# New Quality-of-Life Rankings

Evidence from U.S. Counties and PUMAs

### David S. Bieri\* Nick V. Kuminoff<sup>†</sup> Jaren C. Pope<sup>‡</sup>

\*School of Public & International Affairs, Virginia Tech <sup>†</sup>W. P. Carey School of Business, Dept. of Economics, Arizona State University <sup>‡</sup>Dept. of Ag. & Applied Economics, Virginia Tech

Camp Resources XVI – 14 August 2009



# Location choice, agglomeration and quality-of-life (QOL)

#### Questions

- Comparing QOL of different geographic areas of increasing importance to households, businesses and policymakers
- Measuring impact of drivers of urbanisation and agglomeration
- Quantify how households' locational choices are affected by the non-price interaction of non-marketed goods
- Widely available QOLI unsuitable welfare analysis and policy purposes

#### Modelling quality-of-life



# Location choice, agglomeration and quality-of-life (QOL)

#### Questions

- Comparing QOL of different geographic areas of increasing importance to households, businesses and policymakers
- Measuring impact of drivers of urbanisation and agglomeration
- Quantify how households' locational choices are affected by the non-price interaction of non-marketed goods
- Widely available QOLI unsuitable welfare analysis and policy purposes

#### Modelling quality-of-life

Produce theoretically consistent rankings of quality of life



# Location choice, agglomeration and quality-of-life (QOL)

#### Questions

- Comparing QOL of different geographic areas of increasing importance to households, businesses and policymakers
- Measuring impact of drivers of urbanisation and agglomeration
- Quantify how households' locational choices are affected by the non-price interaction of non-marketed goods
- Widely available QOLI unsuitable welfare analysis and policy purposes

#### Modelling quality-of-life

- Produce theoretically consistent rankings of quality of life
- Key input for computing regional price levels



#### Seminal papers

• Rosen (1979), Roback (1982)

#### Related work and recent applications

- Quality-of-life: Blomquist *et al.* (1988), Kahn (1995), Costa and Kahn (2003), Shapiro (2006), Rappaport (2008, 2009)
- New Economic Geography: Südekum (2006), Kosfeld *et al.* (2008), Winters (2009)
- Regional growth: Monchuk and Miranowski (2007), Deller et al. (2008)
- Happiness and economics of well-being: Brereton *et al.* (2008), Moro *et al.* (2008), Luechinger (2009)
- Spatial hedonics and amenities: Brasington and Hite (2005, 2008), Wu and Gopinath (2008), Redfearn (2009)



#### Seminal papers

• Rosen (1979), Roback (1982)

#### Related work and recent applications

- Quality-of-life: Blomquist *et al.* (1988), Kahn (1995), Costa and Kahn (2003), Shapiro (2006), Rappaport (2008, 2009)
- New Economic Geography: Südekum (2006), Kosfeld *et al.* (2008), Winters (2009)
- Regional growth: Monchuk and Miranowski (2007), Deller et al. (2008)
- Happiness and economics of well-being: Brereton *et al.* (2008), Moro *et al.* (2008), Luechinger (2009)
- Spatial hedonics and amenities: Brasington and Hite (2005, 2008), Wu and Gopinath (2008), Redfearn (2009)



#### Seminal papers

- Rosen (1979), Roback (1982)
- Related work and recent applications
  - Quality-of-life: Blomquist *et al.* (1988), Kahn (1995), Costa and Kahn (2003), Shapiro (2006), Rappaport (2008, 2009)
  - New Economic Geography: Südekum (2006), Kosfeld *et al.* (2008), Winters (2009)
  - Regional growth: Monchuk and Miranowski (2007), Deller et al. (2008)
  - Happiness and economics of well-being: Brereton *et al.* (2008), Moro *et al.* (2008), Luechinger (2009)
  - Spatial hedonics and amenities: Brasington and Hite (2005, 2008), Wu and Gopinath (2008), Redfearn (2009)



