Knowledge Capital, Technology Adoption and Environmental Policies:

Evidence from the US Automobile Industry

Yichen Christy Zhou, Department of Economics, University of Maryland

Camp Resources XXII

Tuesday Aug 04, 2015

Motivation

Sufficient innovation and adoption of energy efficiency technologies are important

- Greenhouse gas emissions \downarrow
- Transportation sector: 27% of the total US GHG (EPA, 2011)
- Energy-efficient technologies \Rightarrow Emissions from vehicles

Automobiles have become increasingly energy-efficient, holding performance characteristics constant over 1986-2006 (Knittel 2012)

Despite the recent studies estimating the trend of technology progress, we know little about

- specific technology improvements \Rightarrow energy efficiency
- the impact of policies \Rightarrow technology improvements

Research Question and Approach

Research question: What is the impact of gas taxes (proxy for a potential carbon tax) and R&D subsidies in creating incentives for automakers to:

- Accumulate knowledge capital on energy-efficient technologies
- Adopt energy-efficient technologies

To answer, I estimate a structural model to explain automakers' choices of:

- How much to invest in the knowledge stock (stock of patents)
- Which EE technologies to adopt
- Vehicle performance characteristics
- Vehicle price

Given vehicle demand as a function of:

- Fuel Economy
- Vehicle price
- Vehicle performance characteristics

 $\left. \begin{array}{l} \Rightarrow & \text{Affect} \\ \text{Fuel efficiency} \end{array} \right.$

Literature

Quantify the autonomous technological progress by estimating the "fuel efficiency frontier" (Knittel, 2012, Klier and Linn, 2014)

- *Here*: How have "adopting" specific technologies and "developing knowledge capital (patenting)" in engine technology improved fuel efficiency
- Here: Quantify incentives and costs of technology adoption and innovation

Test and investigate how environmental policies spur innovation (patenting activities) (Aghion et. al 2014, Popp, 2002)

• Here: Effects of induced innovation on fuel efficiency improvement

Impact of gas taxes on fuel economy (as opposed to local pollution).

- Consumer-oriented literature examining effects on miles driven as well as vehicle choice
- Supply responses to gas taxes (Bento et. al. 2009)
- *Here*: by changing products offered through the channel of endogenous technological change

Model

Nested Logit model of new cars demand

$$\ln s_h - \ln s_0 = \alpha_p \ln p_h + \alpha_g \ln (\underline{fp \cdot g_h}) + \alpha_x x_h + \sigma_{seg} \ln s_{h|seg} + \xi_j$$

fuel price × fuel efficiency(1/mpg)

- s_h market share of model h
- $g_h = \frac{1}{mpg}$ fuel efficiency (fuel consumption rate: gallon/mile)
- x_h performance characteristics. e.g. horsepower-to-weight, weight

Automakers' two-stage choice problem

$$\Pi_{f}(p_{h}, x_{h}, a_{h}, i) = \max_{p} \left\{ \max_{x, a, i} \left[\sum_{h} (p_{h} - \underbrace{c_{h}(x_{h}, a_{h}, i)}_{k, a_{h}, i}) \cdot s_{h}(\mathbf{p}, \underbrace{\mathbf{g}}_{\mathbf{x}}, \mathbf{x}) \cdot M - \underbrace{H(\overset{+}{i})}_{\mathbf{x}, a_{h}, i} \right] \right\}$$

MC of Prod $g_{h} = g(x_{h}, a_{h}, i)$ R&D Cost

- a_h technology adoption (e.g. 5-speed gear)
- i innovation (stock of patents) for firm f
- M market size

Estimation

Parameters in marginal cost function $c_h(\cdot)$ are identified by equating MR=MC

• Estimate $\hat{c}_h = c_h(x_h, a_h, i)$, where \hat{c}_h is solved from FOC-p:

$$s_j + \sum_h (p_h - \hat{c}_h) \times \frac{\partial s_h}{\partial p_j}(\alpha) = 0$$

Parameters in R&D cost function h(i) are identified by equating

- MC(i) = Aggregated MR(i)
- Estimate $\hat{h}(i) = h(i)$, where $\hat{h}(i)$ is solved from FOC-i:

$$\hat{h}(i) = \left[\sum_{h} \left(\frac{\partial p_{h}}{\partial i} - \frac{\partial c_{h}}{\partial i}\right) s_{h} + \sum_{h} (p_{h} - c_{h}) \left(\sum_{k} \frac{\partial s_{h}}{\partial g_{k}} \frac{\partial g_{k}}{\partial i} + \sum_{k} \frac{\partial s_{h}}{\partial p_{k}} \frac{\partial p_{k}}{\partial i}\right)\right] M$$

