Sufficient Statistics for Welfare Analysis: A Bridge Between Structural and Reduced-Form Methods

Raj Chetty

Harvard University and NBER

August 2009

MOTIVATION

 Two competing paradigms for policy evaluation and welfare analysis: "structural" vs. "reduced-form"

- Structural approach generally involves two steps: estimate primitives
 of a model and then simulate effects of policies on welfare
 - Critique: strong assumptions needed to identify full primitive structure (e.g., Imbens 2009)
- Reduced-form: estimate causal effects ("treatment effects") by isolating exogenous sources of variation for identification
 - Critique: Estimates not useful for welfare analysis because they are not deep parameters; endogenous to policy regime (e.g., Heckman and Vytlacil 2005, Deaton 2009)

SUFFICIENT STATISTICS

- Past decade of work in public economics provides a strategy that bridges the gap between the two methods
 - Idea: Instead of primitives, identify "sufficient statistics" for welfare analysis that can be estimated using reduced-form methods
 - Any set of primitives (ω) consistent with sufficient statistics (β) generates the same value of welfare gain (dW/dt)

THE SUFFICIENT STATISTIC APPROACH

Structural Primitives

Sufficient Statistics

Welfare Change

$$\frac{\beta_1(t)}{\beta_2(t)} \longrightarrow \frac{\beta_1(t)}{\beta_2(t)}$$

$$\frac{dW}{dt}(t)$$

$$\beta = f(\omega,t)$$

$$y = \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

dW/dt used for policy analysis

ω not uniquely identified

β identified using program evaluation

Sufficient Statistics vs. Structural Methods

- Advantages of sufficient statistic approach
 - need to identify fewer parameters
 - weaker modeling assumptions
 - applicable when positive model unknown (behavioral econ)
- Disadvantages of sufficient statistic approach
 - new formula must be derived for each question
 - easily misapplied because no model evaluation required
 - out of sample predictions may be less reliable

→ Sufficient statistic methods provide a useful complement to (rather than a substitute for) structural methods

OUTLINE

- 1. Motivating Examples: Revenue and Deadweight Cost of Taxes
- 2. General Framework
- 3. Application 1: Social Insurance
- 4. Application 2: Income Taxation
- 5. Application 3: Behavioral Models

Motivating Example 1: Estimation of Revenue from a Gas Tax

- Suppose government increases gas tax by 10 cents per gallon
- How much extra revenue will this generate?
 - Let x₁ = gas consumption and t = gas tax → revenue R = tx₁
 - For this question, sufficient to estimate dx₁/dt because

$$dR/dt = x_1 + t \cdot dx_1/dt$$

- dx₁/dt is a reduced-form response that can be estimated using quasiexperimental methods
 - Not a structural parameter: complex function of preferences and technology
 - But <u>sufficient</u> to answer this particular question → do not need to identify full structural model.

Motivating Example 2: Deadweight Loss (Harberger 1964)

- Revenue example is an accounting calculation; more interesting economic applications involve calculation of changes in utilities/welfare
- Precursor to modern sufficient statistic literature: Harberger's partialequilibrium analysis of deadweight cost of taxation
- Objective: calculate deadweight loss of a tax.
 - Consider an environment with N markets in competitive equilibrium
 - Individuals have quasilinear utility
 - Government levies a unit tax t on good x₁
 - How much surplus is lost because of transactions that fail to occur b/c of the tax t?

Harberger (1964): Deadweight Loss

- Two approaches to answer this question
 - 1. Specify an *N* good supply+demand system and recover preferences + technology by estimating supply and demand curves
 - Challenging to implement: need 2N instruments
 - 2. Harberger "triangle" formula

Harberger Triangle with Fixed Producer Prices

Harberger (1964): Deadweight Loss

$$\frac{dW}{dt} = t \frac{dx_1}{dt}$$

- Reduced-form effect of tax increase on demand for taxed good (dx₁/dt) is also a sufficient statistic for dW/dt
 - Do not need to identify primitives of model or estimate substitution patterns across all goods
 - Tax induces changes in demand in all markets, but these responses do not have a first-order effect on W b/c of optimization
- Note that sufficient statistic is total derivative, including all GE effects:

$$\frac{dx_1}{dt} = \frac{\partial x_1}{\partial p_1} \frac{\partial p_1}{\partial t} + \frac{\partial x_1}{\partial p_2} \frac{\partial p_2}{\partial t} + \dots + \frac{\partial x_1}{\partial p_J} \frac{\partial p_J}{\partial t}$$