#### Seminal papers

- Rosen (1979), Roback (1982)
- Related work and recent applications
  - Quality-of-life: Blomquist *et al.* (1988), Kahn (1995), Costa and Kahn (2003), Shapiro (2006), Rappaport (2008, 2009)
  - New Economic Geography: Südekum (2006), Kosfeld *et al.* (2008), Winters (2009)
  - Regional growth: Monchuk and Miranowski (2007), Deller et al. (2008)
  - Happiness and economics of well-being: Brereton *et al.* (2008), Moro *et al.* (2008), Luechinger (2009)
  - Spatial hedonics and amenities: Brasington and Hite (2005, 2008), Wu and Gopinath (2008), Redfearn (2009)



# Roback-Blomquist model

 Implicit amenity prices follow from wage and rent (housing expenditure) differentials in dual-market sorting equilibrium



# Roback-Blomquist model

- Implicit amenity prices follow from wage and rent (housing expenditure) differentials in dual-market sorting equilibrium
- **2** WTP<sub>*aj*</sub> is measured by hedonic gradients  $dp_j/da_j$  and  $dw_j/da_j$  and is estimated via wage and housing hedonic regressions

$$f_j = q_j(dr_j/da_j) - dw_j/da_j$$
 or equivalently  
 $f'_j = h_j(dp_j/da_j) - dw_j/da_j$ 



# Roback-Blomquist model

- Implicit amenity prices follow from wage and rent (housing expenditure) differentials in dual-market sorting equilibrium
- WTP<sub>aj</sub> is measured by hedonic gradients dp<sub>j</sub>/da<sub>j</sub> and dw<sub>j</sub>/da<sub>j</sub> and is estimated via wage and housing hedonic regressions

$$f_j = q_j(dr_j/da_j) - dw_j/da_j$$
 or equivalently  
 $f_j' = h_j(dp_j/da_j) - dw_j/da_j$ 

K amenities prevailing in location j weighted by their full implicit prices yield quality-of-life indices (QOLI<sub>j</sub>)

$$QOLI_j = \sum_{i=1}^{K} f_i a_{ji} \quad j = 1, \dots, N$$

UirginiaTech

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - New rankings are consistent under a variety of alternative specifications.
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - New rankings are consistent under a variety of alternative specifications.
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - New rankings are consistent under a variety of alternative specifications.
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - New rankings are consistent under a variety of alternative specifications.
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - 2 New rankings are consistent under a variety of alternative specifications.
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - One were a series of a seri
  - Quantile results indicate that QOLI might differ for different segments of the population.

- First large-scale, comprehensive update of the seminal study of county-level quality-of-life index (QOLI) rankings by Blomquist *et al.* (AER 78(1), 1988) using the full 2000 5% PUMS.
- Significant expansion of set of amenities by including wide-ranging categories of geographical, environmental, neighbourhood, infrastructure and urbanisation amenities.
- Substantially broadened geography (full contiguous US, not just selected urban areas).
- Key findings
  - Major differences between the updated and original rankings with rank correlations ranging from -0.18 to +0.21.
  - One were the specifications.
    Output:
    Output:
  - Quantile results indicate that QOLI might differ for different segments of the population.

