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What is a Brownfield?

Brownfield - A real property, the expansion, redevelopment, or reuse of which
may be complicated by the presence or potential presence of a hazardous
substance, pollutant, or contaminant.

- Environmental Protection Agency (EPA)

Examples: gas stations, dry cleaning, factories (shoes, windows, jewelry).

In 2002, the Brownfields Law was enacted to assist organizations in
revitalizing brownfields through the provision of grants.
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Motivation

Objective: Evaluate the benefits of cleaning up brownfields

Use hedonic methods - interpret capitalization of brownfield cleanup into
housing prices as MWTP for remediation

Traditional hedonic approach ignores dynamics of housing choices

Household expectations

Learning about amenities
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Stylized Example

Suppose brownfield cleaned, but before cleanup, information about hazards released.

Static hedonic approach: MWTP = average change in price across cleanup date

Figure: Households forward-looking, uninformed of contamination until Info Date
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Approach

Use real estate data from Massachusetts, data on brownfield sites, and
contamination over time to estimate a model where households

Learn about brownfield hazards over time through Bayesian updating, and

Given estimated beliefs, choose residential neighborhoods by maximizing
lifetime expected utility.
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Research Questions

Are consumers learning from information released about the brownfields in
such a way that may systematically alter the MWTP estimate?

What is the value of the information that is provided to households?
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Contribution

Add learning into a dynamic, hedonic framework

Use a newly collected data set on brownfield contamination

Lala Ma (Duke University) Learning in a Hedonic Framework 7 / 24



Outline for rest of the talk

Data for Brownfields

Model

Estimation

Preliminary Results
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5 Appendix
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Brownfields Sites in Massachusetts

Cleanup grant applications for 2003 through 2008 (EPA)

Proposal information: applicant, the proposal score, and start/finish dates of
cleanup (if awarded)

Property information: exact location, property size
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Brownfield Contamination over time: Assessments

To model learning, need to know brownfield contamination over time

Brownfields are periodically assessed −→ assessment document

Assessment characterize contamination at the time of site investigation

Each site can have multiple assessments performed
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Brownfield Contamination over time: Assessments

Table 1: Brownfield Characteristics

Variable Obs. Mean Median Std. Dev. Min. Max.
Assessments per Site 65 3.43 3 0.98 1 5
Assessment Year 223 2000.08 2002 6.55 1984 2012
Assessment Interval (yrs) 158 4.51 3 3.76 0 18

Contaminant (cjt)
† 223 2.99 3 2.16 0 10

NRS subscore IV (Institutional) 65 26.2 15 25.58 0 155
NRS subscore V (Environmental) 65 42.2 20 42.82 0 170
† Contaminant (cjt) is the sum of the number of contaminants found in each exposure pathway

(soil, groundwater, sediments, air, surface water, or other)

65 sites, between 1 and 5 assessments for each site.

cjt = Sum of # contaminants in each contamination pathway

NRS scores proxy for potential exposures around site −→ affects whether site
designated as ’contaminated’
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Outline

1 Brownfield Data

2 Model

3 Estimation

4 Preliminary Results

5 Appendix
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Model: Choice Set

Households choose neighborhood to maximize expected lifetime utility in a
finite-horizon framework.

In each period, households choose whether to move to one of J
neighborhoods, or stay in current neighborhood (J + 1)

If a household moves, it incurs a moving cost
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Model: Information Structure

Uncertainty about neighborhood transitions (in the future)

In the current period, households are uncertain about brownfield hazard

- Exists an underlying ’true’ brownfield hazard level for each neighborhood.

Households do not know the hazard, but can learn about it from published
assessments.

- Assumes once assessment information published, households learn about it.
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Model: Assessment Results and Learning

Published results from assessments serve as noisy signals about brownfield
hazards.

