by a proportional increase in traffic (Downs 1962, 1992)
- Empirical evidence:
 - Elasticity of demand between driving and road supply is 1 (Duranton and Turner 2011)
 - Other Studies (Fulton et. al 2000, Hansen and Haung 1997, Noland and Cowart 2000)

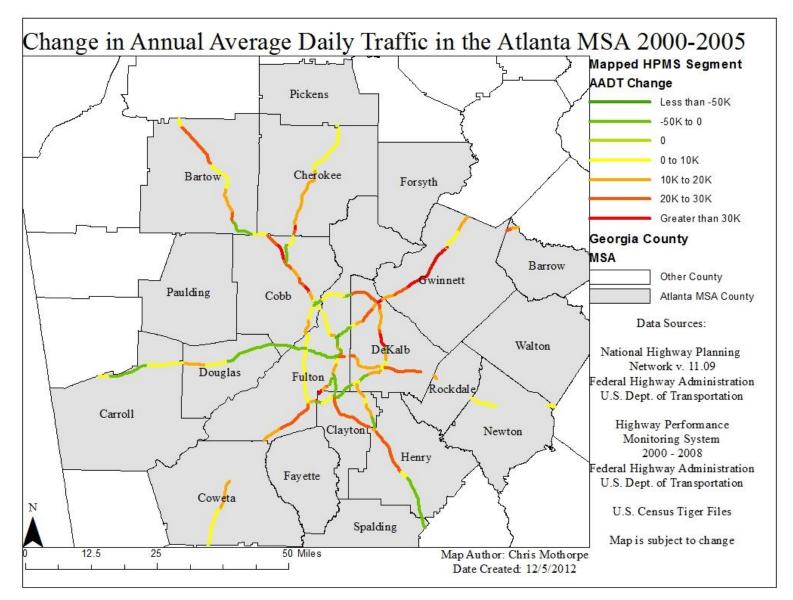
Motivation

 Previous studies are based on aggregate level data

MSA	Year	Lane Miles	Vehicle Miles Travelled (millions of miles)
Atlanta	2000	6487	75
Atlanta	2005	6587	83

Motivation

 Previous studies are based on aggregate level data

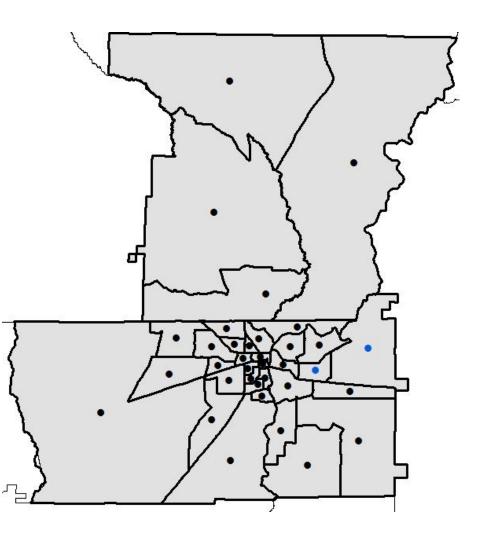

MSA	Year	Lane Miles	Vehicle Miles Travelled (millions of miles)
Atlanta	2000	6487	75
Atlanta	2005	6587	83

- No Intra-city variation
 - Increase in driving cannot be link to any particular segment/area
 - Underlying causes of the Fundamental Law cannot be determined

Purpose of Research

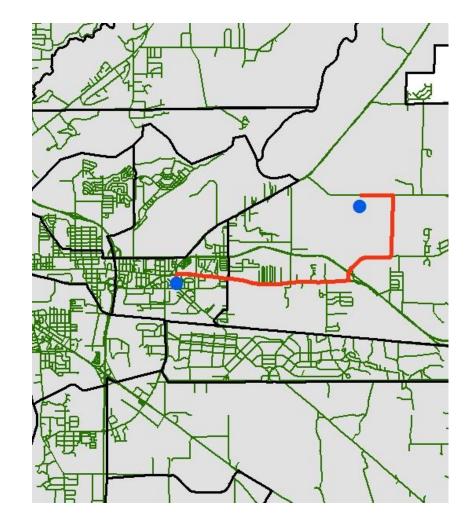
- Map the Highway Performance Monitoring System (HPMS) & Census Transportation Planning Package (CTPP) data sets using optimized routing algorithms
- Combine data using spatial relationships