# Remainder of talk

### 🕽 Data set

- Overview of geography
- Amenities

#### Empirical results

- Full implicit prices
- New QOLI rankings
- Preference heterogeneity

## 3 Summary



# Remainder of talk

#### 🕨 Data set

- Overview of geography
- Amenities

### Distance 2 Empirical results

- Full implicit prices
- New QOLI rankings
- Preference heterogeneity

### 3 Summary



# Remainder of talk

#### 🕨 Data set

- Overview of geography
- Amenities

### Distance 2 Empirical results

- Full implicit prices
- New QOLI rankings
- Preference heterogeneity





|                                 |                   |               | Geography     |                  |
|---------------------------------|-------------------|---------------|---------------|------------------|
|                                 |                   | Blomquist     | MSA*          | All <sup>†</sup> |
| # of counties                   |                   | 253           | 1,086         | 3,110            |
| # of PUMAs                      |                   | 1,041         | 1,835         | 2,057            |
| PUMAs per county                |                   | 4.13          | 1.69          | 0.67             |
|                                 | 1980              | 110,617,710   | 170,867,817   | 226,545,805      |
| Population                      | 2000              | 131,860,476   | 224,482,276   | 279,583,437      |
|                                 | 2007 <sup>‡</sup> | -             | -             | 301,621,157      |
|                                 | 1980              | 48.8%         | 75.4%         | 100.0%           |
| Pop. coverage                   | 2000              | 47.2%         | 80.3%         | 100.070          |
| Pop. density (inh. per $mi^2$ ) | 1980              | 419           | 402           | 77               |
|                                 | 2000              | 500           | 259           | 94               |
| Land area (mi <sup>2</sup> )    |                   | 263,840       | 865,437       | 2,959,064        |
| Water area (mi <sup>2</sup> )   |                   | 25,273        | 61,081        | 160,820          |
| Total area (mi <sup>2</sup> )   |                   | 289,113       | 926,518       | 3,119,885        |
| Areal coverage                  |                   | 9.3%          | 29.7%         | 100.0%           |
| N. Obs in sample                |                   | 4,833,916 (P) | 8,875,172 (P) | 10,198,936 (P)   |
| ··· •••                         |                   | 2,587,457 (H) | 4,795,515 (H) | 5,484,870 (H)    |

#### Table: Characteristics of geographical coverage

Notes: \*1980 or 2000 definitions where applicable.  $^{\dagger}$ Contiguous U.S. only.  $^{\ddagger}$ Census Bureau estimate. Source: Authors' calculations using Census data.



#### Figure: Variation of geographical coverage





#### Figure: Shares of geographical coverage



Source: Authors' calculations, U.S. Census Bureau.



David Bieri (SPIA, Virginia Tech)

# Comprehensive set of amenities

- Significant expansion of set of amenities compared to comparable benchmark studies (over 70 vs. 16 amenities in BBH88)
  - 19 geographical amenities (vs. 9 in BBH88)
  - 21 environmental amenities (6)
  - 8 neighbourhood amenities (2)
  - 8 infrastructure amenities (-)
  - 17 urbanisation amenities (1)



# Selected amenities

|                                                           | 1980*              | 2000     |           |        |            |
|-----------------------------------------------------------|--------------------|----------|-----------|--------|------------|
|                                                           | Mean               | Mean     | Std. Dev. | Min.   | Max.       |
| Geographic amenities                                      |                    |          |           |        |            |
| Mean precipitation (inches p.a., 1971–2000)               | 32.00              | 38.13    | 13.54     | 9.81   | 101.96     |
| Mean relative annual humidity (%, 1961–1990)              | 68.30              | 67.64    | 7.40      | 30.50  | 78.00      |
| Mean annual heating degree days                           | 4,326.00           | 4,653.45 | 2,051.88  | 214.49 | 9,608.38   |
| Mean annual cooling degree days                           | 1,162.00           | 1,289.17 | 851.49    | 105.33 | 3,966.34   |
| Mean wind speed (m.p.h., 1961–1990)                       | 8.89               | 8.91     | 1.07      | 6.41   | 11.55      |
| Sunshine (% of possible)                                  | 61.10              | 59.51    | 8.04      | 45.91  | 82.72      |
| Coast (=1 if county on coast)                             | 0.33               | 0.29     | 0.45      | 0      | 1          |
| Environmental amenities                                   |                    |          |           |        |            |
| NPDES effluent dischargers (PCS permits, 1989–1999)       | 1.51               | 16.67    | 32.51     | 0      | 209        |
| Landfill waste (metric tons, 2000) $^{\diamond}$          | $477 	imes 10^{6}$ | 4,106.13 | 25,474.37 | 0      | 351,877.40 |
| Number of superfund sites                                 | 0.88               | 2.73     | 3.71      | 0.00   | 23.00      |
| Number of treatment, storage and disposal facilities      | 46.40              | 34.42    | 59.80     | 0      | 570.00     |
| Heavy fog (mean no. days with visibility $\leq$ 0.25 mi.) | 15.80 <sup>†</sup> | 20.20    | 8.10      | 2.70   | 45.25      |
| PM10 ( $\mu$ g per m <sup>3</sup> )                       | 73.20 <sup>‡</sup> | 23.73    | 5.30      | 5.00   | 47.05      |
| Neighbourhood Amenities                                   |                    |          |           |        |            |
| Crime rate (per 100,000 persons) <sup>◊</sup>             | 647.00             | 4,692.25 | 6,030.59  | 139    | 96,058.00  |
| Student-teacher ratio                                     | 0.080              | 0.056    | 0.021     | 0.026  | 0.329      |

