Estimating the Effects of School Indoor Air Quality on Academic Outcomes

Tess Stafford

Department of Economics University of Texas

> IGERT: Indoor Environmental Science & Engineering The University of Texas

Why should we care about IAQ?

- $\sim 90\%$ of time spent indoors
- Demand for cheaper building materials and consumer products is increasing
- Buildings have been getting tighter and tighter

Why is this project important?

- 20% of US schools suffer from poor IAQ (GAO 1995)
- Children spend a large fraction of time in school
- Indoor air pollution poses a greater risk to children
- "Novel" methodological approach

Academic
$$\rightarrow P_{i, s, t} = f(\mathbf{X}_{i, s, t}, \mathbf{c}_i, \mathbf{s}_s; \beta) + u_{i, s, t}$$

Academic
$$\rightarrow P_{i, s, t} = f(\mathbf{x}_{i, s, t}, \mathbf{c}_{i}, \mathbf{s}_{s}; \beta) + u_{i, s, t}$$

performance Individual characteristics

Academic
$$\rightarrow P_{i, s, t} = f(\mathbf{x}_{i, s, t}, \mathbf{c}_{i}, \mathbf{s}_{s}; \beta) + u_{i, s, t}$$

performance School characteristics

Academic
$$P_{i, s, t} = f(\mathbf{x}_{i, s, t}, \mathbf{c}_{i}, \mathbf{s}_{s}; \beta) + u_{i, s, t}$$

Indoor air quality

 $P_{i,s,t} = \mathbf{X}_{i,s,t}\beta_{x} + \beta_{q}q_{s,t} + \mathbf{c}_{i}\beta_{c} + \mathbf{s}_{s}\beta_{s} + u_{i,s,t}$ Parameter of interest

$$P_{i,s,t} = \mathbf{X}_{i,s,t}\beta_x + \beta_q q_{s,t} + \mathbf{c}_i \beta_c + \mathbf{s}_s \beta_s + u_{i,s,t}$$

Concerns:

• Unobserved heterogeneity

$$P_{i,s,t} = \mathbf{X}_{i,s,t}\beta_x + \beta_q q_{s,t} + \mathbf{c}_i \beta_c + \mathbf{s}_s \beta_s + u_{i,s,t}$$

Concerns:

- Unobserved heterogeneity
- Can we observe q?

$$P_{i,s,t} = \mathbf{X}_{i,s,t}\beta_x + \beta_q q_{s,t} + \mathbf{c}_i \beta_c + \mathbf{s}_s \beta_s + u_{i,s,t}$$

Concerns:

- Unobserved heterogeneity --> Panel data
- Can we observe q?

$$P_{i,s,t} = \mathbf{X}_{i,s,t}\beta_x + \beta_q q_{s,t} + \mathbf{c}_i \beta_c + \mathbf{s}_s \beta_s + u_{i,s,t}$$

Concerns:

- Unobserved heterogeneity Panel data
- Can we observe q? \rightarrow Renovation projects

Quasi-Natural Experiment

- Texas School District Renovations
 - \$50+ million spent on IAQ related renovations
 at ~all campuses in district during last 7 years
- Quasi-natural experiment
 - Projects have been spread out over time
 - For each school year, there is a control group and a treatment group

- Student-level data
- Teacher-level data
- Renovation schedules and budgets

- Student-level data
 - ✓ School year
 - ✓ Grade level
 - \checkmark School attended
 - ✓ Attendance (by the 6-week period)
 - ✓ Test scores, test date (for 5 tests)
 - ✓ Demographic info
- Teacher-level data
- Renovation schedules and budgets

- Student-level data
- Teacher-level data
 - \checkmark School year
 - ✓ School taught
 - ✓ Salary
 - ✓ Stipend
 - \checkmark Years experience (total and within district)
- Renovation schedules and budgets

- Student-level data
- Teacher-level data
- Renovation schedules and budgets
 - ✓ School
 - ✓ Project scope
 - \checkmark Project beginning and end
 - ✓ Budget

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ + $\beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ + $\beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ + $\beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ + $\beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ + $\beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ + $\beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ + $\beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ + $\beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

- Yearly attendance rate (0 100)
- Math (reading) score (800 2800)
- Math (reading) pass rate (0 or 1)

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ Renovation status (q) + $\beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ + $\beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ + $\beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ + $\beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ $+ \beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ Year $+ \beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ $+ \beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ $+ \beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ + $\beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ + $\beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ Grade + $\beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ + $\beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ $+ \beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ $+ \beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ $+ \beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t} \right\} \mathbf{x}_{i,s,t}$ $+ \beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$

 $P_{i,s,t} = \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t}$ $+ \beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t$ $+ \beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t}$ $+ \beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} y ears \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t}$ $+ \beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t}$ Student & school FE

$$\begin{split} P_{i,s,t} &= \beta_0 + \beta_1 during_{s,t} + \beta_2 after_{s,t} \\ &+ \beta_3 y 2001_t + \beta_4 y 2002_t + \beta_5 y 2003_t + \beta_6 y 2004_t + \beta_7 y 2005_t \\ &+ \beta_8 grade1_{i,s,t} + \beta_9 grade2_{i,s,t} + \beta_{10} grade3_{i,s,t} + \beta_{11} grade4_{i,s,t} \\ &+ \beta_{12} attendance_{i,s,t} + \beta_{13} classsize_{i,s,t} + \beta_{14} years \exp_{i,s,t} + \beta_{15} dist \exp_{i,s,t} \\ &+ \beta_c \mathbf{c}_i + \beta_s \mathbf{s}_s + u_{i,s,t} \end{split}$$

