POLICY UNCERTAINTY UNDER MARKET-BASED REGULATIONS: EVIDENCE FROM THE RENEWABLE FUEL STANDARD*

Gabriel E. Lade, C.-Y. Cynthia Lin, & Aaron Smith

Department of Agricultural and Resource Economics University of California, Davis

August 2014

^{*}Formerly "Policy Uncertainty and Compliance Costs under the Renewable Fuel Standard."

^{**}Funding provided by the Resources for the Future Regulatory Performance Initiative grant.

Tradeable Credits & Market-Based Policies

Tradeable credits designed as a cost effective tool for quantity mechanisms.

▶ Uses include cap and trade (e.g. SO₂), resource management (e.g. fishery catch shares), and quotas (e.g. NYC taxicabs, liquor licenses, import/export restrictions).

Tradeable Credits & Market-Based Policies

Tradeable credits designed as a cost effective tool for quantity mechanisms.

▶ Uses include cap and trade (e.g. SO₂), resource management (e.g. fishery catch shares), and quotas (e.g. NYC taxicabs, liquor licenses, import/export restrictions).

More recently, credits have been used in mandates which require large investments in environmental services and the emergence new industries.

 US Renewable Fuel Standard (RFS); Regional Low Carbon (or Clean) Fuel Standards; State & regional Renewable Portfolio Standards.

Our Paper

We study the market for Renewable Identification Numbers (RINs) under the Renewable Fuel Standard (RFS2).

Our Paper

We study the market for Renewable Identification Numbers (RINs) under the Renewable Fuel Standard (RFS2).

We show policy uncertainty has played a key role in driving credit prices. Our results call into question the efficacy of the policy in sending a stable price signal to the advanced biofuel industry.

RENEWABLE FUEL STANDARD (RFS2)

Established by the Energy Independence and Security Act (2007).

- Mandates increasing volumes of biofuel through 2022.
- Each gallon of renewable fuel is associated with a RIN distinguished by vintage year and biofuel type.
- Each year, EPA releases a Proposed and Final Rule, laying out subsequent year's mandate.

Dynamic Model of a Regulated Fuel Industry

DYNAMIC RIN MODEL: OVERVIEW

Competitive industry composed of *N* firms:

Firms produce fuel using conventional and renewable inputs.

DYNAMIC RIN MODEL: OVERVIEW

Competitive industry composed of *N* firms:

▶ Firms produce fuel using conventional and renewable inputs.

Policy implemented over time. In simplest case:

- ▶ One compliance period (T) and production takes place in $t \in [1, T]$.
- ► Firms uncertain about future fuel costs and future policy levels.

DYNAMIC RIN MODEL: OVERVIEW

Competitive industry composed of *N* firms:

Firms produce fuel using conventional and renewable inputs.

Policy implemented over time. In simplest case:

- ▶ One compliance period (T) and production takes place in $t \in [1, T]$.
- Firms uncertain about future fuel costs and future policy levels.

Extensions include:

- Consider sub-mandate structure.
- Consider two compliance periods with banking restrictions.

DYNAMIC RIN MODEL

Market Clearing RIN Prices (simplest case):

Under perfectly competition and if firms have rational expectations, equilibrium market clearing credit prices are:

$$r_t = \begin{cases} \beta^{(T-t)} \mathbb{E}_t[\lambda_T; \Theta] & \text{if } t \in [1, T-1] \\ \lambda_T & \text{if } t = T \end{cases}$$

where

$$\lambda_T = f \left[MC^r(q^r) - MC^c(q^c) \right].$$

Empirics

ESTIMATING HISTORICAL RIN PRICE DRIVERS

Main specification:

$$\Delta r_t = \underbrace{\alpha + \Delta x_t \beta}_{\substack{\mathsf{Normal} \\ \mathsf{Returns}}} + \underbrace{\sum_{m=1}^M \sum_{s=s_{m,0}}^S \gamma_{m,s} \tau_{m,s}}_{\substack{\mathsf{Abnormal} \\ \mathsf{Returns}}} + \epsilon_t,$$

where

$$\tau_{m,s} = \begin{cases}
1 & \text{if event} = m \text{ and } t = s \\
0 & \text{otherwise}
\end{cases}$$

REGRESSION RESULTS: MAIN SPECIFICATION

TABLE: Cumulative Abnormal Returns

		Conventional RINs	Advanced RINs	Biodiesel RINs
2013	Event Day	-0.136**	-0.132**	-0.062**
Final Rule	Event Day	(0.006)	(0.006)	(0.005)
	5 Day	-0.360**	-0.284**	-0.247**
	0 2 4,	(0.028)	(0.024)	(0.025)
Leaked	Event Day	-0.145**	-0.020*	-0.048**
Reuters	,	(0.007)	(0.008)	(0.007)
Article	5 Day	-Ò.148**	0.046*	-Ò.110* [*] *
	j	(0.027)	(0.021)	(0.021)
2014	Event Day	-0.042**	-Ò.035**	-Ò.048* [*] *
Proposed		(0.005)	(0.005)	(0.005)
Rule	5 Day	-0.086**	-0.063**	-0.179**
		(0.024)	(0.020)	(0.019)

CONVENTIONAL RIN EVENT DAY CARS)

FIGURE: Log Abnormal Return Kernel Densities

Change in Value of Tax/Subsidy

TABLE: Change in Value of Tax/Subsidy in 2013 (bill. \$)

2013 Final Rule	Event Day	-\$2.19
2013 Final Rule	5 Day	-\$5.92
Leaked Reuters Article	Event Day	-\$0.73
Leaked Neuters Article	5 Day	-\$0.78
2014 Dramaged Bula	Event Day	-\$0.17
2014 Proposed Rule	5 Day -9	

EXTENSIONS

Conduct similar event studies for commodity futures markets:

► Find no large movements in commodity markets following announcements (ethanol, soybean oil, corn, sugar).

EXTENSIONS

Conduct similar event studies for biofuel firm stock prices:

- ► Find little movement in large biofuel firms' stock prices (i.e., ADM, ANDE).
- ▶ For large advanced biofuel producers (i.e, Pacific Ethanol) and biodiesel producers, see significant losses (10%) following 2013 Final Rule;
- ▶ Largest loser was Kior, only publicly traded cellulosic producer (lost $\approx 50\%$ within 5 days of 2013 Final Rule release).

Conclusions'

- ► EPA announcements have been primary driver of historic RIN prices.
 - ▶ No large corresponding movement in commodity futures prices following announcements.
 - Changes in biofuel firm stock prices suggest advanced biofuel firms hurt the most by announced cuts.

Conclusions

- ► EPA announcements have been primary driver of historic RIN prices.
 - No large corresponding movement in commodity futures prices following announcements.
 - Changes in biofuel firm stock prices suggest advanced biofuel firms hurt the most by announced cuts.
- Results imply high marginal cost of moving beyond 10% ethanol-gasoline blend, but below 10% the mandate is not very costly.

Conclusions

- ▶ EPA has demonstrated it has time inconsistent preferences.
 - When compliance costs become high, EPA shown it will retreat on program goals.
 - ► Creates option value to delaying investments in advanced fuel technologies, further undermining the program.

Conclusions

- EPA has demonstrated it has time inconsistent preferences.
 - When compliance costs become high, EPA shown it will retreat on program goals.
 - Creates option value to delaying investments in advanced fuel technologies, further undermining the program.
- Efficiency may increase by putting price collars on credit prices or altering program to be equivalent (revenue-neutral) tax-subsidy scheme.

Thank you!