Notes: \* Data used in Blomquist *et al.* (1988). <sup>†</sup> BBH88 unit is miles, rather than total days with a min. visibility of less than 0.25 mi. <sup>‡</sup> BBH88 use total suspended particulates (TSP), a precursor measure to PM10. <sup>◊</sup>indicates possible data misreports.

UirginiaTech

|                        |              | BB         | New spec        |                 |            |
|------------------------|--------------|------------|-----------------|-----------------|------------|
|                        | BBH (AER88)* | BC         | Q <sub>15</sub> | Q <sub>85</sub> | BC         |
|                        | (1)          | (2)        | (3)             | (4)             | (5)        |
| Precip                 | \$49.1       | \$33.4     | \$-0.7          | \$6.5           | \$-97.3    |
| Humidity               | \$-90.7      | \$-14.1    | \$-49.8         | \$16.4          | \$214.2    |
| HDD                    | \$-0.2       | \$-1.0     | \$-0.7          | \$0.1           | \$-1.0     |
| CDD                    | \$-0.8       | \$-2.9     | \$-2.8          | \$0.3           | \$-7.4     |
| WindSpeed              | \$-203.7     | \$597.0    | \$250.1         | \$47.9          | \$-119.6   |
| Sunshine               | \$101.4      | \$83.9     | \$12.4          | \$-3.1          | \$137.0    |
| Coast                  | \$977.4      | \$1,486.3  | \$1,720.5       | \$-323.4        | \$1,002.5  |
| NPDES                  | \$-160.2     | \$-0.4     | \$3.7           | \$-4.8          | \$-7.1     |
| Landfill               | \$-0.2       | \$0.0      | \$-0.1          | \$0.0           | \$0.0      |
| Superfund              | \$-221.6     | \$164.3    | \$217.8         | \$7.5           | \$197.0    |
| TSD                    | \$-1.2       | \$-3.8     | \$-3.4          | \$0.2           | \$12.4     |
| Fog                    | \$-0.8       | \$-73.8    | \$-47.4         | \$-19.8         | \$-104.8   |
| PM10                   | \$-0.8       | \$31.9     | \$-15.3         | \$23.74         | \$151.3    |
| Crime                  | \$-2.1       | \$0.03     | \$0.02          | \$-0.1          | \$0.1      |
| StudTeach <sup>†</sup> | \$44.5       | \$4.7      | \$-17.2         | \$27.1          | \$-17.9    |
| CentralCity            | \$1,347.9    | \$-1,441.8 | \$-689.3        | \$33.96         | \$-2,592.7 |
| New amenities          | -            | -          | -               | -               | Y          |

#### Table: Full implicit prices – Blomquist geography

Notes: Results from alternative specifications (OLS, full Box-Cox, interval regressions) are not reported here. \*The original BHH88 quality-of-life index values are adjusted by CPI inflation and reported in terms of 2000 dollars.  $^{\dagger}$ Full implicit price in \$000s.