Assessment results, ckt , for a site k in neighborhood j ,

ckt = Hk + λ · IEk + ekt

will depend on

- the unobserved brownfield hazard, Hk

- the environmental and institutional settings of the site, IEk

- noise, ekt , distributed N(0, σe)
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Model: Assessment Results and Learning

The signal for the hazard

sigkt = ckt − λ · IEk = Hj + ekt

- If no assessments have been performed for any brownfield in the
neighborhood, prior distributed N(0, δ)
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Model: Household Preferences

Household i ’s utility from neighborhood j , located in district r , takes the following
form,

uijrt = βXXjt + βRRjt + ξjt + βcE (cjt | EtHj ,VtHj)× P(nocleanjt)

+ 1[dit 6=J+1]

(
βMC ·MCit + βPMC · 1[d r

it 6=d r
it−1]

)
+ βddist(j , dit−1) + εijt
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where

Neighborhood characteristics:

- Xjt (observed), ξjt (unobserved)

- Costs of living in the location, Rjt

- Expected contamination, weighted by probability sites will be cleaned
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where

Moving Costs:

- Financial MC as 6% of value of house last period, MCit

- Psychological MC if moved to district different from last period, 1[d rit 6=d rit−1]

- Distance of the neighborhood from i ’s previous location, dist(j , dit−1)
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Model: The Household’s Problem

Household’s problem is to choose a sequence of neighborhood locations (dit) to
maximize its expected sum of discounted flow utilities given the state of the world
it observes

max
d it∈{1,...,J+1}

E

[
T∑

t′=t

βt′−tu(sit′ , dit′) + εdit′ | εit , sit , dit

]

State variables summarized in sit ,

sit = [Xt ,Rt ,E (Ht),V (Ht),X
r
t ,BFt , ξt ]
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Estimation: 2 stages

1 Get posterior beliefs about brownfield hazards at each point in time

Expectation-Maximization (EM) Algorithm (Dempster et. al. 1977) Details

2 Estimate dynamic discrete choice problem

Hotz and Miller (1993), Arcidiacono and Miller (2011)
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Estimation

Two stage estimation requires that household choices only depend on hazard
through the information signals (James, 2012).

Unobserved neighborhood quality

Collapse nbd-time level terms into a mean utility term, θjt (Berry 1994)

Decompose mean utility to recover utility parameters on neighborhood
attributes

uijrt(sit) = θjt + βddist(j , dit−1) + 1[dit 6=J+1]

(
βMC ·MCit + βPMC · 1[d r

it 6=d r
it−1]

)
+ εit

where

θjt = βXXjt + βRRjt + βcE [cjt ]× Pr(nocleanjt) + ξjt
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Preliminary Results: Stage 1
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Preliminary Results: Stage 2

Stage 2 Estimates

Discrete Choice Parameters
βd (in $ per km) $104.13
βPSY (in $) $11,045.59
βMC (MC in 000’s of $) -0.2402
θjt Not Shown

Mean Utility Decomposition

Dep. Var. θ̂jt − β̂MCRjt

Crime per capita -28.10

E (cjt)× P̂rnocleanjt -0.2038
constant 22.52
District and time period fixed effects included.

Utility Estimates in Dollars
Decrease in crime per capita $60,858.77
Decrease in unit of Contamination $421.43
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Preliminary Results: Comparison

Utility Estimates in Dollars

Dynamic

Contamination
No Learning $124.24
Learning $421.43

Crime (per-person) $60,858.77
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Value of Information

The DeGroot Measure of value of information:

Difference in the utility achieved from the optimal choices under pre (τ0) and
post (τ1) information sets,

V I
it =

∑
i

[Ui (τ1, dit(τ1))− Ui (τ1, dit(τ0))]

Value of an assessment =

U(optimal choices given all assessments that occurred)

− U(optimal choices given last assessment not performed)
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Value of Information

Do this for site #15

Value of Information per household $9,741.15
# of Households near Site #15 3454

‘near’ = within 3km.
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Takeaways

Learning has a non-trivial effect on MWTP

Information provision is valuable to households when making housing
decisions
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Thank you for listening!