Estimate the model using Generalized Methods of Moments

Follow Fan (2013) and Villas-Boas (2007) to compute gradients $\partial p_k/\partial i$

Data: 1986-2006

- Vehicle characteristics, technology adoption, and sales data at model level
 - ► Source: EPA Fuel Economy Trend, EPA Fuel Economy Guide, Ward's Auto
- Specific fuel efficient technologies adopted $a \in [0, 1]$
 - e.g. install 5-speed gear box, multiple valves per cylinder, variable valve timing, etc.
 - Aggregate to model level. (e.g. $a_{h,vvt} = 28.6\%$ for Toyota Accord 2003)

Data: 1986-2006

- Stock of knowledge = Stock of patents related to *all* engine and powertrain technologies
 - e.g. "F02B: Internal-combustion piston engines; combustion engines in general"
 - e.g. File a patent on turbocharging, fuel injection apparatus, etc.
 - Varies at firm level
 - Source: OECD Triadic Patent Family Database
- Clarification: Technology adoption \neq Adopting a patent

Model: Revisit

Nested Logit model of new cars demand

$$\ln s_h - \ln s_0 = \alpha_p \ln p_h + \alpha_g \ln \underbrace{(fp \cdot g_h)}_{\text{fuel price}} + \alpha_x x_h + \sigma_{seg} \ln s_{h|seg} + \xi_j$$

fuel price × fuel efficiency(1/mpg)

- s_h market share
- *g_h* fuel efficiency (fuel consumption rate: gallon/mile)

Automakers' Two-stage Choice Problem

$$\Pi_{f}(p_{h}, x_{h}, a_{h}, i) = \max_{p} \left\{ \max_{x, a, i} \left[\sum_{h} (p_{h} - \underbrace{c_{h}(x_{h}, a_{h}, i)}_{i, i}) \cdot s_{h}(\mathbf{p}, \underbrace{\mathbf{g}}_{i}, \mathbf{x}) \cdot M - \underbrace{H(i)}_{i, i} \right] \right\}$$

MC of Prod $g_{h} = g(x_{h}, a_{h}, i)$ R&D Cost

- a_h technology adoption (e.g. 5-speed gear)
- i knowledge capital (stock of patents) for firm f

Estimation Results: Demand

Demand Side Market Share: $\ln s_h - \ln s_0 = \alpha_p p_h + \alpha_g f p \cdot g_h + \alpha_x x_h + \sigma_{seg} \ln s_{h|seg} + \phi_{mt} + \xi_j$

Parameters		Estimates	Standard Errors
α_p : Price Semi-Elas	Veh. Price, \$10k	-0.553***	(0.114)
α_g : Fuel Economy	Dollar/Mile	-17.794***	(6.368)
α_x : Veh. Performance Char.	ln(Weight)	1.716***	(0.448)
	ln(Horsepower/Weight)	1.058***	(0.337)
σ_{seg} : Segment Similarity	ln(sharelseg)	0.490***	(0.089)
	Make by Year FE	Yes	

- Own-elasticity of fuel economy $fp \cdot g_h$: -2.05 \Rightarrow Potential Gas Taxes (or Carbon Pricing)
- Own-product elasticity of demand -3.48 ⇒ Potential Policies that affect MC

Estimation Results: Supply

Parameters		Estimates	SE	Param	eters	Estimates	SE
A. Marginal Cost of Production (\$10k)			B. Fuel Efficiency Technology Frontier:				
$\hat{c}_h(x_h, a_h, i) = \gamma_0 + \gamma_x x_h + \gamma_a a_h + \gamma_i k i + \mathbf{v}_h$			$g_h(x_h, a_h, i) = \exp\left\{\theta_0 + \theta_x x_h + \theta_a a_h + \theta_i ki\right\} + \varepsilon_h$				
γ_x : Performance	ln(Weight)	3.509***	(0.451)	θ x :	ln(Weight)	0.497***	(0.010)
	ln(Hp/Weight)	1.025*	(0.567)		ln(Hp/Weight)	0.241***	(0.008)
γ_a : Tech. Adopt.	5 Gear Trans.	1.454***	(0.212)	θ_a :	5 Gear Trans.	-0.072***	(0.005)
	Var. Valve Timing	0.629	(0.364)		Var. Valve Timing	-0.045***	(0.005)
	Multi. Valve	0.438***	(0.195)		Multi. Valve	-0.087***	(0.004)
	Port (MFI)	0.404***	(0.128)		Port (MFI)	-0.085***	(0.005)
γ_i : Knowledge	ki: Knowl. Stock	-0.070***	(0.020)	θ _i :	ki: Knowl. Stock	-0.009***	(0.001)
	Seg, Year FE	Yes			Seg, Make FE	Yes	
C. Marginal Cost o	f Knoweldge Capital ($Brillion$ $\hat{h}(i)$	$=\lambda_1+\lambda_2i+u$				
λ ₁ :	Constant	0.467***	(0.060)				
λ ₂ : Knowledge	i: Knowl. Flow	0.395***	(0.052)				
λ ₃ :	Japanese Mfr.	-0.352***	(0.063)				
λ ₄ :	US Mfr.	1.386***	(0.080)				
	Time Trend	Yes					