| County                      | Rar |     |            | BBH 2000 update | New specification |
|-----------------------------|-----|-----|------------|-----------------|-------------------|
| ,                           | BBH | BC  | BBH        | BC              | BC+               |
|                             | (1) | (2) | (3)        | (4)             | (5)               |
| Marin County, CA            | 142 | 1   | \$-107.5   | \$43,439.8      | \$59,526.5        |
| San Francisco County, CA    | 105 | 2   | \$242.6    | \$41,997.9      | \$58,839.5        |
| Santa Clara County, CA      | 88  | 3   | \$440.9    | \$41,461.8      | \$59,770.6        |
| San Mateo County, CA        | 112 | 4   | \$196.2    | \$39,265.1      | \$55,335.0        |
| Contra Costa County, CA     | 211 | 5   | \$-1,109.3 | \$38,192.7      | \$43,653.8        |
| Alameda County, CA          | 94  | 6   | \$338.6    | \$33,756.4      | \$45,756.0        |
| Los Angeles County, CA      | 58  | 7   | \$1,093.8  | \$30,319.5      | \$38,075.9        |
| Nassau County, NY           | 60  | 8   | \$994.5    | \$30,024.9      | \$51,236.0        |
| New York County, NY         | 216 | 9   | \$-1,167.9 | \$29,070.9      | \$-47,996.3       |
| Bergen County, NJ           | 219 | 10  | \$-1,275.2 | \$28,252.5      | \$44,970.4        |
|                             |     |     |            |                 |                   |
|                             | :   | :   |            |                 | :                 |
| Hamilton County, OH         | 150 | 244 | \$-193.2   | \$5,309.7       | \$5,424.6         |
| East Baton Rouge Parish, LA | 168 | 245 | \$-383.1   | \$5,338.9       | \$-13,975.5       |
| Kenton County, KY           | 162 | 246 | \$-352.4   | \$-12,718.7     | \$-8,902.3        |
| Stearns County, MN          | 89  | 247 | \$440.6    | \$-14,521.0     | \$-12,400.2       |
| Travis County, TX           | 181 | 248 | \$-571.6   | \$-14,669.7     | \$16,060.3        |
| Alachua County, FL          | 165 | 249 | \$-356.8   | \$-15,116.6     | \$4,720.6         |
| Leon County, FL             | 19  | 250 | \$1,927.3  | \$-15,834.2     | \$8,072.8         |
| Lafayette Parish, LA        | 139 | 251 | \$-91.6    | \$-16,283.5     | \$-21,347.5       |
| Cabell County, WV           | 153 | 252 | \$-284.0   | \$-16,921.3     | \$-13,107.8       |
| Hidalgo County, TX          | 239 | 253 | \$-2,023.2 | \$-17,243.0     | \$-18,083.2       |

#### Table: Quality-of-life rankings – Blomquist geography



| County                   | R   | ank   |            | BBH 2000 update | New specification |
|--------------------------|-----|-------|------------|-----------------|-------------------|
|                          | BBH | BC    | BBH        | BC              | BC+               |
|                          | (1) | (2)   | (3)        | (4)             | (5)               |
| Monroe County, FL        | -   | 1     | -          | \$63,154.2      | \$58,430.0        |
| Santa Clara County, CA   | 59  | 2     | \$1,054.6  | \$38,081.1      | \$50,731.2        |
| San Francisco County, CA | 71  | 3     | \$814.3    | \$35,595.5      | \$49,180.2        |
| San Mateo County, CA     | 65  | 4     | \$921.8    | \$33,770.9      | \$46,195.9        |
| Middlesex County, MA     | -   | 5     | -          | \$33,371.1      | \$39,708.6        |
| Los Angeles County, CA   | 206 | 6     | \$-990.9   | \$33,049.9      | \$33,233.3        |
| Marin County, CA         | 143 | 7     | \$-125.1   | \$33,016.1      | \$53,451.9        |
| Alameda County, CA       | 24  | 8     | \$1,817.6  | \$32,440.3      | \$38,367.8        |
| Pacific County, WA       | -   | 9     | -          | \$32,200.5      | \$21,347.7        |
| Contra Costa County, CA  | 228 | 10    | \$-1,524.1 | \$31,575.0      | \$37,425.2        |
|                          |     |       |            |                 |                   |
|                          | :   | :     | :          | :               | :                 |
| Washington County, VT    | -   | 3,100 | -          | \$-9,230.2      | \$6,621.5         |
| McMullen County, TX      | -   | 3,101 | -          | \$-9,240.1      | \$32,280.1        |
| Karnes County, TX        | -   | 3,102 | -          | \$-9,264.8      | \$-10,343.9       |
| Mille Lacs County, MN    | -   | 3,103 | -          | \$-9,520.9      | \$-1,063.1        |
| Crow Wing County, MN     | -   | 3,104 | -          | \$-9,700.5      | \$5,778.6         |
| Gallia County, OH        | -   | 3,105 | -          | \$-9,791.1      | \$-6,931.4        |
| Scioto County, OH        | -   | 3,106 | -          | \$-9,936.1      | \$-5,884.8        |
| Zapata County, TX        | -   | 3,107 | -          | \$-10,010.6     | \$13,309.8        |
| Greenup County, KY       | -   | 3,108 | -          | \$-10,503.6     | \$-12,568.8       |
| Bedford city, VA         | -   | 3,109 | -          | \$-13,452.6     | \$-64,139.8       |

