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Physical capital (hatcheries) has been developed to
compensate for the loss of natural capital (habitat)
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> 2 billion
hatchery
fish
released
between
1946-
2012

~30M/yr

Huber and
Carlson,
Accepted. San
Francisco Estuary
and Watershed
Science.
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Millions of fish released
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Trend towardsoff-5|te releases of hatchery fish

http://www.fisheryfoundation.org/

In 2008, 20.2 million smolts
outplanted to San Pablo Bay!
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Release locations for the Nimbus Hatchery

Slide courtesy of Kristina Cervantes-Yoshida; Sturrock et al. in prep



Straying is increasing in the trucking distance
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10 CDFG/NMFS. 2001. Final report on anadromous salmonid fish hatcheries in California.



Population time series show evidence of increasing
synchrony in dynamics of Sacramento River Fall Run
Chinook

~ e 8 / 10 pairwise Sacramento A
S correlations were _ Basin
c — . —— Mainstem Sac. )
5 positive, 4 of these - Batile A
E — were significant —— Feather h
S g -~~~ Yuba ;'.
o . 1
D American ;!
S Iy
© Iy
< | o
o |
(@)
o _]
o
o
— _|
O - - - - ~

11 Carlson and Satterthwaite. 2011. Canadian Journal of Fisheries and Aquatic Sciences.



Salmon collapse in the Central Valley results in
unprecedented fishery closures (2008)
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Intended contributions

1. Determine how hatchery and fishery
management can improve fishery value and

resilience.
 Externality to hatchery production.

2. Develop approximate dynamic programming
tools and introduce ADP to resource
economics.
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Unique Aspects

Calibrated to Central Valley Chinook salmon.
2 stream model

Dynamic optimization with three control
variables and seven state equations. (This is

big).

Quantitative genetics.



Intended contribution: develop approximate dynamic
programming tools — forward simulation

 Traditionally, numerical methods to solve dynamic
optimization problems iterate backwards through time. (e.g.
Value-Function Iteration)

e As the number of stocks and control variables increase,
memory becomes a limiting factor.

e ADP allows for high dimensionality without as much loss of
resolution or slow run time.



Intended contribution: develop approximate dynamic
programming tools — forward simulation

stock, S

Start with an initial guess of the value function. V(s,z)



Intended contribution: develop approximate dynamic
programming tools — forward simulation
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Intended contribution: develop approximate dynamic
programming tools — forward simulation
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Given the value function, calculate the optimum control/action at
the current state(s).
V¥(s,z,,) = max, { n(s,z,a,) + BV(S;,1,2,) }



Intended contribution: develop approximate dynamic
programming tools — forward simulation

7042 ¢ >

70415} /

*IL\S{\(\Q
£
| e
> 7041 of i | |
update (linear filter)
J

70405 } /

> ew observation

7040 < : : -
40 405 41 415 42

stock, S

Update the value function.



Intended contribution: develop approximate dynamic
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Intended contribution: develop approximate dynamic
programming tools — forward simulation
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Repeat this process for T periods, where s, is a result from the previous
period and z,,, is drawn from the stochastic process.



Intended contribution: develop approximate dynamic
programming tools — forward simulation
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e After T periods, pick a new state randomly and repeat for another T
periods.



Intended contribution: develop approximate dynamic
programming tools — forward simulation
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After N iterations of the entire process, regress.



Intended contribution: develop approximate dynamic

programming tools — forward simulation
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Intended contribution: develop approximate dynamic
programming tools — forward simulation

e |terating forward in time while drawing shocks from the stochastic
process eliminates the need for integration.

e Using regressions to characterize the value function eliminates the need
for massive value function matrices.

* This makes forward-simulating ADP particularly powerful tool for
dynamic optimization with many states and/or controls.
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Conceptual model: two populations face individual selection
events and a shared selection event in the ocean

River-specific selection means
homogenization across populations is costly
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/\ genetic stock
/ genetlc stock after ocean
after in-stream selection
i=2 selection

initial genetic ‘stock’
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Mendelian vs. quantitative traits
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Populations without hatcheries are starting to behave like
the rest of the system

10-yr rolling correlation
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Smith (2012): need to move

“beyond a single, homogenous

stock”; recognize margins external
to the fishery (e.g. environmental

variation) and life history

withoui hatchernies

Satterthwaite and Carlson, In Prep.
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