Estimation Results: Supply

Parameters		Estimates	SE	Parameters		Estimates	SE
A. Marginal Cost of Production (\$10k)				B. Fuel Efficiency Technology Frontier:			
$\hat{c}_h(x_h, a_h, i) = \gamma_0 + \gamma_0$	$\gamma_x x_h + \gamma_a a_h + \gamma_i k i + \nu_h$			$g_h(x_h, a_h, i) = \exp \{\theta_0 + \theta_x x_h + \theta_a a_h + \theta_i k i\} + \varepsilon_h$			
γ_x : Performance	ln(Weight)	3.509***	(0.451)	θ x :	ln(Weight)	0.497***	(0.010)
	ln(Hp/Weight)	1.025*	(0.567)		ln(Hp/Weight)	0.241***	(0.008)
γ_a : Tech. Adopt.	5 Gear Trans.	1.454***	(0.212)	θ_a :	5 Gear Trans.	-0.072***	(0.005)
	Var. Valve Timing	0.629	(0.364)		Var. Valve Timing	-0.045***	(0.005)
	Multi. Valve	0.438***	(0.195)		Multi. Valve	-0.087***	(0.004)
	Port (MFI)	0.404***	(0.128)		Port (MFI)	-0.085***	(0.005)
γ_i : Knowledge	ki: Knowl. Stock	-0.070***	(0.020)	θ _i :	ki: Knowl. Stock	-0.009***	(0.001)
	Seg, Year FE	Yes			Seg, Make FE	Yes	
<i>C. Marginal Cost of Knoweldge Capital</i> (\$Brillion) $\hat{h}(i) = \lambda_1 + \lambda_2 i + u$							
λ ₁ :	Constant	0.467***	(0.060)				
λ_2 : Knowledge	i: Knowl. Flow	0.395***	(0.052)				
λ ₃ :	Japanese Mfr.	-0.352***	(0.063)				
λ ₄ :	US Mfr.	1.386***	(0.080)				
	Time Trend	Yes					

Estimation Results: Tech. Adopt. v.s. Knowledge Cap.

Adopting EE technologies has sizable effects in fuel efficiency improvement

- 12% of efficiency improvement over 1986-2006, holding performance x constant
- 10 times larger than that from knowledge accumulation
- Fuel economy frontier $g(x, a, i) = \exp\{\theta_0 + \theta_x x + \theta_a a + \theta_i i\} + \varepsilon$

Conventional frontier $g(x, T_t) = \exp\{\theta_0 + \theta_x x + \underbrace{T_t}\} + \varepsilon$

• Plot $-\ln(g) \equiv \ln(\text{miles/gallon})$ against $\theta_a a$, $\theta_i i$ and T_t

Estimation Results: Supply

Parameters		Estimates	SE	Param	neters	Estimates	SE
A. Marginal Cost of Production (\$10k)				B. Fuel Efficiency Technology Frontier:			
$\hat{c}_h(x_h, a_h, i) = \gamma_0 +$	$\gamma_x x_h + \gamma_a a_h + \gamma_i k i + \mathbf{v}_h$			$g_h(x_h)$	$(a_h, i) = \exp\left\{\theta_0 + \theta_x x_h\right\}$	$h + \theta_a a_h + \theta_i k_h$	$i\} + \varepsilon_h$
γ_x : Performance	ln(Weight)	3.509***	(0.451)	<i>θx</i> :	ln(Weight)	0.497***	(0.010)
	ln(Hp/Weight)	1.025*	(0.567)		ln(Hp/Weight)	0.241***	(0.008)
γ_a : Tech. Adopt.	5 Gear Trans.	1.454***	(0.212)	<i>θ</i> _a :	5 Gear Trans.	-0.072***	(0.005)
	Var. Valve Timing	0.629	(0.364)		Var. Valve Timing	-0.045***	(0.005)
	Multi. Valve	0.438***	(0.195)		Multi. Valve	-0.087***	(0.004)
	Port (MFI)	0.404***	(0.128)		Port (MFI)	-0.085***	(0.005)
γ_i : Knowledge	ki: Knowl. Stock	-0.070***	(0.020)	θ_i :	ki: Knowl. Stock	-0.009***	(0.001)
	Seg, Year FE	Yes	\searrow		Seg, Make FE	Yes	
C. Marginal Cost of	of Knoweldge Capital ($Brillion) \hat{h}(i)$	$\lambda_1 = \lambda_1 + \lambda_2 t + u$	100	additional pater	nts	
λ ₁ :	Constant	0.467***	(0.060)	⊿ -> \$	700 MC savings	/vehicle (\$	392
λ ₂ : Knowledge	i: Knowl. Flow	0.395***	(0.052)	Milli	on)		\vee
λ3:	Japanese Mfr.	-0.352***	(0.063)	-> 0	.9% Fuel Efficie	ncy Improv	/ement
λ4:	US Mfr.	1.386***	(0.080)	(Ra	ise Rev. \$235 M	illion)	
	Time Trend	Yes		₩ ->\$	660 Million R&D) Cost	