DWL of non-marginal tax change: integrate tdx₁/dt from t₁ to t₂

Harberger (1964): Deadweight Loss

$$\frac{dW}{dt} = t \frac{dx_1}{dt}$$

- Same formula applies with heterogeneity and discrete choice
 - Only need estimate of aggregate demand response to tax change
 - With discrete choices, individual demand fn.'s not smooth but expected welfare is → envelope conditions

Modern Sufficient Statistic Approach: A Six Step Rubric

1. Specify model structure (prefs, technology) and social welfare function:

$$W(t) = \max_{x} U(x) + \sum_{m=1}^{M} \lambda_m G_m(x, t)$$

- 2,3. Write dW/dt in terms of marginal utilities using envelope conditions
- 4. Recover marginal utilities from observed choices using comparative statics of model to obtain sufficient statistic formula

$$\frac{dW}{dt}(t) = f(t, \frac{dx_1}{dt}, \frac{dx_1}{dZ}, \frac{dx_2}{dt}, \frac{dx_2}{dZ}, \dots)$$

5. Empirical implementation: mapping non-marginal LATE estimates to sufficient statistics

6. Model evaluation: do structural assumptions fit the data?

Recent Examples of Structural, Reduced-Form, and Sufficient Statistic Studies

	Structural	Reduced Form	Sufficient Statistic
Social Insurance	Wolpin (1987) Hansen and Imrohoglu (1992) Chetty (2003) Golosov and Tsyvinski (2006) Lentz (2007) Einav, Finkelstein, Schrimpf (2008)	Hamermesh (1982) Manning et al. (1987) Meyer (1990) Cutler and Gruber (1996) Autor and Duggan (2003) Lalive et al. (2007)	Gruber (1997) Chetty (2006) Shimer and Werning (2007) Chetty and Saez (2008a) Einav, Finkelstein, Cullen (2008)
Taxation	Slemrod et al. (1994) Hoynes (1996) Keane and Moffitt (1998) Blundell et al. (2000) Golosov and Tsyvinksi (2006) Weinzierl (2008)	Eissa and Liebman (1996) Gruber and Wise (1999) Goolsbee (2000) Friedberg (2000) Meyer and Rosenbaum (2001) Blau and Khan (2007)	Feldstein (1999) Piketty (1997) Diamond (1998) Saez (2001) Goulder and Williams (2003) Chetty (2008)
Behavioral Models	Angeletos et al. (2001) İmrohoroğlu, İmrohoroğlu, Joines (2003) Liebman and Zeckhauser (2004) DellaVigna and Paserman (2005) Amador, Werning, and Angeletos (2006)	Madrian and Shea (2002) Shapiro (2006) Ashraf, Karlan, and Yin (2006) Chetty and Saez (2008b) DellaVigna (2008)	Bernheim and Rangel (2008) Chetty, Looney, Kroft (2008)
5 3. 5 . 5	· · · · · · · · · · · · · · · · · · ·	, ,	55ky, 2551.5y, 1451. (2556)

Static Model of Social Insurance

- Two states: high and low (unemployed, sick ,etc.).
 - Income in high state: A + w_h; in low state: A + w_l
 - Consumption in high state: c_h; in low state: c_l
- Agent can control probability of high state via effort e at cost $\psi(e)$
 - Reflects search effort, investment in health, etc.
 - Choose units so that probability of high state is p(e) = e

Static Model of Social Insurance (Baily 1978)

- Imperfect private insurance: individuals can transfer \$z\$ from high state to low state via informal risksharing at cost $q(b_p)$
 - \$1 increase in $c_l \rightarrow (1-e)/e + q(b_p)$ reduction in c_h
- Social insurance: government pays a benefit b in low state financed by a tax t(b)=b-(1-e)/e

Social welfare:

$$W(b) = eu(A + w_h - \frac{1 - e}{e}b_p - q(b_p) - t(b)) + (1 - e)u(A + w_l + b_p + b) - \psi(e)$$

Marginal welfare gain has marginal-utility representation:

$$\frac{dW}{db} = (1 - e)\{u'(c_l) - (1 + \frac{\varepsilon_{1-e,b}}{e})u'(c_h)\}$$

 To convert to money-metric, compare welfare gain of increasing insurance program and wage bill in high state:

$$M_W(b) = \frac{\frac{dW}{db}(b)/(1-e)}{\frac{dW}{dw_h}(b)/e} = \frac{u'(c_l)-u'(c_h)}{u'(c_h)} - \frac{\varepsilon_{1-e,b}}{e}$$

