Fisheries management under correlated uncertainty: prices vs. quantities.

Chris Kennedy University of Wyoming August 13, 2009

Current state of fisheries

- Worm, et al. (2006) as of 2003, 27% of marine fisheries were
- Worm, et al. (2009) "Management actions have achieved measureable reductions in exploitation rates... a significant fraction of stocks will remain collapsed unless there are further reductions"
- Effective management actions include (among others):
 - Effort controls (days-at-sea (DAS))
 - Harvest controls (individual transferable quotas (ITQs))
- This research looks at these two manual landing taxes

Literature review – harvest control mechanisms

Most research — stochastic biological growth and/or stock uncertainty (Weitzman 2002)

- Majority of papers include at least one additional uncertain element
 - **CPUE** (Danielsson 2002, Hannesson and Kennedy 2003, Anderson 1986, Androkovich and Stollery 1991)
 - **Demand** (Hannesson and Kennedy 2003, Androkovich and Stollery 1991)
 - Benefits (Jensen and Vestergaard 2003, Anderson 1986)
 - Enforcement (Hansen 2008)

This research will focus on stochastic biological growth and CPUE

Taxes or harvest quotas?

Uncertainty in CPUE

Kennedy - August 13, 2009

Shallow MC curve

Steep MSB curve

Kennedy - August 13, 2009

Motivation for this research

Previous research has assumed that stochastic elements affecting biological growth and CPUE are independently distributed.

- This is unrealistic for a variety of commercially exploited fish species in which correlated deviations are observed, often associated with a single environmental variable.
- If stochastic elements are correlated, what does that imply for the choice between landing fees, effort limits, and harvest quotas?

Species	Driver -	Effect of driver on		Correlation
		CPUE (t)	Growth (t)	(CPUE-Growth)
Blue crab	Decreased river flow	+		
H. mackerel	SST	+		
Albacore	El Niño			+
Bigeye	El Niño	+	+	+
Skipjack	El Niño		+	
Yellowfin	El Niño	+	+	+

Table 1. Sample of fisheries exhibiting correlated uncertainty

Positive correlation – marginal private costs of fishing and marginal social benefits of escapement move concurrently

Negative correlation – marginal private costs of fishing and marginal social benefits of escapement move countercurrently

Prices vs. quantities under correlated uncertainty

- Wetzman (1974) footnote explores the possibility that stochastic benefits and costs may be correlated
- Stavins (1996) expands on the footnote
 - Shows conditions under which choice of taxes or quotas might be reversed
 - Pollution control is the backdrop
 - Example: urbanization increases costs and benefits of pollution
- control
- Shrestha (2001) considers the performance of a non-linear tax under correlated uncertainty between benefits and costs of pollution control

A model of correlated uncertainty in fisheries

Hybrid of Danielsson (2002) and Weitzman (1974)

we uncertain elements
 "effective biomass" due to fish behavior -> CPUE
 "effective escapement" -> growth at the end of the period

- Observing the current stock, the regulator must choose a harvest control mechanism
 - Harvest quota with tradable rights, h^q
 - Effort quota with tradable rights, ê
 - Landing tax, **7**

Quotas are binding and efficiently distributed

Fishermen observe "ef

fishing

Conceptual model - correlation

single environmental cue

Biological growth t

CPUE_t

Stock t+1

st 13, 2009

Escapement

Kennedy – Aug

Example – skipjack tuna, western Pacific

El Niño event

Biological growth t

CPUE_t

Harvest/

Stock t+1

Escapement

Model structure

Regulator is charged

$$\sum_{t=1}^{\infty} \delta^{t-1} E \Big[R(h_t) - C(e(h_t, S_t + \theta_t)) \Big]$$

Subject to : $S_{t+1} = F(S_t - h_t + \eta_t)$

• Revenue R(.) is a concave function of harvests. Cost C(.) is a convex function of effort, where $e_h > 0$, $e_{hh} > 0$, $e_S < 0$, $e_{sh} = 0$. F(.) is the density dependent growth function, $F_S > 0$, $F_{ss} \le 0$

• θ is an additive, stochastic variable dictating the "effective biomass", or the biomass observed by fishermen. $E[\theta]=0$, variance σ_{θ}^2

• η is an additive, stochastic variable dictating the "effective escapement", and thereby biomass available in period t+1. $E[\eta]=0$, variance σ_{η}^{2}

• The co-variance between θ and /

Model structure

The Bellman equations for the three mechanisms a

$$V^{q}(h^{q}, S) = \max_{h} E[R(h^{q}) - C(e(h^{q}, S + \theta)) + \delta V^{q}(F(S - h + \eta))]$$

$$V^{e}(\hat{e}, S) = \max_{e} E[R(q(\hat{e}, S + \theta)) - C(\hat{e}) + \delta V^{e}(F(S - q(\hat{e}, S + \theta) + \eta))]$$

$$V^{\tau}(\tau, S) = \max_{\tau} E[R(v(\tau, S + \theta)) - C(e(v(\tau, S + \theta), S + \theta) + \delta V^{\tau}(F(S - v(\tau, S + \theta) + \eta))]$$

• In the spirit of Weitzman (1974), the relative superiority of instrument *i* over instrument *j* is given by

$$\Delta^{ij} = E[V^{i}(.) - V^{j}(.)]; \ i, j = q, e, \tau; \ i \neq j$$

Critical assumption: the amount of uncertainty in effective biomass and effective escapement is small enough to justify a 2nd order Taylor approximation of the effort, harvest, cost, revenue, biological growth, and value functions in the range that *h^e* and *h^T* (*e^q* and *e^T*) vary atomic *h^q* (*ê*)

Results – no correlation

- A degenerate distribution for θ implies that all instruments are equivalent; differences increase with $\sigma_{\theta}{}^2$
 - The range for which effort quotas are the preferred instrument is relatively small and decreases with the slope of the marginal cost function
- Preference for harvest quotas over taxes and effort quotas
 increases with the curvature of the value function
 - increases with the curvature of the growth function
 - decreases with the slope of the marginal cost function
 - decreases with the discount rate

Uncorrelated case -> n s

Results – correlation

- Stochastic η is relevant when correlation exists.
 - Positive correlation tends to favor the tax over effort quotas and effort quotas over harvest quotas, and vice versa
- The impact of correlation
 - increases with the curvature of the value function
 - increases with the curvature of the growth function
 - increases with σ_{θ}^2 and σ_{η}^2
 - decreases with the slope of the marginal cost function
 - decreases with the discount rate

Effort quotas are never th

Uncertainty, con elatector other Kennedy – August 13,

Example – Negative correlation (Skipjack tuna, El Niño event)

Kennedy - August 13, 2009

Example – Negative correlation (Skipjack tuna, El Niño event)

Is correlation likely to matter?

- It has been argued the slope of the marginal cost of effort in a fishery is relatively shallow
 - will tend to favor harvest quota control, but
 - increases the impact of correlation
 - if positive correlation exists, but is unaccounted for, this can lead to the wrong choice
- Negative correlation is especially problematic. If CPUE increases when biological growth is being negatively impacted, risk of collapse increases
 - Northern cod
 - Georgia blue crab

Even if the mechanism for estrong empirical evidence d