I gratefully acknowledge a fellowship from Resources for the Future

for the 2013-2014 academic year.
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Interval of Assessments
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Model: The Household’s Problem

Household’s problem is to choose a sequence of neighborhood locations (dit) to
maximize its expected sum of discounted flow utilities given the state of the world
it observes subject to a budget constraint in each period,

max
d it∈{1,...,J+1}

E

[
T∑

t′=t

βt′−tu(sit′ , dit′) + εdit′ | εit , sit , dit

]

State variables summarized in sit ,

sit = [Xt ,E (Ht),V (Ht), ξt , rt ,MCit ]
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Model: Value Function

Assuming that the transitions of the state variables are Markovian, write
household’s problem recursively,

Vt (sit , εit) = max
dit
{vt(sit , dit) + εit} (1)

where

vt(sit , dit) ≡ u(sit , dit)

+ β

∫ ∑
sit+1

Vt+1 (sit+1, εit+1) q(sit+1 | sit , dit)dF (εit+1)
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Model: CCP’s and Finite Dependence

Under assumptions common in discrete choice, differences in choice-specific value
functions

vt (sit , dit = j)− vt (sit , dit = m)

= uj (sit)− um (sit)

+ β
∑
sit+1

(uk(sit+1)− logPk(sit+1)) q(sit+1 | sit , dit = j)

− β
∑
sit+1

(uk(sit+1)− logPk(sit+1)) q(sit+1 | sit , dit = m)

which only depend on

- conditional choice probabilities, E [Pk(sit+1) | sit ], and

- transition probabilities, q(sit+1 | sit , dit)
Back
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Estimation: Stage 1

Estimate parameters of contamination equation

cjt = Hj + λ · IEj + ejt , ejt˜N(0, σe),Hj0˜N(0, δ)

Hj is unobservable −→ use an EM algorithm (Dempster (1977))

E-step Given a guess of {λ, σe , δ}, use data (cjt , IEj) to calculate posteriors on
hazards using Bayesian updating formulas.

M-step Taking our estimate of hazard posterior as ’data’, maximize likelihood of
observing contaminants to get updated estimates of {λ, σe , δ}.
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EM Algorithm

E-Step: Given a guess of parameters at the k th iteration, θ(k) =
[
λ(k), σ

(k)
e , δ(k)

]
,

calculate E(Hj)
(k) and V (Hj)

(k) using Bayesian updating formulas

E(Hj)
(k) =

[(
δ(k)
)−1

+
Nj

Σ(k)

]−1

·

(σ(k)
e

)−1
Nj∑
t=1

(
cjt − λ(k)IEj

)
+
(
δ(k)
)−1

Hj0


V (Hj)

(k) =

[(
δ(k)
)−1

+
Nj

σ
(k)
e

]−1

This recovers a hazard level for each brownfield (of each neighborhood).

Calculate likelihood of observing contamination given estimated posteriors

∫
Hj

log `(cjt | Hj ; θ)dF (Hj) =

∫
Hj

log

(
1√

2πσe

exp

(
(cjt − Hj − λ · IEjt)

2

2σe

))
f (Hj)dHj

= −1

2
log(2πσe)− 1

2σe

[
(cjt − E(Hj)− λ · IEj)

2 + V (Hj)
]

M-Step: Maximize likelihood above to update θ(k) to θ(k+1).
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Estimation: Stage 2

Estimate discrete choice problem

Get state transition probabilities: q(sit+1 | sit , dit = j)

Get conditional choice probabilities: E [Pk(sit+1) | sit , dit = j ]

Recover utility parameters with MLE

L(α) =
N∑
i=1

T∑
t=1

J∑
j=1

I[dit=j] · log

(
exp (vj(sit)− vm(sit))

1 +
∑

` 6=m exp (v`(sit))

)

Back
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