Chetty (2008)

- Uses comparative statics of effort choice (e) to back out marginal utils.
- First order condition for effort:

$$\psi'(e) = u(c_h) - u(c_l)$$

Effects of cash grant (e.g. severance pay) and higher benefit level:

$$\frac{\partial e}{\partial A} = \frac{\{u'(c_h) - u'(c_l)\}}{\psi''(e)} \le 0$$
$$\frac{\partial e}{\partial b} = -u'(c_l)/\psi''(e)$$

It follows that

$$\frac{u'(c_l) - u'(c_h)}{u'(c_h)} = \frac{-\partial e/\partial A}{\partial e/\partial A - \partial e/\partial b}$$

$$\Rightarrow M_W(b) = \frac{-\partial e/\partial A}{\partial e/\partial A - \partial e/\partial b} - \frac{\varepsilon_{1-e,b}}{e}$$

Liquidity effect (de/dA) measures completeness of private insurance;
 moral hazard effect (de/dw_h) measures efficiency cost of insurance.

Card, Chetty, and Weber (2007)

Effect of Severance Pay on Unemployment Durations in Austria

Calibration of Chetty (2008) formula

 Plug reduced-form estimates of de/dA and de/db into formula to calculate dW/db

- Welfare gain from raising benefit level by 10% from current level in U.S. (50% wage replacement) is \$5.9 bil = 0.05% of GDP
- In structural models calibrated to match sufficient statistics, dW/db falls rapidly with b
- Small dW/db suggests we are near optimal benefit level

Recent Examples of Structural, Reduced-Form, and Sufficient Statistic Studies

ent Statistic
97) 06) d Werning (2007) Saez (2008a) delstein, Cullen (2008)
1999) 97) 1998) I) Id Williams (2003) 08)
and Rangel (2008) oney, Kroft (2008)
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Feldstein (1995, 1999)

- Following Harberger, large literature in labor estimated effect of taxes on hours worked to assess efficiency costs of taxation
- Feldstein observed that labor supply involves multiple dimensions, not just choice of hours: training, effort, occupation
- Structural approach: account for each of the potential responses to taxation separately and then aggregate
- Feldstein's solution: elasticity of taxable income with respect to taxes is a sufficient statistic for calculating deadweight loss

$$\frac{dW}{dt} = t \frac{dTI}{dt}$$

→ Large literature focused on estimating taxable income elasticity

Chetty, Friedman, Olsen, and Pistaferri (2009)

- Existing microeconometric literature on labor supply generally finds near-zero response of taxable income to tax rate
 - Uses short-run changes in behavior to identify elasticities
 - E.g. change in behavior in year after a tax reform
 - Short-run response could be attenuated b/c of adjustment frictions
- Elasticity that is a sufficient statistic for long-run efficiency cost calculations in a model with adjustment costs is long-run elasticity
- Illustrates danger of implementing sufficient statistic approach without determining if model used to derive the suff stat formula is actually valid

Chetty, Friedman, Olsen, and Pistaferri (2009)

- How to estimate "long run" elasticity credibly?
- One strategy: time-series/macro approach. Problems with identification.
- Our approach: compare small and large tax changes.
- In a model with adjustment costs, *short-run* response to large tax change is a sufficient stat for *long-run* response and deadweight loss.

Effect of Adjustment Costs on Short Run Elasticity

Marginal Tax Rates in Denmark in 1994

Bunching at Kink Points

Income/Labor Supply

Bunching at Kink Points

Income/Labor Supply

Bunching at Kink Points

Income/Labor Supply

All Wage Earners: Top Kink

Married Women

Married Women with High (Above Median) Experience

Married Women with High Experience – Professionals

All Wage Earners – Military

Married Women, 1994

Married Women, 1995

All Wage Earners Around 10% Tax Kink

All Wage Earners Around 8% Tax Kink

All Wage Earners Around 6% Tax Kink

Observed Earnings Responses to Small Tax Reforms

Observed Elasticity Estimates Using Small Tax Reforms

Dependent Variable: % Change in Labor Income:

Subgrou	p: Female W	age Earners	Married Females	Married Fem. Professionals w/ High Exp.	Teachers
Variable:	(1)	(2)	(3)	(4)	(5)
% Change in NTR	-0.014 (0.008)	0.002 (0.006)	0.006 (0.010)	0.009 (0.033)	-0.024 (0.031)
Labor Income Spline	X	x	x	х	x
Total Income Spline	x		x	x	x
Year Fixed Effects	x	X	x	x	x
Age Fixed Effects	x	X	x	X	x
Region Fixed Effects	x		X	X	x
Occupation Fixed Effs	s. x		x	X	x
Sample Size	6,281,767	6,286,833	3,203,742	212,815	253,283