Purpose of Research

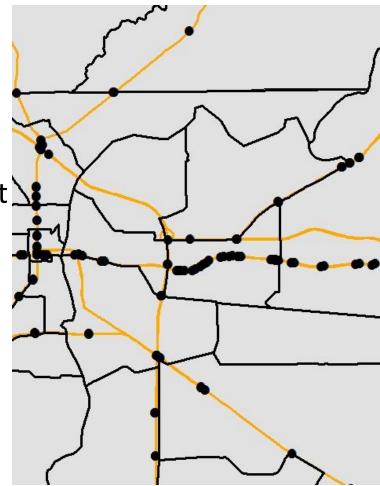


Purpose of Research

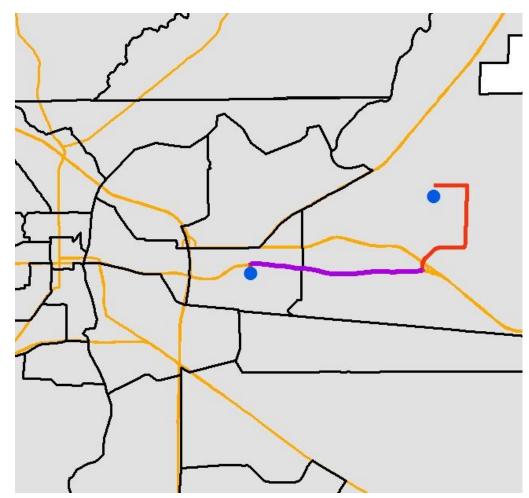
- Questions:
 - Does an increase in lane miles increase traffic on a highway segment?
 - Does an increase in lane miles cause a shift in housing demand?


Census Transportation Planning Package (CTPP)

- Reports data for Census Tract to Tract home to work flows
 - Number of people & mode of transportation


Census Transportation Planning Package (CTPP)

- Report data for Census Tract-Tract home to work flows
 - Number of people & mode of transportation
- Link each tract-tract flow to the road network by choosing quickest route


Highway Performance Monitoring System (HPMS) Datasets

- Annual dataset containing information on road and traffic conditions
 - Unit of Observation is a segment
 a section of road with consistent
 traffic and road conditions.
 - Segments geographically referenced using a linear referencing system
 - Each segment has length, annual average daily traffic and number of lanes

Combined CTPP-HPMS Data

 Spatial overlay of commuter routes and mapped HPMS Data links the number of people and other Census data to road and traffic conditions

Motivating the Empirical Strategies

- People change behavior to capitalize on lower transportations costs
 - Re-optimizing location choice
 - Baum-Snow (2007), Baum-Snow (2007)

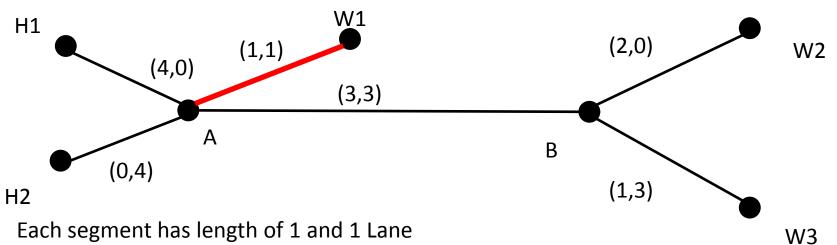
Motivating the Empirical Strategies

- People change behavior to capitalize on lower transportations costs
 - Re-optimizing location choice
 - Baum-Snow (2007), Baum-Snow (2007)
 - Triple convergence
 - Downs (1962, 1992)

Motivating the Empirical Strategies

- People change behavior to capitalize on lower transportations costs
 - Re-optimizing location choice
 - Baum-Snow (2007), Baum-Snow (2007)
 - Triple convergence
 - Downs (1962, 1992)
 - Drive more
 - Duranton and Turner (2011)