#### Table: Quality-of-life rankings – entire U.S.



# Spatial pattern of new QOL estimates

All amenities – average effects





David Bieri (SPIA, Virginia Tech

# Spatial pattern of new QOL estimates

All amenities – 15% quantile





|          | BBH specification |       |       |         |        | New specification |        |          |         |
|----------|-------------------|-------|-------|---------|--------|-------------------|--------|----------|---------|
|          | BBH88             | OLS   | BC    | BC full | IntReg | OLS+              | BC+    | BC full+ | IntReg+ |
| DDU00    | 1 000             | 0.100 | 0.000 | 0.100   | 0.100  | 0.157             | 0.100  | 0.100    | 0.155   |
| BBH88    | 1.000             | 0.120 | 0.096 | -0.186  | 0.120  | 0.157             | 0.122  | 0.199    | 0.155   |
| OLS      | -                 | 1.000 | 0.997 | -0.886  | 1.000  | 0.580             | 0.588  | 0.422    | 0.579   |
| BC       | -                 | -     | 1.000 | -0.883  | 0.997  | 0.568             | 0.580  | 0.415    | 0.568   |
| BC full  | -                 | -     | -     | 1.000   | -0.885 | -0.511            | -0.513 | -0.436   | -0.510  |
| IntReg   | -                 | -     | -     | -       | 1.000  | 0.580             | 0.588  | 0.423    | 0.579   |
| OLS+     | -                 | -     | -     | -       | -      | 1.000             | 0.994  | 0.831    | 1.000   |
| BC+      | -                 | -     | -     | -       | -      | -                 | 1.000  | 0.840    | 0.995   |
| BC full+ | -                 | -     | -     | -       | -      | -                 | -      | 1.000    | 0.834   |
| IntReg+  | -                 | -     | -     | -       | -      | -                 | -      | -        | 1.000   |

#### Table: Quality-of-life index rank correlations

Notes: The rank correlation between any two specifications i and j are computed as Spearman's rank correlations with  $\rho = 1 - \frac{6\sum_{k=1}^{p} d_k^2}{n(n^2-1)}$ , where n is the number of observations and  $d_k^{ij}$  is the k-th observation's difference between the rank from specification i and the rank from specification j.



# Quantile wage regressions – Blomquist geography





# Quantile wage regressions – entire U.S.





# Quantile housing regressions – Blomquist geography





# Quantile housing regressions – entire U.S.









David Bieri (SPIA, Virginia Tech

#### Work in progress:

• Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework



- Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework
- Econometric issues:



- Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework
- Econometric issues:
  - Instrumenting for endogenous attributes



- Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework
- Econometric issues:
  - Instrumenting for endogenous attributes
  - $\bullet~$  WTP endogeneity  $\rightarrow~$  unobservable attributes affect both consumption and WTP



- Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework
- Econometric issues:
  - Instrumenting for endogenous attributes
  - $\bullet~$  WTP endogeneity  $\rightarrow~$  unobservable attributes affect both consumption and WTP
- Intraurban variation in QOL



- Introduce theoretically consistent rankings based on heterogeneous preferences within augmented Roback-Blomquist framework
- Econometric issues:
  - Instrumenting for endogenous attributes
  - $\bullet~$  WTP endogeneity  $\rightarrow$  unobservable attributes affect both consumption and WTP
- Intraurban variation in QOL
- Variation in QOL across different amenity bundles