Observed Elasticity vs. Size of Tax Change

Married Female Wage Earners

% Change in Net-of-Tax Rate

Recent Examples of Structural, Reduced-Form, and Sufficient Statistic Studies

	Structural	Reduced Form	Sufficient Statistic
Social Insurance	Wolpin (1987) Hansen and Imrohoglu (1992) Chetty (2003) Golosov and Tsyvinski (2006) Lentz (2007) Einav, Finkelstein, Schrimpf (2008)	Hamermesh (1982) Manning et al. (1987) Meyer (1990) Cutler and Gruber (1996) Autor and Duggan (2003) Lalive et al. (2007)	Gruber (1997) Chetty (2006) Shimer and Werning (2007) Chetty and Saez (2008a) Einav, Finkelstein, Cullen (2008)
Taxation	Slemrod et al. (1994) Hoynes (1996) Keane and Moffitt (1998) Blundell et al. (2000) Golosov and Tsyvinksi (2006) Weinzierl (2008)	Eissa and Liebman (1996) Gruber and Wise (1999) Goolsbee (2000) Friedberg (2000) Meyer and Rosenbaum (2001) Blau and Khan (2007)	Feldstein (1999) Piketty (1997) Diamond (1998) Saez (2001) Goulder and Williams (2003) Chetty (2008)
Behavioral Models	Angeletos et al. (2001) İmrohoroğlu, İmrohoroğlu, Joines (2003) Liebman and Zeckhauser (2004) DellaVigna and Paserman (2005) Amador, Werning, and Angeletos (2006)	Madrian and Shea (2002) Shapiro (2006) Ashraf, Karlan, and Yin (2006) Chetty and Saez (2008b) DellaVigna (2008)	Bernheim and Rangel (2008) Chetty, Looney, Kroft (2008)

Empirical Evidence

- Existing results on optimal tax/transfer policy are based on models that assume full optimization relative to government policies
- Growing body of evidence indicates that individuals fail to optimize relative to many parameters of the environment

Effect of Posting Tax-Inclusive Prices: Mean Quantity Sold

Effect of Fosting Tax-inclusive Frices. Weart Quartity Sold			
	TREATMENT STORE		
Period	Control Categories	Treated Categories	Difference
Baseline	26.48	25.17	-1.31
	(0.22)	(0.37)	(0.43)
	07.00	00.07	0.45
Experiment	27.32	23.87	-3.45
	(0.87)	(1.02)	(0.64)
Difference	0.84	-1.30	$DD_{TS} = -2.14$
over time	(0.75)	(0.92)	(0.64)
over time	(0.70)	(0.02)	(0.04)
	CON	TROL STORES	
Period	Control Categories	Treated Categories	Difference
Baseline	30.57	27.94	-2.63
	(0.24)	(0.30)	(0.32)
	,	,	,
Experiment	30.76	28.19	-2.57
	(0.72)	(1.06)	(1.09)
D:((0.40	0.05	DD 0.00
Difference	0.19	0.25	$DD_{CS} = 0.06$
over time	(0.64)	(0.92)	(0.90)
		DDD Estimate	-2.20 (0.58)

Figure 2a
Per Capita Beer Consumption and State Beer Excise Taxes

Figure 2b Per Capita Beer Consumption and State Sales Taxes

Explaining EIC: 4 steps

Single With Two or More Children

The EIC (Earned Income Credit) is a tax refund that gives families as much as \$4,500 per year.

We want to explain how the EIC works to help you decide how much to work and earn this year. In 2006, you made \$10,000 \rightarrow you are getting an EIC of \$4,000 in your refund.