 Regressing changes in VMT on changes in lane miles would be computationally intensive

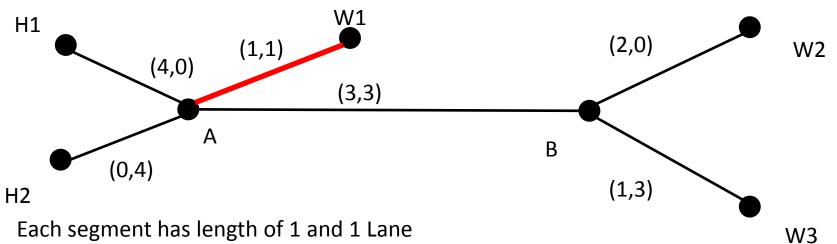

- Regressing changes in VMT on changes in lane miles would be computationally intensive
- Segments were people benefit from lane expansions will experience an increase in traffic

- Regressing changes in VMT on changes in lane miles would be computationally intensive
- Segments were people benefit from lane expansions will experience an increase in traffic
- Create a variable capturing the percentage of people benefitting for lane expansions on their commuting path

- *Benefitting Trips* variable:
 - Weighted average of percent change in lane miles for all commuters using the segments
 - Two Parts:
 - 1) Percentage of People in that flow on the segment
 - 2) How much people in the flow benefit from lane expansions any where in their commute

- *Benefitting Trips* variable:
 - Weighted average of percent change in lane miles for all commuters using the segments
 - Two Parts:
 - 1) Percentage of People in that flow
 - 2) How much people in the flow benefit from lane expansions any where in their commute
 - Spatial structure of network is embedded in the variable
 - Percent change in lane miles is calculate from 2000 to 2005

Benefitting Trips Variable



Expand Segment: A-W1 (50% Increase)

Calculations for A-W1 Segment

Path	Total Trips	% Change in Lane Miles	Weight (A-W1)
H1-A-W1	1	0.5	0.5
H2-A-W1	1	0.5	0.5
Benefitting Trips		$0.5 \times 0.5 + 0.5 \times 0.5 = 0.5$	

Benefitting Trips Variable

Each segment has length of 1 and 1 Lane Expand Segment: A-W1 (50% Increase)

Calculations for H1-A Segment

Path	Total Trips	% Change in Lane Miles	Weight (A-W1)
H1-A-W1	1	0.5	0.25
H1-A-B-W2	2	0	0.5
H1-A-B-W3	1	0	0.25
Benefittin	g Trips	0.5 x 0.25 + 0 x 0.5 + 0 x 0	0.25 = 0.125

 $\Delta VMT_{i} = \alpha + \beta * Benefitting \ _Trips_{i} + \gamma * Controls_{i2000} + \varepsilon_{i}$

- *VMT_i* : vehicle miles travelled on road segment i
- *Benefitting Trips*: Weighted average of percent change in lane miles for all commuters using the segments. Calculated from 2000 to 2005

 $\Delta VMT_{i} = \alpha + \beta * Benefitting \ _Trips_{i} + \gamma * Controls_{i2000} + \varepsilon_{i}$

- *VMT_i* : vehicle miles travelled on road segment i
- *Benefitting Trips*: Weighted average of percent change in lane miles for all commuters using the segments. Calculated from 2000 to 2005
- Changes in VMT from 2000 to 2008;
- Controls weighted average of census tract level variables

 Lane expansion increase utility by reducing transportation costs for users

- Lane expansion increase utility by reducing transportation costs for users
- People want to move into area to capture benefit from lower transportation costs

- Lane expansion increase utility by reducing transportation costs for users
- People want to move into area to capture benefit from lower transportation costs
- Create a variable measuring tract level transportation costs for drivers

Trans_Index_k =
$$\sum_{j} \frac{\text{Ppl.commuting from k to } j}{\text{All people in tract } k}$$
 * Lane Miles(k, j)

 Transportation Index: a Laspeyres index indicating the weighted average in lane miles faced by all commuters the tract

Trans_Index_k =
$$\sum_{j} \frac{\text{Ppl.commuting from k to } j}{\text{All people in tract } k} \text{Lane Miles}(k, j)$$