- Student fixed effects remove **c** and **s**
- Clustering by school

Preliminary Results: Attendance Rates

Variable	All Students	Female Only	Male Only
during	-0.271	0278	-0.256
	(.303)	(.324)	(.291)
after	0.116	0.100	0.133
	(.121)	(.136)	(.127)
classsize	-0.013***	-0.011**	-0.015***
	(.003)	(.005)	(.005)
yearsexp	-0.003	-0.006	-0.001
	(.002)	(.003)**	(.003)
distexp	0.002	-0.003	0.002
	(.002)	(.003)	(.004)
Constant	96.848***	96.948***	96.762***
	(.109)	(.142)	(.145)
Observations	169975	82622	87300

Robust standard errors in parentheses

Preliminary Results: Math Scores

Variable	All Students	Female Only	Male Only
during	36.49	58.41 **	15.68
	(25.86)	(28.31)	(27.45)
after	29.18	36.76 **	22.48
	(20.82)	(17.12)	(26.32)
attendance	5.13***	5.07***	5.18***
	(.47)	(.73)	(.69)
classsize	-0.74	-0.97	-0.51
	(.49)	(.59)	(.62)
yearsexp	-0.07	0.10	-0.26
	(.32)	(.37)	(.34)
distexp	0.64	0.36	0.93*
	(.43)	(.48)	(.47)
Constant	1843.00 ***	1845.98 ***	1838.28 ***
	(48.54)	(78.84)	(72.58)
Observations	76848	38070	38760

Robust standard errors in parentheses

Preliminary Results: Reading Scores

Variable	All Students	Female Only	Male Only
during	32.49 *	45.67 *	20.26
	(16.9)	(24.01)	(19.65)
after	26.52 *	39.27 **	14.39
	(14.33)	(15.65)	(19.43)
attendance	4.60***	4.28***	4.94***
	(.62)	(.82)	(.72)
classsize	-0.25	-0.11	-0.40
	(.44)	(.52)	(.57)
yearsexp	0.07	0.35	-0.20
	(.27)	(.33)	(.32)
distexp	0.43	0.19	0.65*
	(.34)	(.44)	(.37)
Constant	1789.39 ***	1879.06 ***	1704.34 ***
	(61.41)	(82.4)	(72.84)
Observations	79296	39016	40261

Robust standard errors in parentheses

Preliminary Results: Math Pass Rates

Variable	All Students	Female Only	Male Only
during	0.052 *	0.049	0.056 ***
	(.03)	(.053)	(.016)
after	0.057 **	0.083 **	0.033 *
	(.026)	(.042)	(.018)
attendance	0.006 ***	0.006 ***	0.006 ***
	(.001)	(.001)	(.001)
classsize	-0.001	-0.002	-0.001
	(.001)	(.001)	(.001)
yearsexp	0.000	0.000	0.000
	(.001)	(.001)	(.001)
distexp	0.002 **	0.002 **	0.002 **
	(.001)	(.001)	(.001)
Constant	0.535 ***	0.474 ***	0.574 ***
	(.079)	(.108)	(.121)
Observations	76848	38070	38760

Robust standard errors in parentheses

Preliminary Results: Reading Pass Rates

Variable	All Students	Female Only	Male Only
during	0.033	0.045	0.023
	(.031)	(.03)	(.050)
after	0.031 **	0.021	0.040
	(.014)	(.031)	(.031)
attendance	0.004 ***	0.004 ***	0.003 ***
	(.001)	(.001)	(.001)
classsize	0.000	0.000	0.000
	(.001)	(.001)	(.001)
vearsexp	0.000	0.000	0.000
5 1	(.001)	(.001)	(.001)
distexp	0.001	0.001	0.001
1	(.001)	(.001)	(.001)
Constant	0.518 ***	0.552 ***	0.489 ***
	(.085)	(.119)	(.108)
Observations	79296	39016	40261

Robust standard errors in parentheses

Continuing Work

- Quantile Regression Framework
- Random trends model
- Compare with responses to non IAQ-related renovations
- Cost-Benefit Analysis

Continuing Work: Quantile Regression Framework

• Conditional mean vs. conditional quantile

Continuing Work: Quantile Regression Framework

• Conditional mean vs. conditional quantile

Continuing Work:

Random Trends Model

$$y_{it} = \mathbf{X}_{it}\beta + c_i + u_{it}$$

Continuing Work: Random Trends Model

$$y_{it} = \mathbf{X}_{it}\beta + c_i + u_{it}$$
$$y_{it} = \mathbf{X}_{it}\beta + g_it + c_i + u_{it}$$

Continuing Work: Other Renovation Projects

• Want to distinguish between effect of cleaner indoor air and effect of new coat of paint

Continuing Work:

Cost Benefit Analysis

- We know "costs"
- Need to quantify "benefits"