- · Your earnings this year (in 2007) will determine the size of your EIC refund next year
- The EIC has 3 ranges: 1) Increasing, 2) Peak, 3) Decreasing

4.Take-home Message

You are in the **increasing** range of the **EIC**. Think about it like this:

- (increasing) Suppose you earn \$10 an hour, then you are really making \$14.00 an hour.
- (peak) Your earnings are maxing-out the EIC amount
- (decreasing) If you earn \$10 more, your EIC is reduced by \$2.10

3. Table

EIC Range	If you earn between	EIC refund will be	If you earn \$10 more, the EIC
Increasing	\$0-\$11,790	\$0 up to \$4,716	Increases by \$4
Peak	\$11,790-\$15,390	\$4,716	Stays the same
Decreasing	\$15,390-\$37,780	\$4,716 down to \$0	Decreases by \$2.10

1. Fill in earnings, EIC amount

2. Explain and dot graph

Effect of Treatment on Perceived Marginal Incentives

Year 2 Income Distributions: 1 Dep., Clients of Complying Tax Preparers

Year 2 Income Distributions: 2+ Deps., Clients of Complying Tax Preparers

Year 2 Wage Earnings Distributions: 1 Dep., Clients of Complying Tax Preparers

Wage Earnings Distributions: 2+ Deps., Clients of Complying Tax Preparers

Chetty, Looney, Kroft (2008): Welfare Analysis in Behavioral Models

- How to do welfare analysis when agents make mistakes?
- Objective: Develop formulas for incidence and efficiency costs of taxes that allow for imperfect optimization relative to taxes

- Many potential positive models for information/salience effects (cognitive costs, heuristics, psychological factors)
- Therefore develop a method of welfare analysis that does not rely on a specific positive model of optimization errors

<u>Setup</u>

- Two goods, x_1 and x_2 ; normalize price of x_2 to 1
- Good x_2 untaxed. Government levies a tax t on x_1 ; tax not included in the posted price (not salient).
- Representative consumer has quasilinear utility:

$$U(x_1) = u(x_1) + Z - (p+t)x_1$$

- Key deviation from standard neoclassical model: do **not** assume that x_1 is chosen to maximize $U(x_1)$
- Instead, take demand $x_1(p,t)$ as an empirically estimated object, permitting $dx_1/dp \neq dx_1/dt$
- Place no structure on demand functions except for feasibility:

$$(p+t)x_1(p,t) + x_2(p,t,Z) = Z$$

Calculation of Excess Burden

Social welfare function to calculate excess burden:

$$W(t) = \{u(x_1) + Z - (p+t)x_1\} + tx_1$$

- Here, no envelope condition for x₁
- Totally differentiate W(t) to obtain

$$\frac{dW}{dt} = \left[u'(x_1) - p\right] \frac{dx_1}{dt}$$

- Challenge: identifying u'(x₁) when agents do not optimize perfectly
 - In neoclassical model, know that $u'(x_1) = p+t$ from f.o.c.
 - One strategy: specify structural model of how x₁ deviates from optimal choice, then back out u'(x₁)
 - Alternative: make an assumption to narrow class of models and identify sufficient stats.

Preference Recovery Assumption

A1 When tax inclusive prices are fully salient, the agent chooses the same allocation as a fully optimizing agent:

$$x_1(p,0) = \arg\max_x u(x) + Z - px$$

- → Two steps in efficiency calculation:
 - 1. Use **price-demand** x(p,0) to recover utility as in standard model
 - 2. Use **tax-demand** $x(p_0,t)$ to calculate W(t) and DWL
- Easy to illustrate graphically in case of quasilinear utility

Figure 4
Excess Burden with Quasilinear Utility and Fixed Producer Prices

Deadweight Loss with Optimization Errors

When utility is quasilinear, excess burden of a small tax t is

$$EB \simeq -\frac{1}{2} t^2 \theta \frac{\partial x}{\partial t}$$
 where $\theta = \frac{\partial x}{\partial t} / \frac{\partial x}{\partial p}$

- Simple modification of Harberger formula: price (or wage) and tax elasticities are together sufficient statistics
- Similar modification of standard formula for tax incidence
- Formula permits arbitrary optimization errors w.r.t. taxes
 - Nests Liebman and Zeckhauser (2004) schmeduling model,
 Slemrod (2006) overestimation of estate taxes
 - But requires optimization w.r.t. prices

Potential Applications in Environmental and Resource Economics

- 1. Program evaluation estimates useful for design of optimal corrective policies (Chay, Greenstone, etc.)
- 2. Valuation studies using capitalization in house prices already common; combined with mobility responses, may be able to permit heterogeneity
- 3. Behavioral applications
 - Gallagher and Muehlegger (2008): sales tax rebates for hybrid vehicle purchases have 7 times as large an effect as income tax rebate of equivalent amount
 - Chetty, Gerard, and Saez (in progress): experiments of real time feedback on electricity consumption with Google
 - What are the welfare implications of Pigouvian taxes and environmental regulation when people do not optimize perfectly?