- Transportation Index: a Laspeyres index indicating the weighted average in lane miles faced by all commuters the tract
- Represents the average commuting costs faced by all people in the census tract

$$\Delta$$
Trans_Index_k = $\sum_{j} \frac{\text{Ppl.commuting from k to } j}{\text{All people in tract } k} \Delta$ Lane Miles(k, j)

• Interested in changes in commuting costs

 $\Delta \text{Trans_Index}_{k} = \sum_{j} \frac{\text{Ppl.commuting from } k \text{ to } j}{\text{All people in tract } k} + \Delta \text{Lane Miles}(k, j)$

- Interested in changes in commuting costs
- Changes taken from 2000 2005; constant flow from 2000 CTPP
- Represents the change in average commuting costs faced by all people in the census tract

Do Lane Expansions Impact Housing Demand? $\Delta \ln(HV_k) = \alpha + \beta * \Delta Trans_Index_k + \delta \Delta X_k + \varepsilon_k$

• Dependent Variables: census tract level housing value or population density

Do Lane Expansions Impact Housing Demand? $\Delta \ln(HV_k) = \alpha + \beta * \Delta Trans_Index_k + \delta \Delta X_k + \varepsilon_k$

- Dependent Variables: census tract level housing value or population density
- Changes defined 2000 2009 (2000 Census; 2005-2009 ACS)

Do Lane Expansions Impact Housing Demand? $\Delta \ln(HV_k) = \alpha + \beta * \Delta Trans_Index_k + \delta \Delta X_k + \varepsilon_k$

- Dependent Variables: census tract level housing value or population density
- Changes defined 2000 2009 (2000 Census; 2005-2009 ACS)
- Changes in *Trans_Index* calculate from 2000 2005

 $\Delta \ln(\mathrm{HV}_{k}) = \alpha + \beta * \Delta Trans_Index_{k} + \delta \Delta X_{k} + \varepsilon_{k}$

- Dependent Variables: census tract level housing value or population density
- Changes defined 2000 2009
- Changes in *Trans_Index* calculate from 2000 2005
- Other covariates: housing and socio-demographic factors at the tract level

Endogeneity Issues

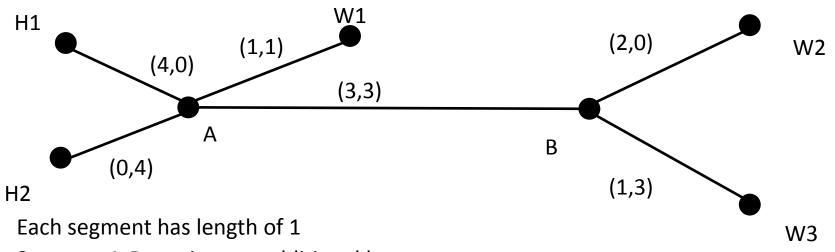
 Road way expansions & housing demand shifts may be endogenous to changes in traffic

Endogeneity Issues

- Road way expansions & housing demand shifts may be endogenous to changes in traffic
- Strategy 1: rely on OLS since Duranton and Turner (2011) found it to be unbiased at the MSA level

Endogeneity Issues

- Road way expansions & housing demand shifts may be endogenous to changes in traffic
- Strategy 1: rely on OLS since Duranton and Turner (2011) found it to be unbiased at the MSA level
- Strategy 2: use instruments
 - Land features (soil type, elevation)
 - Voting Patterns


Summary

 Combines HPMS and CTPP data creating a unique data set exploiting intra-city variation and relates road and traffic conditions to commuting patterns and other census tract level data

Summary

- Combines HPMS and CTPP data creating a unique data set exploiting intra-city variation and relates road and traffic conditions to commuting patterns and other census tract level data
- Create two variables (Benefitting Trips and Transportation Index) with embedded spatial structure estimate if lane expansions change traffic or housing demand

Transportation Index Example

Segment A-B receives an additional lane

Tract H1	Calculation	Flow Value
H1-A-W1	0.25 x 0	0
H1-A-B-W2	0.5 x 1	0.75
H1-A-B-W3	0.25 x 1	0.5