Preliminary Simulation Results

		Scenario I. Choose <i>p</i> Scena		ario II. Choose p,a,i		
		Choices	Choices	EE Improvement (%)		
				$-\ln(g) \equiv \ln(\text{mile/gallon})$		
p: Price		\$ 60↑	\$181 ↑			
a: Tech. Adopt Rate	5 Gear Trans.		0.7%↓)		
	Var. Valve Timing		3.2% ↑	$\rightarrow 0.28 \uparrow$		
	Multi. Valve		$1.6\%\uparrow$	$\Rightarrow 0.38$		
	Port (MFI)		$1.7\%\uparrow$)		
i: Effort in Knowledge	e Capital		10 Patents ↑	$\Rightarrow 0.09 \uparrow$		

A \$0.5/gallon increase in gas tax on vehicle market in 1986

- A potential R&D subsidy increase
- Impact of reducing competition in EE technology improvement
 - Actual merger of Chrysler and Fiat in 2009
 - Rumored merger of Chrysler and GM in 2008

Conclusions

I examine automaker's incentives of innovation and technology adoption

- Main incentive of innovation \Rightarrow production cost reduction
- Main incentive of technology adoption ⇒ raise sales by offering fuel-efficient vehicles

Potential policies

- Gasoline tax on fuel efficiency: sizable improvement through the channel of technology improvement
- Elastic demand w.r.t. price ⇒ Potential policies affect the cost component (R&D subsidies)

Thank you!

Discussions

Channels that are not included in the current framework

- CAFE Standard: allow adjusting p_h to meet CAFE standard
 - > 2nd order concern: (almost) no change over 1986-2006
 - Relax the model by allow parameters in c_h to vary by groups such as a CAFE constrained group (3 US), a CAFE unconstrained group (JP and KR), and a fine-paying group
 - Or solve a constrained profit maximization problem by using shadow costs of complying to CAFE estimated in Jacobsen (2012) using data 1997-2001
- Future cost savings from current innovations
 - I only allow concurrent cost savings from innovation
 - Benefit from innovation induced by a R&D subsidy or a gas tax would be a conservative estimate

Instruments for $\{p_h, x_h, a_h, i\}$

Grandfathered technologies

- Distance of adoption rates of grandfathered technology from competing models $distout(a)_{h}^{dated} = a_{h}^{dated} - \sum_{j \notin firm, j \in seg} a_{j}^{dated}$
- Distance of adoption rate of grandfathered technology from the same brand $distin(a)_h^{dated} = a_h^{dated} \sum_{j \neq h, j \in firm} a_j^{dated}$
- Longer-run vehicle characteristics (e.g. drivetrain spec. 4WD/AWD), suggest by Fowlie, et.al. (2013)
 - Distance of LR technology from competing models $distout(x)_h^{lr} = x_h^{lr} - \sum_{j \notin firm, j \in seg} x_j^{lr}$
 - Distance of LR technology from the same brand $distin(x)_h^{lr} = x_h^{lr} - \sum_{j \neq h, j \in firm} x_j^{lr}$

S Cumulative innovation from cross-category and innovation spillovers

- Spillover for regular internal combustion engine
- Own knowledge for Alternative Fuel Vehicle (AFV) engine
- Spill over for AFV engine

Instruments and Assumptions

Grandfathered technologies

Assumptions for the demand system

 $\ln s_h - \ln s_0 = \alpha_p \ln p_h + \alpha_g \ln (\underline{fp \cdot g_h}) + \alpha_x x_h + \sigma_{seg} \ln s_{h|seg} + \xi_j$

- All efficiency-related qualities \checkmark : picked up by $fp \cdot g_h$
- All performance-related qualities \checkmark : picked up by x_h
 - ξ_i only includes non-efficiency non-performance related qualities
 - e.g. tastes associated with leather seat and sound system