Combining Structural and Sufficient Statistic Methods

- 1. Use structural model for overidentification tests: is there a plausible structure consistent with estimated sufficient stats?
- Test whether structural prediction for marginal welfare gains match sufficient statistic prediction
- Calibrate structural model to match key moments for welfare and make out of sample predictions
- → Pick a point on interior of continuum between program evaluation and fully structural work.

SUFFICIENT STATISTIC VS. STRUCTURAL APPROACHES

Advantages:

- Simplifies identification: permits focus on estimating dx₁/dt using transparent, design-based methods (e.g. experiments)
 - Can therefore be implemented with fewer assumptions than structural method (e.g. arbitrary heterogeneity)
- 2. Can be applied when positive model unclear

Disadvantages:

- Can only be used for local welfare analysis around observed policies unless paired with structural model
- 2. "Black box": welfare analysis never "theory free."
 - Primitives not identified → cannot determine if assumptions consistent with data

Heterogeneity

- Benefit of sufficient statistic approach is particularly evident in a model that permits heterogeneity across individuals
- N agents with wealth Z_i and utility functions

$$u^i(x^i) + y$$

Social welfare:

$$W(t) = \left\{ \sum_{i=1}^{N} \max_{x^{i}} \left[u^{i}(x^{i}) + Z^{i} - tx_{1}^{i} \right] - c(x) \right\} + t \sum_{i=1}^{N} x_{1}^{i}$$

- Structural method requires estimation of demand systems for all agents
- Sufficient statistic formula is unchanged still need only slope of aggregate demand dx₁/dt

$$\frac{dW}{dt} = -\sum_{i=1}^{N} x_1^i + \sum_{i=1}^{N} x_1^i + t \frac{d\sum_{i=1}^{N} x_1^i}{dt} = t \frac{dx_1}{dt}$$

Discrete Choice

- Now suppose individuals can choose only one of the J products
 - E.g. car models, modes of transportation, or neighborhoods
- Each product *j* characterized by a vector of *K* observable attributes

$$x_j = (x_{1j,\dots,}x_{Kj})$$

and an unobservable attribute ζ_i

Agent i's utility from choice j is

$$u_{ij} = v_{ij} + \varepsilon_{ij}$$
with $v_{ij} = Z^i - p_j + \zeta_j + \phi^i(x_j)$

 Let P_{ij} denote probability i chooses product j, P_j total expected demand for product j, and c_i(P_i) cost of production

- Assume ε_{ii} has a type 1 extreme value distribution (mixed logit)
- Then probability individual i chooses product j is

$$P_{ij} = \frac{\exp(v_{ij})}{\sum_{j} \exp(v_{ij})}$$

and consumer i's expected surplus is

$$S_i(p_1,\ldots,p_J) = E \max(u_{i1},\ldots,u_{iJ}) = \log(\sum_j \exp v_{ij})$$

Aggregating over consumers and including producer profits gives

$$W = \sum_{i} \log(\sum_{j} \exp(v_{ij})) + pP - c(P)$$

- Structural approach to policy analysis: identify ϕ_i and c(P) using methods e.g. in Berry (1994) or BLP (1995)
- Sufficient statistic: two examples
 - 1. Tax on good 1. Then easy to establish that

$$\frac{dW}{dt} = t \frac{dP_1}{dt}$$

2. Tax on all products in the market.

$$\frac{dW}{d\tau} = \tau \sum_{j} p_{j} \frac{dP_{j}}{d\tau} = \tau \frac{dE_{P}}{d\tau}$$

where E_p = total expenditure on products in the market

- Do not need to estimate substitution patterns within market
- Microeconomic demands not smooth but expected welfare is → use similar envelope conditions

Teachers Wage Earnings: 1995

Teachers Wage Earnings: 1998

Teachers Wage Earnings: 2001

Distribution of Modes in Occupation Wage Earnings Distributions

Intellectual History

- Idea that it is adequate to estimate "sufficient statistics" to answer some questions dates to Marschak (1954) and Koopmans (1954)
- But applied to a wide range of policy questions only in past decade
 - 1950-70s simple structural models fit to macro and micro data
 - 1980s: concerns about identification of non-linear structural models with heterogeneity (e.g. Ashenfelter 1978, LaLonde 1985)
 - → Quasi-experimental methods (e.g. Angrist 1990, Card and Krueger 1995; Imbens and Wooldridge 2008)
 - 1990s: Large body of "program evaluation" estimates developed
- → Most recent literature integrates program evaluation estimates with structural models to make statements about welfare