Can epidemiological studies improve estimates of health damages due to climate change in the Integrated Assessment Models (IAMs)?

KRISTEN DOWNS

University of North Carolina at Chapel Hill

Camp Resources XXI
August 11, 2014

Motivation

- Recent call for a new generation of Integrated
 Assessment Models (IAMs) to estimate the economic impacts of climate change (Stern, 2013; Pindyck, 2013)
 - Partially due to the arbitrary nature of existing damage functions
- Health impacts are likely to be an important component of these damages, but are not well represented in the IAMs.
- High level of temporal (annual) and spatial aggregation (global or regional) in the IAMs is problematic when estimating local, heterogeneous climate change impacts
 - Preliminary results comparing the effects of using regional- and country-level data for the FUND diarrheal disease models indicate that the level of spatial aggregation is important (Hanemann et al. 2014)

Research Questions

- I am exploring alternative ways to model the impacts of climate change and weather variability on health (specifically diarrheal disease) at the global and regional levels using epidemiological studies and meta-analyses.
- I attempt to answer 3 main questions:
- How do the estimates and model specifications between disease and climatological variables vary across studies in the epidemiological literature?
- 2. How does aggregation affect the estimates of temperature and precipitation elasticities for disease outcomes at different temporal and spatial scales?
- 3. How can this information then be incorporated into the IAMs?

Methods

- 1. Literature review of epidemiological studies on diarrheal disease and seasonality and/or climate change
- 2. Reanalyze existing meta-analyses of the relationship between climatological factors and diarrheal disease to explore the importance of ...
 - Pathogen-specificity of diarrheal disease
 - Seasonality and temporal aggregation
 - Spatial heterogeneity and aggregation

How are Epi Models Different? Time, Space and Specification

Epidemiological Models

- Time series models with short time steps (day, week, month) that consider seasonality of infectious diseases
- 2. Small spatial units
- Models are diverse and disease-specific; some account for non-linearities and threshold effects

IAMs

Ex: diarrheal disease model in FUND

- Cross-sectional analyses of annual data (diarrheal disease)
- Global or regional (multicountry) zones
- 3. Log-linear functions

Preliminary Results:

Literature Review on Diarrhea Seasonality

Percent change in relative risk of diarrheal disease with each 1°C rise in temperature

Sources of variation:

- Etiology
 - all-cause diarrhea

MODE

Š

- pathogen-specific
- Geographic
 - b/t regions
 - w/in countries
- Model specification
 - non-linearities
- Climatological variables (mean or extreme?)
- **Population**

Considering epidemiological studies in the IAMs

Methods

- 1. Literature review of epidemiological studies on diarrheal disease and seasonality and/or climate change
- Reanalyze existing meta-analyses of the relationship between climatological factors and diarrheal disease to explore the importance of ...
 - Pathogen-specificity of diarrheal disease
 - Seasonality and temporal aggregation
 - Spatial heterogeneity and aggregation

Data

- 4 pathogen-specific diarrheal disease meta-analyses
 - Cases of monthly diarrheal disease from time series surveillance epidemiological studies
 - **Rotavirus**: (1) 26 studies, tropics (1974-2003)¹; (2) 63 studies, South Asia (1976-2009)²
 - Pathogenic E. coli: (3) 28 studies, global (1975-2010) 3
 - Cryptosporidiosis: (4) 61 studies, global (1982-2005) ⁴
 - 2. Mean monthly temperature (°C) and monthly precipitation (cm)
 - Hadley Centre CRUTEM4³
 - National Climatic Data Center^{1,2,4}
 - Global Historical Climatology Network-Monthly (GHCN-M) 1,2,3,4
 - Original paper¹

¹Levy et al. (2009). *International Journal of Epidemiology*, 38(6).

²Jagai et al. (2012). *PLoS ONE*, 7(5).

³Phillipsborn et al. (2014, Submitted). Lancet Infectious Disease.

⁴Jagai et al. (2009). Environmental Research, 109(4).

Next Steps

- Reanalyze and harmonize existing meta-analysis models
 - Compare between pathogens (rotavirus, cryptosporidium, E. coli) with same model specification (Phillipsborn et al., 2014):
 - GEE models with poisson distribution and AR(1) correlation structure, clustered by study
 - Exposure variables: (1) T, (2) Ppt, (3) T and Ppt
 - Fixed effects: developed vs. developing
 - Temporal aggregation: monthly (original) vs. annual (IAM) scales
 - Spatial variation: study site vs. regional vs. global
- Test additional climatological data, covariates (e.g. GDP), and model specifications
- Monte Carlo simulations to extend time series and generate range of potential damages

Thank you!

Acknowledgments

Co-authors:

- Dale Whittington, Advisor
- Marc Jeuland (Duke)
- Michael Hanemann (ASU)

Data:

- Karen Levy (Emory)
- Jyotsna Jagai (UIC)

Whittington group

Checkley et al, 2000, Figure 1

References

- Hanemann, M., Jeuland, M., Downs, K., & Whittington, D., (2014). Estimating the Global Health Damages from Climate Change in an Integrated Assessment Model: The Problems of Scale and Aggregation in Damage Functions. Presented at the World Congress of Environmental and Resource Economists, June 28-July 2, 2014.
- Jagai, J. S., Castronovo, D. A., Monchak, J., & Naumova, E. N. (2009). Seasonality of cryptosporidiosis: A meta-analysis approach. *Environmental Research*, **109**(4), 465–478.
- Jagai, J. S., Sarkar, R., Castronovo, D., Kattula, D., McEntee, J., Ward, H., Kang, G., Naumova, E. N. (2012). Seasonality of Rotavirus in South Asia: A Meta-Analysis Approach Assessing Associations with Temperature, Precipitation, and Vegetation Index. *PLoS ONE*, **7**(5), e38168.
- Kolstad, E. W., & Johansson, K. A. (2011). Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea. *Environmental Health Perspectives*, **119**(3), 299–305.
- Levy, K., Hubbard, A. E., & Eisenberg, J. N. S. (2009). Seasonality of rotavirus disease in the tropics: a systematic review and meta-analysis. *International Journal of Epidemiology*, **38**(6), 1487–1496.
- Phillipsborn, R., Ahmed, S., Brosi, B. J., & Levy, K. (*Submitted*). Climatic Drivers of diarrheagenic Esherichia coli: A systematic review and meta-analysis. *The Lancet Infectious Diseases*.
- Pindyck, R. S. (2013). Climate Change Policy: What Do the Models Tell Us? NBER Work. Pap. Ser. 51, 1–23.
- Stern, N. (2013). The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models. *J. Econ. Lit.* **51**, 838–859.

Request for Feedback

- Potential confounders
 - GDP per capita
 - Geographic
 - Water and sanitation
 - Baseline disease rates
- Alternative modeling methods
- Handling different study time periods and lengths
- Distinguish between weather variability and climate change